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BACKGROUND: The underlying molecular pathways for the effect of excess fat mass on cardiometabolic diseases is not well
understood. Since body mass index is a suboptimal measure of body fat content, we investigated the relationship of fat mass
measured by dual-energy X-ray absorptiometry with circulating cardiometabolic proteins.
METHODS: We used data from a population-based cohort of 4950 Swedish women (55–85 years), divided into discovery and
replication samples; 276 proteins were assessed with three Olink Proseek Multiplex panels. We used random forest to identify the
most relevant biomarker candidates related to fat mass index (FMI), multivariable linear regression to further investigate the
associations between FMI characteristics and circulating proteins adjusted for potential confounders, and principal component
analysis (PCA) for the detection of common covariance patterns among the proteins.
RESULTS: Total FMI was associated with 66 proteins following adjustment for multiple testing in discovery and replication
multivariable analyses. Five proteins not previously associated with body size were associated with either lower FMI (calsyntenin-2
(CLSTN2), kallikrein-10 (KLK10)), or higher FMI (scavenger receptor cysteine-rich domain-containing group B protein (SSC4D), trem-
like transcript 2 protein (TLT-2), and interleukin-6 receptor subunit alpha (IL-6RA)). PCA provided an efficient summary of the main
variation in FMI-related circulating proteins involved in glucose and lipid metabolism, appetite regulation, adipocyte differentiation,
immune response and inflammation. Similar patterns were observed for regional fat mass measures.
CONCLUSIONS: This is the first large study showing associations between fat mass and circulating cardiometabolic proteins.
Proteins not previously linked to body size are implicated in modulation of postsynaptic signals, inflammation, and carcinogenesis.
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INTRODUCTION
Obesity is a major modifiable risk factor for numerous adverse
health outcomes such as cardiovascular diseases (CVDs), type 2
diabetes, several types of cancer, and mortality [1, 2]. The
cardiovascular consequences of obesity may occur through several
different mechanistic pathways, including atherosclerosis, hyperten-
sion, diabetes, thrombosis, and endothelial dysfunction [3]. How-
ever, the specific mechanisms are not well understood. Modern
technologies, such as proteomics, provide new possibilities to
simultaneously investigate a large number of circulating proteins
with potential clinical relevance. Although common measures of
body size, including body mass index (BMI), waist circumference
(WC) and waist-to-hip ratio (WHR), have been linked to several
cardiometabolic proteins [4–8], replication of these findings and
identification of novel associations is needed. In a longitudinal study
in the elderly, several proteins were associated with changes only in
either BMI or WHR, indicating that associations between circulating

proteins and various measures of body size and fat distribution may
differ [7].
BMI is the most commonly used measure of adiposity, but it

does not provide insight into the body fat distribution or tissue
composition. Body composition scans allow the evaluation of fat
mass independently of other tissue constituents [9]. A recent
Mendelian randomization study found that the fat mass index
(FMI) is a better predictor of risk of major cardiometabolic diseases
than BMI [10]. However, there have been no studies of objectively
measured fat mass in relation to cardiometabolic circulating
proteins. Discovery and validation of proteins related to body
composition are important for better understanding of the
potential molecular pathways underlying the link between obesity
and cardiometabolic diseases, and may suggest potential
therapeutic targets.
In the present study, we investigated for the first time the

associations between total and regional fat mass and 276
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circulating cardiometabolic proteins. We employed a combination
of machine learning and conventional statistical analysis to
identify associations with high predictive value in a population-
based cohort of 4950 Swedish women.

MATERIALS AND METHODS
Study population
We used a previously described clinical subcohort [11] of the population-
based Swedish Mammography Cohort (SMC; www.simpler4health.se),
which included participants from central Sweden. Between November
2003 and October 2009, the 5022 women who were randomly chosen for
the subcohort underwent a clinical examination that included dual-energy
X-ray absorptiometry (DXA) measurements, blood and urine samples, fat
biopsies and anthropometric assessment. Previously, participants had
responded to SMC lifestyle, food frequency and health questionnaires in
1987–1990, 1997, and up to one month before the clinical examination.
From the initial sample size, we excluded for the present analysis 72
individuals because the protein profile was not measured (n= 25) or fat
mass data was not obtained (n= 47). The study was approved by the
Ethical Review Agency, Sweden. All participants gave written informed
consent.

Assessment of body composition and potential confounders
Body composition measurements were obtained with DXA (Lunar Prodigy;
Lunar Corp, Madison, WI, USA). The same trained personnel and the same
DXA equipment were used for all study participants. The precision errors
on triple DXA scans in 15 participants, including repositioning, were
0.8–1.5% depending on type of measurement (lean mass, fat mass or bone
mineral density) and site [12]. The long-term coefficient of variation was
less than 1% for a spine phantom. The validity of fat mass measured by
Lunar Prodigy has been evaluated against the 4-compartment model, the
current gold standard for body composition appraisal, resulting in
1.7–2.0% higher fat mass estimates with use of DXA [12]. Total fat mass
was approximated using the fat mass index (FMI), calculated as total fat
mass divided by the square of height (kg/m2). Android and gynoid fat mass
was also expressed in terms of FMI (kg/m2), and named as android FMI and
gynoid FMI, respectively. In addition, the ratio android/gynoid fat mass was
calculated. Lifestyle information assessed by the questionnaires included
participants’ educational attainment, walking/bicycling, leisure-time phy-
sical activity, alcohol consumption, and smoking status. The physical
activity questionnaire has been validated using 7-day activity records and
accelerometer data [13]. Weight (kg) and height (cm) were measured at
the clinical examinations.

Proteomic profiling
The proteomic analyses in this subcohort have been previously described
[14]. Briefly, venous blood samples were collected after an overnight fast.
Samples were immediately centrifuged and stored at −80 °C until analysis.
Analysis of 276 protein biomarkers was performed utilizing three high-
throughput multiplex immunoassays: the Olink Proseek Multiplex CVD II,
CVD III, and Metabolism (Olink Bioscience, Uppsala, Sweden), each
measuring 92 selected CVD or metabolism-related proteins simultaneously.
In previous proteomic analysis based on the same cohort, no substantial
systematic drift between analysis plates was detected [15]. Protein names
and abbreviations can be found in the Supplementary Table 1. The
analyses were performed at SciLifeLab, Uppsala University, Sweden. Inter-
plate variability was adjusted for by intensity normalization with the plate
median as the normalization factor. For data analysis Olink NPX Manager
Software was used. The results provide relative values, normalized protein
expression (NPX) data, which are log2 transformed; one-unit higher NPX
represents an approximate doubling of the protein concentration. The PEA
assays have mean intra-assay and inter-assay coefficients of variation
around 8 and 12%, respectively. Values below the limit of detection (LOD)
were used as provided by the manufacturer. Fourteen proteins with more
than 75% of samples below the LOD were excluded from the analysis in
accordance with the manufacturer’s recommendations (Supplementary
Table 2). In the analysis of the CVD II, CVD III and Metabolism panels,
respectively 147 (3.0% of 4950 analyzed specimens), 8 (0.2%), and 7 (0.1%)
samples did not pass the manufacturer’s quality control and were
therefore set to missing. N-terminal prohormone of brain natriuretic
peptide (NT-proBNP) was measured in both the CVD III and Metabolism
panels. The latter was used for the analyses since more values passed the

internal quality controls in that panel. The remaining 261 protein values
were standardized (mean= 0, and standard deviation= 1) in order to
obtain comparable estimates.

Statistical analysis
Due to the expected large number of associations of fat mass with
circulating proteins [5], we applied a random forest (RF)-based machine
learning method with minimally biased variable selection to identify
the most predictive associations, while minimizing overfitting and false
positive findings [16]. To further adjust for potential confounders, we
subsequently performed a multivariable analysis of FMI-protein associa-
tions and applied multiple comparison adjustment. We used a discovery
(80%) and replication (20%) design, applied both to the machine learning
and linear models (Supplementary Fig. 1). Statistical analyses were
performed using Stata version 15.1 (StataCorp, College Station, TX, USA)
or R software version 4.0.5 (R Core Team, Vienna, Austria), and the
statistical tests were two-sided.

Identification of proteins related to fat mass index using the
Multivariate methods with Unbiased Variable selection
(MUVR) algorithm
To explore associations between fat mass and the proteome, we first
applied RF modeling with the measured proteome data as predictors and
FMI as the target. RF modeling was conducted using the MUVR algorithm
(v 0.0.975) [16] with the following parameters: number of repetitions
(nRep)= 30, number of folds in the outer cross-validation loop (nOuter)= 6
and proportion of features kept per iteration in the recursive feature
elimination in the inner cross-validation loop (varRatio) = 0.8. The MUVR
algorithm utilizes repeated double cross validation to reduce overfitting
and false positive discovery and performs a minimally biased variable
selection to provide an optimal selection of proteins associated with FMI
[16]. The variable selection is guided by the performance of successively
fewer variables (determined by varRatio) on calibration data within the
double cross validation, resulting in a best selection of predictor variables
based on modeling performance. The predictive performance for the
MUVR-RF regression was calculated as Q2= 1 – PRESS /TSS, where PRESS is
the prediction error sums of squares and TSS is the total sums of squares.
Consequently, Q2 is interpreted similarly to R2, with Q2= 1 representing
perfect prediction and Q2= 0 representing a null regression.

Discovery and replication of proteins linked to fat mass
characteristics using multivariable regression analyses
In the discovery sample (n= 3960), separate multiple linear regression
analyses were performed for each protein selected from the MUVR
algorithm, with protein as an outcome (dependent) variable and FMI as an
exposure (independent) variable. Potential confounders were selected
using directed acyclic graphs (DAGs) [17] based on our a priori knowledge
of the relationships among potential confounders, intermediate variables,
exposure, and outcome variables, as well as on existing information
regarding factors associated with fat mass or BMI and circulating proteins
[18, 19]. The analyses were adjusted for age (continuous), educational
attainment (≤9 years, 10–12 years or >12 years of school), alcohol intake
(g/day, the product of frequency of consumption of beer, wine, and liquor
and amounts consumed at each occasion), current smoking status (no/
yes), walking/cycling (hardly/ever; <20min/day; 20–40min/day;
40–60min/day; 60–90min/day; and >90min/day), leisure-time exercise
(<1 h/week; 1 h/week; 2–3 h/week; 4–5 h/week; and >5 hours/week) and
lean mass. To account for multiple testing, a 5% False Discovery Rate (FDR)
using the Benjamini and Hochberg procedure was applied [20]. Among
4,950 participants, 14% had missing information in leisure-time exercise,
and 13% on walking/bicycling habits. Information on education, and
alcohol intake was missing in less than 1%. Missing information on
covariates was imputed using multiple imputation with chained equations
and 20 imputation cycles. Proteins were measured using the same
technology and analyzed using the same scale, therefore correlations
among proteins were estimated using Pearson correlations.
Proteins associated with FMI at a 5% FDR in the discovery sample were

assessed in the replication cohort using multiple regression analyses with
the same adjustments. We considered the association of FMI and
individual proteins to be “replicated” if the nominal P value in
the replication cohort was <0.05, and the direction of the association
was the same. Finally, to obtain more accurate estimates for replicated
proteins, we reperformed the analyses using the entire cohort.
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Sensitivity analyses based on entire cohort were performed investigat-
ing the association of android, gynoid FMI as well as the android/gynoid
fat mass ratio with proteins that were linked to total FMI (in the discovery
and replication samples) using multivariable linear regression adjusted for
potentially confounding variables as in the analysis of total FMI. In order to
obtain more comparable estimates in this analysis, android, gynoid and
total FMI we standardized setting the mean to zero and a standard
deviation to one.

Principal component analysis
In the third step, to obtain an overview of proteins and their associations
with total FMI, we performed a ‘Varimax’ (orthogonal) rotated principal
component analysis (PCA). FMI (exposure) was then associated with the
component scores (outcomes) using multivariable linear regression
adjusted for potentially confounding variables as in the step 2 above.
Protein patterns and associations with FMI for the components were then
visualized using the TriPlot algorithm (v 0.1.4) [21].

RESULTS
Baseline characteristics of the study participants are described in
Table 1. Briefly, the mean age was 67.6 (SD 6.8) years and the
mean FMI was 10.1 (3.2) kg/m2; 60% of the women had excess fat
(FMI > 9 kg/m2) and 4% had a fat deficit (FMI < 5 kg/m2) according
to the ranges of FMI that match the prevalence of the WHO BMI

classifications for women [22]. Baseline characteristics of women
randomly allocated to the discovery or replication samples are
shown in the Supplementary table 3.
In the first step of the data analysis, FMI showed a strong

association with the measured proteome, as assessed by the
MUVR-RF analysis. Predictive performance was high both in the
discovery data (Q2= 0.72) and in the replication data (Q2= 0.73),
suggesting strong FMI-proteome associations as well as the
absence of overfitting or bias during model training (Supplemen-
tary Fig. 2). Of the 261 proteins which were initially included in the
analysis, MUVR identified 105 as robustly linked to FMI (Supple-
mentary Table 4). In the second step, in the discovery sample, FMI
was associated with 80 proteins in multiple linear regression
analyses adjusted for confounders and multiple comparisons. FMI
was associated with 66 of these proteins in the replication sample.
For these replicated 66 proteins, the analysis using the entire

cohort is shown in Fig. 1 and Supplementary table 4. Higher FMI
was associated with higher levels of 37 proteins; the strongest
associations were with leptin (LEP), fatty acid-binding protein
adipocyte (FABP4), adrenomedullin (ADM), interleukin-1 receptor
antagonist protein (IL-1ra), CXADR-like membrane protein (CLMP),
plasminogen activator inhibitor 1 (PAI), retinoic acid receptor
responder protein 2 (RARRES2), tissue-type plasminogen activator
(t-PA), scavenger receptor cysteine-rich domain-containing group
B protein (SSC4D), and low-density lipoprotein receptor (LDL
receptor). β-coefficients for these proteins in the regression
analyses with FMI ranged from 0.016 (for matrix metalloprotei-
nase-7, MMP-7, and osteoclast-associated immunoglobulin-like
receptor, hOSCAR) to 0.254 for LEP (Fig. 1 and Supplementary
Table 4). Higher FMI was associated with lower levels of 29
proteins, such as insulin-like growth factor-binding protein 1
(IGFBP-1), insulin-like growth factor-binding protein 2 (IGFBP-2),
paraoxonase (PON3), adhesion G-protein coupled receptor G2
(ADGRG2), growth hormone (GH), vascular endothelial growth
factor D (VEGF-D), and growth differentiation factor 2 (GDF2).
β-coefficients in the regression analyses of these proteins ranged
from −0.016 for neurogenic locus notch homolog protein 3
(Notch3) to −0.128 for IGFBP-1 (Fig. 1 and Supplementary Table 4).
The correlation matrix of the 105 proteins identified in the first
step is shown in Supplementary Fig. 3. Similar association patterns
were observed for android and gynoid FMI for the most proteins.
However, gynoid FMI was not linked to matrix metalloproteinase-7
(MMP-7) and Neurogenic locus notch homolog protein 3 (Notch3)
(Supplementary Fig. 4). The association of the android/gynoid fat
mass ratio with 66 proteins is shown in the Supplementary Fig. 5.
The number of principal components was truncated to 4

according to the Velicer’s MAP (minimum average partial) criterion
[23]. The 4 components explained 37% of the variance of the 66
proteins with confirmed associations with FMI. The first compo-
nent showed a strong positive association with FMI
(β-estimate= 0.187 per SD, p < 0.0001), with the strongest
loadings from LEP, SSC4D, PAI, RTN4R, CDHR5, CTSO and IL-1ra
(positive loadings), and IGFBP-2, IGFBP-1 and PON3 (negative
loadings) (Fig. 2 and Supplementary tables 5 and 6). Pearson
correlation analysis revealed statistically significant associations
among all these ten proteins with absolute value correlations of
0.18 ≤ |r | ≤ 0.63 (Supplementary Fig. 3). The three other principal
components had statistically significant but less pronounced
associations with FMI with the following β- estimates per SD:
−0.066 (second principal component, PC), −0.011 (third PC), and
0.073 (fourth PC) (Fig. 2 and Supplementary table 5).

DISCUSSION
Using a combined approach of RF-based analysis, linear models,
and principal component analysis, the present study showed
strong associations between FMI and multiple circulating proteins
related to CVD and metabolism. We identified five proteins

Table 1. Baseline characteristics of the participants.

Characteristics*

Number of participants 4950

Age, years 67.6 (6.8)

Education, n (%)

≤9 years 1183 (24.0)

10–12 years 1907 (38.6)

>12 years 1848 (37.4)

Current cigarette smoking status, n (%)

Non-smokers 4509 (91.1)

Current smokers 441 (8.9)

Alcohol intake, g/day 6.2 (7.1)

Walking/bicycling, n (%)

Hardly ever 431 (10.1)

<20min/day 635 (14.8)

20–40 min/day 1504 (35.1)

40–60 min/day 981 (22.9)

60–90 min/day 480 (11.2)

>90min/day 257 (6.0)

Exercise, n (%)

<1 hour/week 810 (19.0)

1 h/week 879 (20.6)

2–3 h/week 1415 (33.2)

4–5 h/week 613 (14.4)

≥5 h/week 541 (12.7)

Body mass index, kg/m2 25.9 (4.1)

Total fat mass, kg 26.9 (8.7)

Android fat mass, kg 2.3 (1.0)

Gynoid fat mass, kg 4.9 (1.3)

Android/gynoid fat mass ratio 0.5 (0.1)

Total lean mass, kg 39.4 (4.4)

Fat mass index, kg/m2 10.1 (3.2)
*Values are means (SD) or n (percentages).
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involved in carcinogenesis, postsynaptic signaling and inflamma-
tion that have not previously been related to body size
measurements in a general population: scavenger receptor
cysteine-rich domain-containing group B protein (SSC4D),
calsyntenin-2 (CLSTN2), kallikrein-10 (KLK10), trem-like transcript
2 protein (TLT-2), and interleukin-6 receptor subunit alpha (IL-6RA).
In addition, the PCA showed that FMI-associated proteins could be
combined into components representing protein patterns, of
which the first component had the strongest association with FMI.
These proteins are involved in glucose and lipid metabolism,
adipocyte differentiation, appetite regulation, immune response
and inflammation.
Several studies have investigated the association of body size

parameters, such as waist circumference, waist-to-hip ratio and
BMI, with circulating proteins measured with multiplexed immu-
noassay targeted technologies (e.g., SOMALogic or Olink) [4,
5, 7, 8]. However, we are not aware of any study that has
systematically examined the associations between objectively
measured fat mass and a large number of proteins. Our study
confirmed previously observed strong associations of different
body size measurements with several circulating proteins involved
in pathways such as triglyceride metabolism, appetite regulation,
adipocyte differentiation, immune response, inflammation, hor-
mone metabolism, and other biological processes [4, 5, 8]. In
particular, we observed strong associations of elevated FMI with
higher levels of multiple proteins, such as LEP, FABP4, IL-1ra, ADM,
CLMP, PAI, RARRES2, t-PA, SSC4D, and LDL receptor, and lower
concentrations of several other proteins, such as IGFBP-1, IGFBP-2,
PON3, ADGRG2, and GH. Recent Mendelian randomization
analyses suggested casual associations between several proteins
identified and replicated in the present study. For example, a
causal positive association of FABP4, LEP and PAI with BMI [8, 24],
ADM with WHR [24], as well as inverse association of IGFBP-1,
IGFBP-2, and GDF2 with BMI was suggested [8].
The PCA-based analysis in our study demonstrated that several

proteins were captured in principal components that, in turn,
associated with FMI. The protein pattern captured by the first
component had the strongest association with FMI and the
discussion here is therefore limited to the proteins loading most
strongly in this component. These included LEP, SSC4D, PAI,
reticulon-4 receptor (RTN4R), cadherin-related family member 5
(CDHR5), cathepsin O (CTSO) and IL-1ra (positive loadings), and
insulin-like growth factor-binding protein 1 and 2 (IGFBP-1 and
IGFBP-2) and paraoxonase (PON3) (negative loadings). These
proteins tended to be correlated (positively or negatively) with
each other, and individually associated with FMI. However, it
should be noted that there were other proteins not captured by
the first principal component that were associated with FMI,
including FABP4, ADM, RARRES2, t-PA, and ADGRG2, suggesting
other mechanisms.
The proteins with the highest loadings in principal component

1 are involved in several biological processes such as glucose and
lipid metabolism, appetite regulation, adipocyte differentiation,
immune response and inflammation. For instance, IGFBP-1 and
IGFBP-2 which had inverse associations with FMI in our study,
belong to the group of transport proteins involved in insulin-like
growth factors (IGF) transport, bioavailability and function. They
are thus implicated in glucose metabolism homeostasis [25, 26],
which could explain why these proteins correlate highly (r= 0.63).
The observed associations with FMI strengthens the previously
reported inverse correlation of these proteins with BMI, fasting
insulin levels and blood pressure [25, 27]. It is also suggested that
the majority of IGFBPs have IGF-independent actions [25].
In our study, LEP had the strongest association with FMI, and

was inversely associated with both IGFBP-1 and IGFBP-2 (r=−0.46
and −0.44, respectively). LEP is secreted by adipose tissue and
plays an important role in the regulation of energy homeostasis,
metabolism, and neuroendocrine and immune functions [28]. It

Fig. 1 Association between fat mass index and circulating protein
biomarkers. β-estimates (per 1 standard deviation change in
biomarker concentration) and 95% CI derived from multiple
linear regression analyses. The models were adjusted for age,
educational attainment, alcohol intake, smoking status, walking/
cycling, leisure-time exercise, and lean mass. The complete names of
the abbreviated proteins can be found in Supplementary Table 1.
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has in fact been demonstrated both in vitro and in vivo that LEP
regulates muscle expression of IGFBP-2, which could affect insulin
sensitivity and glucose metabolism [29]. An inverse association
with FMI was also observed for PON3. Evidence suggests that it is
implicated in the pathophysiology of CVDs: PON3 can be bound to
HDL in the bloodstream, and may decrease atherosclerosis
progression as do other members of the PON family [30].
Further links to inflammation are supported by IL-1ra, which

had a positive association with FMI. It belongs to the intrerleukin-1
(IL-1) cytokine family, inhibits the activity of IL-1-α and IL-1-β, and
modulates immune and inflammatory responses related to IL-1
[31]. IL-1ra expression is induced by IL-1 and by other
inflammatory stimuli [31]. SSC4D was also strongly linked to FMI.
This protein belongs to the highly conserved scavenger receptor
cysteine-rich (SRCR) superfamily of cell surface and/or secreted
proteins, which relate to immune function [32]. Notably, SSC4D is
not well described in the literature, and no previous studies have
investigated an association with body size measurements.
In addition, we identified several other novel associations

between FMI and circulating proteins, such as CLSTN2, KLK10, TLT-
2, and IL-6RA. For example, CLSTN2 had a strong inverse
association with FMI. This protein belongs to the calsyntenins
family of postsynaptic membrane proteins, and may modulate
calcium-mediated postsynaptic signals [33]. Previous human and
animal studies have linked CLSTN2 alleles with cognitive
performance [34–36]. However, the role of CLSTN2 is poorly
characterized in relation to cellular function and molecular
interactions [36], and has not been reported to be associated
with metabolic health. KLK10 was inversely associated with FMI in

our study. It is a member of the Kallikreins protein family, which is
described in the literature mainly in relation to its role in
carcinogenesis, although evidence is contradictory. For example,
some studies have reported that KLK10 is elevated in pancreatic
ductal adenocarcinoma tissues, and that aberrant KLK10 expres-
sion is associated with poor prognosis and shorter survival [37]. In
contrast, KLK10 was also proposed to have a tumor-suppressor
role in breast and prostate cancer [38]. In a previous cross-
sectional study of 2444 participants, circulating KLK10 was not
found to be associated with WC [4]. This may indicate that KLK10
is exclusively associated with FMI or that the divergent findings
are related to technical differences in protein identification.
Among other novel identified associations, TLT-2 had a strong

positive association with FMI. This finding was strengthened by a
similar association observed with WC in another population-based
study, although it did not retain statistical significance after
adjustment for multiple comparisons [4]. In a randomized trial of
dietary intervention in individuals with overweight/obesity, TLT-2
had a positive association with baseline BMI [6]. TLT-2 has
previously been suggested to play a role in immune responses
and inflammation [39] and experimental evidence suggests that
TLT-2 is expressed in human monocytes and granulocytes and B
cells, and that the expression can be upregulated in response to
inflammatory mediators [39].
Further mechanistic links between adiposity and inflammation are

suggested through the positive association between FMI and
interleukin-6 receptor subunit alpha (IL-6RA) in our study. IL-6RA
stimulates IL-6 activity and inflammatory responses [40, 41]. In a
randomized trial of dietary intervention, proteomic profiles before

Fig. 2 Associations of fat mass index (FMI) with circulating protein patterns. β-estimates (per 1 standard deviation change in principal
component scores obtained from PCA of 66 selected proteins) and 95% CI derived from multiple linear regression analyses. The models
were adjusted for age, educational attainment, alcohol intake, smoking status, walking/cycling, leisure-time exercise, and lean mass. For clarity,
proteins with absolute loading values below 0.5 were grayed out (all loadings are reported in Supplementary Table 6). The complete names of
the abbreviated proteins can be found in Supplementary Table 1.
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and during weight loss was assessed in 609 adults with overweight/
obesity. In this study, Il-6RA was not associated with BMI at baseline,
but longitudinal analysis revealed a decrease in protein levels upon
weight loss [6]. Taken together, the observed association of FMI with
several inflammation-related proteins (e.g. IL-1ra, TLT-2 and IL-6RA)
suggests possible mechanistic links between adiposity and inflam-
mation. Extensive data suggests that inflammation plays an
important role in atherosclerosis and CVDs [42].
In the present study, similar association patterns were observed

for android and gynoid FMI for most of the proteins except MMP-7
and Notch3, which associated with android but not gynoid FMI.
MMP-7 is involved in pathways controlling cell growth, inflamma-
tion, angiogenesis, and carcinogenesis [43]. Notch3, like other
proteins in the Notch family, is implicated in regulating cell self-
renewal, differentiation and plasticity of the vascular smooth
muscle cells [44]. Animal studies in Notch3-deficient mice suggest
that Notch3 plays an important role in coronary adaptation to
pressure overload and further risk of heart failure [45]. Over-
expression of Notch3 is also associated with cancer development
[44]. The observed differential protein associations are in line with
known differences in the relationship between android and
gynoid fat with adverse health outcomes [46] and should be
investigated in further studies.
Important strengths of our study are the large sample size,

objectively and accurately assessed body composition, simulta-
neous measurements of a large number of proteins and the ability
to adjust for important confounders. In addition, the replication
analysis provided a robust evaluation of the associations between
FMI and proteins. Moreover, we applied an RF algorithm with a
stringent cross validation framework to limit the likelihood of
overfitting and to provide an optimal selection of relevant
proteins associated with FMI. Furthermore, the PCA-based analysis
allowed us to get a holistic overview of associations between the
measured proteome and FMI, while adjusting for confounders.
Several limitations, however, apply to this observational study.

Proteins included in the Olink kits contain known cardiometabolic
markers as well some human proteins which could be related to
cardiovascular disease and metabolism. There is a possibility that
other proteins not included in these panels could be associated
more strongly or more meaningfully with FMI. This cohort
included only women, and the results need to be verified in
men. This study included Swedish adults only, and the general-
izability of our results to other populations is unknown. Another
limitation is the lack of an independent replication sample. Due to
the observational nature of this study, we cannot rule out residual
and unmeasured confounding. In addition, other health condi-
tions could affect the observed association. Although we
hypothesized that fat mass affects the levels of circulating
proteins, it is difficult to prove the causal direction of the
associations due to the cross-sectional design of our study.
In conclusion, in the present exploratory study of middle-aged

and elderly women, for the first time, we investigated the
association of fat mass with circulating proteins related to CVD
and metabolism. Compared with other studies using proxy
measures of fat mass (e.g., BMI or waist circumference), associa-
tions with five proteins were novel and 61 associations were
similar to those related to other body size measurements.
Furthermore, the group of proteins which had the strongest
association with FMI are involved in glucose and lipid metabolism,
appetite regulation, adipocyte differentiation, immune response
and inflammation, suggesting potential pathways for the link
between adiposity and risk of cardiometabolic disorders. Future
studies should be directed to investigate how protein concentra-
tions respond to changes in fat mass as well as the association of
circulating proteins with subcutaneous and visceral fat. This could
help to identify adiposity-related pathophysiological mechanisms
which contribute to health deterioration including the develop-
ment of CVDs.
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