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AIMS: Body weight loss improves insulin resistance and growth hormone secretion in obesity, which may be regulated by leptin
according to preclinical studies. How changes in leptin, lipids and insulin sensitivity after bariatric (metabolic) surgery affect the
human growth hormone system is yet unclear.
PARTICIPANTS AND METHODS: People with obesity (OBE, n= 79, BMI 50.8 ± 6.3 kg/m2) were studied before, 2, 12, 24 and
52 weeks after metabolic surgery and compared to lean healthy humans (control; CON, n= 24, BMI 24.3 ± 3.1 kg/m2). Tissue-specific
insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamps with D-[6,6-2H2]glucose. Fasting leptin, growth hormone
(GH), insulin-like growth factor 1 (IGF-1) and IGF-binding proteins (IGFBP1, IGFBP3) were measured using ELISA.
RESULTS: At baseline, OBE exhibited higher glycemia and leptinemia as well as pronounced peripheral, adipose tissue and hepatic
insulin resistance compared to CON. GH and IGFBP1 were lower, while IGF1 was comparable between groups. At 52 weeks, OBE had
lost 33% body weight and doubled their peripheral insulin sensitivity, which was paralleled by continuous increases in GH, IGF-1
and IGFBP1 as well as decrease in leptin. The rise in GH correlated with reductions in free fatty acids, adipose tissue insulin
resistance and insulinemia, but not with changes in body weight, peripheral insulin sensitivity, glycemia or leptinemia. The rise in
IGF-1 correlated with reduction in high-sensitive C-reactive protein.
CONCLUSION: Reversal of alterations of the GH-IGF-1 axis after surgically-induced weight loss is unlikely related to improved leptin
secretion and/or insulin sensitivity, but is rather associated with restored adipose tissue function and reduced low-grade
inflammation.
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INTRODUCTION
The rising prevalence of obesity and its associated complications
such as type 2 diabetes (T2D), cardiovascular disease or cancers is
becoming an increasing burden to healthcare systems globally [1].
In addition, endocrine disorders such as thyroid dysfunction [2]
and particularly impaired growth hormone (GH) secretion [3] have
been linked to the obesity epidemic.
Body weight loss improves insulin sensitivity even leading to

remission of T2D, but may also normalise GH secretion by yet
unclear mechanisms [4]. Effective weight loss upon bariatric
(metabolic) surgery has been shown to profoundly alter gastro-
intestinal hormones controlling glucose and energy homoeostasis
[5] but also to increase circulating GH concentrations. In contrast,
cross-sectional studies on its impact on circulating insulin-like
growth factor 1 (IGF-1) revealed conflicting results, by showing
unchanged [6–8], decreased [9, 10] or even increased concentra-
tions [11, 12] in lean humans compared with people with obesity.

IGF-1 is involved in the regulation of both GH and insulin secretion
to promote physiological carbohydrate and lipid metabolism [13],
but its contribution to the improvement in tissue-specific insulin
sensitivity after bariatric surgery also remains unclear.
The complex regulation of the GH-IGF-1 axis includes hypotha-

lamic neuropeptides, ghrelin, insulin, free fatty acids (FFA),
nutritional factors and IGF1-binding proteins (IGFBPs) [14]. Leptin,
a key signal of long-term energy availability and an indicator of fat
mass, inhibits GH secretion [15] and has been implicated in the
regulation of IGF-1 secretion [16]. Indeed, recent studies showed
that leptin substitution in children increases IGF-1 levels [17].
Furthermore, improvement of insulin sensitivity after metabolic
surgery determines the restoration of leptin sensitivity through a
molecular mechanism involving fatty acid-control of muscle
malonyl-Co-A synthesis [15], indicating a direct link between
leptin levels and lipid availability. Furthermore, increased muscle
lipid oxidation pathways and regulation of muscle differentiation
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in people with obesity at 52 weeks after metabolic surgery [18]
could relate to improved leptin and GH secretion. However, a
direct association and possible mediators have not been
demonstrated so far.
Previous studies were performed on rather small cohorts

without detailed metabolic characterisation or without a lean
control group and longer-term recording of the GH-IGF-1 axis after
metabolic surgery [9, 15, 19–22]. The present study closely
monitored the post-surgical time course of changes in the GH-
IGF1 axis in comprehensively phenotyped individuals with class 3
obesity to elucidate factors associated with the reversal of altered
GH-IGF-1 secretion. We hypothesised that post-surgical GH-IGF-1
axis improvements relate to the restoration of adipose tissue
dysfunction and insulin sensitivity via changes in the secretion
patterns of adipokines and pro-inflammatory cytokines.

METHODS
Study population
We studied people with obesity of Caucasian origin (OBE, n= 79) before
and 2, 12, 24 and 52 weeks after sleeve gastrectomy (n= 30) or gastric
bypass surgery (n= 49). Healthy Caucasians without obesity were
examined once as controls (CON, n= 24). T2D was present in 19 of the
participants with obesity. All participants were non-smokers, engaged only
in light physical activity and neither had previous pituitary disease
(including known GH deficiency) or surgery nor received GH replacement.
Data of some participants were part of previous reports of the BARIA_DDZ
cohort [18, 23]. They provided informed written consent to this registered
clinical cohort study (NCT01477957), which was approved by the ethics
board of Heinrich-Heine University and University Hospital Düsseldorf and
the ethics board of the North Rhine regional physicians’ association.

Clamp test
Each participant underwent 3 h hyperinsulinemic-euglycemic clamps
employing the isotopic dilution technique using D-[6,6-2H2]glucose for
measuring whole-body (mainly skeletal muscle) insulin sensitivity from
insulin-stimulated rate of glucose disposal (clamp-Rd) [18, 23]. Fasting
hepatic insulin sensitivity (HIS) was calculated by the formula: 100/[fasting
endogenous glucose production (EGP)*fasting insulin] [23]. Adipose tissue
insulin resistance was assessed in the fasted state from Adipo-IR, calculated
as FFAfasting*insulinfasting, [24, 25] and during the hyperinsulinemic-

euglycemic clamp from the percent suppression of FFA concentrations,
calculated as [FFAfasting -FFAclamp360 min]*100/FFAfasting [26, 27]. Steady-
state rates of glucose appearance (Ra) were calculated as [tracer infusion
rate]*[tracer enrichment]/[percent tracer enrichment in plasma]-[tracer
infusion rate] [28]. While in the fasted state, EGP equals Ra, clamp-Ra and
-Rd were calculated using Steele’s steady state equations.

Blood analyses
Blood samples were collected before and during clamps for measuring
hormones and metabolites. Metabolites, insulin, C-peptide, hsCRP,
transforming growth factor β1 (TGFβ1), interleukin 1 receptor antagonist
(IL-1ra), CC chemokine ligand 18 (CCL18), total adiponectin and leptin were
quantified as described [29–31]. In vitro lipolysis was prevented by
collecting blood into orlistat-containing vials [32] for microfluorimetrical
FFA quantification (Wako Chem USA Inc. Osaka, Japan). Serum concentra-
tions of GH, IGF-1, IGFBP1 and IGFBP3 were measured by ELISA
(Quantikine® ELISA immunoassay, R&D Systems, Inc., MN, USA) in samples
obtained in the morning after overnight fasting. The intraassay coefficients
of variations (CVs) for GH, IGF-1, IGFBP1 and IGFBP3 were 3.6%, 2.3%, 2.7%
and 1.4%, respectively, and interassay CVs for GH, IGF-1, IGFBP1 and
IGFBP3 were 6.5%, 3.5%, 6.8% and 9.6%, respectively.

Statistical evaluation
Normally distributed parameters are presented as means ± SD or means ±
SEM, otherwise as median (Q1;Q3). Not-normally distributed data were
loge-transformed to achieve near-normal distribution. Statistical analyses
using covariance pattern model for repeated measures analysis were
performed. Analysis of covariance (ANCOVA) models of the cohort of
participants with obesity as well as regression models were adjusted for
age and sex and performed using SAS (version 9.4; SAS Institute, Cary, NC,
USA).

RESULTS
OBE exhibit lower circulating GH, but not IGF-1 levels than
CON
Before surgery (baseline), OBE had similar age, but higher fasting
glycemia and Adipo-IR as well as lower clamp-Rd and HIS when
compared to CON (Table 1, Fig. 1a, b). They also had higher plasma
FFA but comparable triglycerides (Table 1). Serum insulin, leptin and
IGFBP3 were higher, IGF-1 similar, while GH and IGFBP1 were lower

Table 1. Participants’ characteristics.

Parameter CON OBE

Baseline 2 w 12 w 24 w 52 w

N (male) 24 (10) 79 (16) 66 (14) 76 (15) 73 (16) 68 (15)

Age (years) 43.7 ± 11.8 40.3 ± 9.2

BMI (kg/m2) 24.3 ± 3.1 50.8 ± 6.3a 47.0 ± 5.9b 41.7 ± 5.8b 37.7 ± 5.7b 33.8 ± 5.5b

Glucose (mg/dl) 84 ± 8 98 ± 26a 92 ± 23b 85 ± 16b 82 ± 12b 80 ± 10b

Insulin (μU/ml) 6(3;8) 21(17;31)a 19(14;23)b 12(8;17)b 9(7;13)b 8(5;11)b

HbA1c (%) 5.2 ± 0.4 5.9 ± 0.9a 5.5 ± 0.8b 5.3 ± 0.5b 5.2 ± 0.5b 5.1 ± 0.4b

FFA (µmol/l) 388 (316; 630) 679 (509; 822)a 1003 (864; 1169)b 658 (566; 833) 592 (460; 779) 466 (357; 618)b

Triglycerides (mg/dl) 105 ± 91 131 ± 63 129 ± 46 115 ± 35 101 ± 31b 88 ± 30b

hsCRP (mg/dl) 0.2 ± 0.1 1.0 ± 0.8a 1.1 ± 1.8 0.6 ± 0.4b 0.4 ± 0.4b 0.3 ± 0.5b

CCL18 (pg/ml) 37682 ± 14453 74662 ± 25808a 74502 ± 23446 73024 ± 26199 67003 ± 22096b 49535 ± 16623b

Adipo-IR (AU) 2538 ± 1651 17064 ± 10720a 21764 ± 14247b 8876 ± 5492b 7732 ± 10000b 4443 ± 37097b

FFA suppression (%) 90.3 ± 5.3 85.4 ± 12.7 59.3 ± 21.7b 90.5 ± 7.2b 94.3 ± 3.5b 94.6 ± 3.5b

Mean ± SD or median (Q1;Q3).
Adipo-IR adipose tissue insulin resistance index, BMI body mass index, CCL18 CC chemokine ligand 18, FFA suppression (FFAfasting-FFAclamp 360 min)*100/
FFAfasting, CON lean healthy controls, FFA plasma free fatty acids, hsCRP high-sensitive C-reactive protein, HIS hepatic insulin sensitivity index (100/(fasting
endogenous glucose production*fasting insulin)), OBE people with obesity at baseline.
ap < 0.05 vs CON.
bp < 0.05 vs OBE at baseline.
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in OBE (Table 1, Fig. 2a–d). BMI was higher in individuals with T2D
compared to those without T2D, but levels of leptin, GH, IGF-1,
IGFBP1 and IGFBP3 were comparable (Suppl. Fig. 1).

GH rapidly and continuously rises, while IGF-1 levels
transiently decrease upon metabolic surgery
At 2 weeks after surgery, body weight loss of 10 ± 3 kg was
paralleled by a transient increase in FFA, Adipo-IR and HIS, but no
change in whole-body insulin sensitivity (Table 1, Fig. 1a, b). Serum
insulin, insulin-mediated percent FFA suppression and leptin
decreased in OBE early after surgery (Table 1, Fig. 1c). In parallel,

the pro-inflammatory biomarkers, IL-1ra and TGFβ1, were
transiently higher (p < 0.01) or tended to be higher (p= 0.11),
respectively, compared to baseline (Fig. 1e, f).
Until 52 weeks after surgery, OBE exhibited an average weight

loss of 33% and continuous improvements in whole-body, adipose
tissue and HIS (Fig. 1a, b, Table 1). Similarly, glycemia, Adipo-IR,
FFA, hsCRP and IL-1ra were normalised at 52 weeks (Table 1,
Fig. 1e). Serum insulin, CCL18 and leptin levels were decreased by
63%, 34% and 65% at 52 weeks, respectively (Table 1, Fig. 1c),
while total adiponectin markedly increased (Fig. 1d). Time courses
of changes in BMI, insulin, glucose, HbA1c, triglycerides, FFA,
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Fig. 1 Time course of changes in insulin sensitivity, adipokines and cytokines. Changes in rate of glucose disposal during the
hyperinsulinemic-euglycemic clamp (clamp-Rd) (a), hepatic insulin sensitivity index (HIS) (b), leptin (c), total adiponectin (d), interleukin 1
receptor antagonist (IL-1ra) (e) and transforming growth factor β1 (TGFβ1) (f). Control humans depicted by green circles, people with obesity
before (0 w) and 2, 12, 24 and 52 weeks after surgery depicted by orange circles. Data are mean ± SEM, #p < 0.05 vs controls, *p < 0.05 vs obese
at baseline (0 w).
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hsCRP, Adipo-IR and IL-6 have been reported in a previous analysis
of the BARIA_DDZ cohort [18].
At 2 weeks, serum GH and IGFBP1 were already increased, but

IGF-1 and IGFBP3 levels dropped by 28% and 6% from baseline,
respectively (Fig. 2b, d). During the follow-up, GH and IGFBP1
levels continuously rose and were higher or equal to that of CON,
respectively, at 52 weeks (Fig. 2a, c). IGF-1 rose only later, at 24 and
52 weeks after surgery (Fig. 2b).
In participants with T2D, body weight loss was lower, but

improvement of adipose tissue insulin sensitivity was higher at 24
and 52 weeks after surgery compared to participants without T2D
(Suppl. Fig. 1). Increases in IGFBP1 at 12 weeks and IGFBP3 at
52 weeks were higher in individuals without T2D compared to
participants with T2D (Suppl. Fig. 1). Despite lower peripheral insulin
sensitivity at baseline (p < 0.0001, data not shown), participants with
T2D had greater improvements in insulin-stimulated Rd at 2, 12, and
52 weeks compared to participants without T2D (p= 0.007,
p= 0.0006 and p= 0.02, respectively, data not shown).
Of note, there were no differences in the time courses of

changes of BMI, hepatic and adipose tissue insulin sensitivity as
well as GH, IGF-1, IGFBP1, IGFBP3 and leptin concentrations
between participants undergoing sleeve gastrectomy and gastric
bypass surgery (Suppl. Fig. 2).

Reversal of the GH/IGF1 system relates to improved FFA and
adipose tissue insulin sensitivity, but not whole-body insulin
sensitivity
Multiple regression analysis adjusted for age and sex revealed no
association between the long-term improvement in GH

concentrations and changes in body weight, peripheral or HIS,
glycemia or leptin levels, but a negative association with the
reduction in insulinemia, FFA, and Adipo-IR (Table 2). The 52-week
increase in IGF-1 related positively to the changes in leptin and
insulin and negatively to the changes in hsCRP (Table 2). Of note,
the transient lowering of IGF-1 at 2 weeks related to the increase
in hsCRP, while the decrease in IGFBP3 related to the increase in
Adipo-IR and hsCRP (p= 0.04, p= 0.04 and p= 0.03, respectively,
data not shown). The 2-week increase of IGFBP1 related positively
to the higher FFA concentrations (p= 0.008, data not shown).

DISCUSSION
This study demonstrates that the reversal of alterations of the GH-
IGF-1 axis after bariatric surgery relates to improvements in
adipose tissue function, but not whole-body and HIS. In particular,
normalisation of the obesity-related so-called “functional hyposo-
matotropism” by surgical weight loss is associated with the
reduction in lipid availability, adipose tissue insulin resistance and
low-grade inflammation, underlining an important role of adipose
tissue also for the regulation of GH-IGF-1 axis in metabolic
diseases.
First, this study found lower GH concentrations in humans with

obesity than in lean humans in the setting of similar IGF-1
concentrations, indicating a preserved IGF-1 feedback mechanism.
Alterations of the GH-IGF-1 axis in obesity have been demon-
strated previously by reduced fasting or stimulated GH [8, 33] and
controversial data has been reported for IGF-1 concentrations
[3, 34]. The latter is likely due to the complex regulation of IGF-1,
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which in addition to GH involves several other factors, e. g.
hypothalamic neuropeptides, ghrelin, insulin, FFA, macronutrients
and IGFBPs [14, 35].
The observed increase in GH and IGF-1 levels confirms data at 6-

and 12-m follow-up from other prospective bariatric surgery
cohorts [9, 19, 22, 36], while the novel data for the 2-w timepoint
allows further insights into short-term changes. These revealed a
transient reduction in IGF-1 and IGFBP3 levels, which associated
with increased hsCRP, suggesting a tight link between inflamma-
tory processes and IGF-1 signaling. This is supported by data
showing that interleukin 1 (IL-1), tumour necrosis factor α and the
mitogen activated protein kinase pathway regulate IGF-1 and
IGFBPs in cross-sectional human [37] and mechanistic rodent
studies [38]. The present study also showed a negative association
between circulating GH and insulin levels in line with the
observation of fasting insulin as a predictor of integrated 24-h
GH release [39]. Indeed, insulin infusion lowers the GH response to
GH-releasing hormone via the pituitary [40], suggesting an IGF-1-
like effect [41]. In addition, the postoperative GH response in
persons with obesity undergoing bariatric surgery seems to be
mainly modulated by insulin [21]. GH is also a determinant of lean
(muscle) mass after metabolic surgery [42] and exercise training
[43]. In this context, the improved insulin and GH levels could be
responsible for the increase in muscle lipid oxidation pathways
and epigenetic regulation of muscle differentiation, as assessed
from Gene Ontology analyses in people with obesity at 52 weeks
after bariatric surgery [18]. Despite lack of lean body mass
measurements in the present study, the improved muscle
differentiation and GH levels after bariatric surgery possibly

contribute to preservation of lean mass after surgery as seen
with GH treatment during hypocaloric diet [44].
Of note, this study uncovers a direct link between the surgically-

induced improvement in GH levels and adipose tissue insulin
sensitivity as well as lipid availability. Adipose tissue dysfunction
has developed as the key mechanism underlying the pathophy-
siology of whole-body insulin resistance mediated by lipotoxicity
and low-grade inflammation [27, 45, 46]. GH action also targets
lipolysis, lipogenesis as well as adipocyte proliferation, differentia-
tion and function, including adipose tissue inflammation and
adipokine secretion [47]. A possible mechanism underlying this
link may be upregulation of the GH-dependent signal transducer
and activator of transcription-5 phosphorylation as shown in
skeletal muscle during acute FFA-suppression by acipimox [48],
which is mediated by adipocyte JAK2 signaling [49]. Notably,
presence of T2D does not seem to play a relevant role for the
reversal of the alterations of the GH-IGF-1 axis, as most observed
changes were not dependent on T2D status and no association
was found between glycemia and GH-IGF-1 changes. This
suggests that early metabolic alterations in insulin sensitivity
and adipose tissue function rather than overt diabetes and
hyperglycemia are linked to changes in the GH system [50].
Furthermore, the adipokine leptin, which signals adipose tissue

mass and energy balance to the brain, also inhibits GH secretion
[15, 51] and contributes to IGF-1 regulation [16] and could therefore
account for the changes in the GH-IGF axis induced by surgical
weight loss. While this study confirms the substantial and
continuous improvement of hyperleptinemia following metabolic
surgery, no relationship was found between the decrease in
circulating leptin and the improvement of GH levels. Of note, leptin
secretion may be inhibited under conditions of greater insulin
sensitivity [52, 53], so that the present results suggest a dissociation
between adipose tissue and skeletal muscle insulin sensitivity with
regard to leptin control of the GH-IGF-1 axis. Of note, leptin levels
remained elevated at 52 weeks after surgery when compared to
lean healthy controls, while the circulating GH concentrations at
52 weeks reached those of the nonobese control group. In line with
previous reports, the type of metabolic surgery did neither affect
change in GH and leptin [22] nor in body weight loss as well as in
improvements of hepatic and adipose tissue insulin sensitivity [18].
Finally, IGFBP1 is negatively associated with impaired glucose

tolerance [54] and obesity [55] and serves as a marker of HIS [56],
while IGFBP3 correlates directly with hepatic insulin resistance and
diabetes incidence [57, 58]. Thus, the long-term changes in IGFBP1
and IGFBP3 after metabolic surgery, as seen in the present study,
reflect the glucometabolic improvement in line with previous
reports [20]. The transient changes in IGFBP1 and IGFBP3 at 2 weeks
after surgery and their relationship to changes in FFA and hsCRP
point to a previously unknown link between IGFBPs and adipose
tissue function and low-grade inflammation in obesity. This may be
due to IGF-1-independent effects of IGFBP3 and IGFBP1 on adipose
tissue, such as action via type V TGFβ receptors [59, 60].
In conclusion, the present findings provide detailed insights into

dynamic endocrine changes in persons with obesity following
metabolic surgery by linking reversal of the dysregulation of the GH-
IGF-1 axis to adipose tissue metabolism and function. Specifically,
these results point to a future role of modulating GH and its
mediators in the treatment of obesity and obesity-related disorders.
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corresponding author on reasonable request.
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