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INTRODUCTION: A number of genes have been identified in which rare variants can cause obesity. Here we analyse a sample of
exome sequenced subjects from UK Biobank using BMI as a phenotype with the aims of identifying genes in which rare, functional
variants influence BMI and characterising the effects of different categories of variant.
METHODS: There were 199,807 exome sequenced subjects for whom BMI was recorded. Weighted burden analysis of rare,
functional variants was carried out, incorporating population principal components and sex as covariates. For selected genes,
additional analyses were carried out to clarify the contribution of different categories of variant. Statistical significance was
summarised as the signed log 10 of the p value (SLP), given a positive sign if the weighted burden score was positively correlated
with BMI.
RESULTS: Two genes were exome-wide significant, MC4R (SLP= 15.79) and PCSK1 (SLP= 6.61). In MC4R, disruptive variants were
associated with an increase in BMI of 2.72 units and probably damaging nonsynonymous variants with an increase of 2.02 units. In
PCSK1, disruptive variants were associated with a BMI increase of 2.29 and protein-altering variants with an increase of 0.34. Results
for other genes were not formally significant after correction for multiple testing, although SIRT1, ZBED6 and NPC2 were noted to be
of potential interest.
CONCLUSION: Because the UK Biobank consists of a self-selected sample of relatively healthy volunteers, the effect sizes noted
may be underestimates. The results demonstrate the effects of very rare variants on BMI and suggest that other genes and variants
will be definitively implicated when the sequence data for additional subjects becomes available.
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INTRODUCTION
Genome wide association studies (GWAS) detect large numbers of
common variants showing statistically significant association with
obesity although it can be difficult to interpret the biological
processes underlying these signals [1]. In addition, a small number
of genes have been identified in which very rare variants can have a
major effect on body mass index (BMI) and their contribution and
mechanisms have recently been reviewed [2]. In some of these, such
as LEP, LEPR, PCSK1 and SIM1, recessively acting variants cause
deficiency of the gene product and this can result in obesity. In others,
including POMC andMC4R, heterozygous variants have been reported
to be causative. Dominantly and recessively acting MC4R variants
together constitute the commonest causes of inherited early-onset
obesity, with a prevalence of 0.5–0.6%. It is also recognised that other
nonsynonymous variants in MC4R can be associated with lower BMI
and can be protective against obesity [3, 4].
As sequence data becomes available for larger numbers of subjects

it is possible to explore the contribution of rare genetic variants to
traits in the general population and we recently reported results
obtained from analysing the association between rare variants and
BMI in 50,000 exome-sequenced UK Biobank subjects [5]. Although

no gene was exome wide significant, the analysis did highlight some
which were potentially of interest, including LYPLAL1 and NSDHL.
Since then, additional data has been released meaning that exome
sequence data is now available for 200,000 of the 500,000 UK Biobank
subjects to approved researchers [6]. Analyses of this larger dataset
shows that it is better powered to detect rare variant effects and such
analyses were successful in implicating, at exome-wide significance,
genes previously recognised as risk factors for both hyperlipidaemia
and type 2 diabetes [7, 8]. Here, we apply the same approach as
previously, using BMI as the phenotype in the enlarged sample.
Early access to exome sequence data from the remaining UK

Biobank subjects was granted to Regeneron Pharmaceuticals Inc.
and their collaborators and a study using data from 429,000 UK
Biobank subjects of European origin along with 217,000 from
other samples has recently been published [9]. This study of over
640,000 exomes used BMI as a phenotype and performed burden
analyses of rare variants to implicate 16 genes at exome-wide
significance: UHMK1, GPR75, ROBO1, KIAA1109, PCSK1, GPR151,
SPARC, UBR2, CALCR, PDE3B, ANO4, KIAA0586, MC4R, DPP9,
ANKRD27 and GIPR. The approach used in the present study
differs in a number of ways. The 640 K exome study excluded UK
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Biobank subjects of non-European ancestry, whereas we have
previously shown that the methods used here are robust against
population stratification, allowing the inclusion of subjects of all
ancestries without inflation of the test statistic [5]. The 640 K
exome study applied a simple burden analysis whereby counts of
different categories of variant within each gene, such as predicted
loss of function and missense predicted to be deleterious, were
totalled together to test for association with BMI. Seven different
variant selection models were used, requiring an additional
correction for multiple testing. By contrast, we apply a weighted
burden analysis which incorporates all variants in a single analysis
but with higher weights assigned to those expected to have a
larger effect. For example, predicted loss of function variants are
given higher weights than missense variants predicted to be
deleterious, which in turn have a higher weight than other
missense variants. This removes the requirement to correct for
multiple testing and, more importantly, is expected to yield higher
power. From a statistical point of view, this is because likelihood
ratio tests have higher power when the model for the alternative
hypothesis more closely resembles the real situation. Thus, if
predicted loss of function variants do in fact have a larger effect
on the phenotype than missense variants, then one expects to
gain power by weighting them differently. We have previously
shown that predicted loss of function variants in LDLR are
associated with a very high odds ratio for developing hyperlipi-
daemia whereas variants annotated as deleterious have a much
more modest, though still statistically significant, effect [7]. In
addition, we assign higher weights to variants which are rarer,
under the assumption that variants which are extremely rare may
have larger effect sizes. Work on real world data confirms that
weighting on variant annotation and allele frequency in this way
does indeed yield increased power [10].
The aims of this study were to identify genes in which rare

sequence variants had an effect on BMI and to characterise the
effect sizes of different categories of variant. Attention was
focused on rare variants because the effects of common variants
would have been well established from previous GWASs.

METHODS
The UK Biobank dataset was downloaded along with the variant call files
for 200,632 subjects who had undergone exome-sequencing and
genotyping by the UK Biobank Exome Sequencing Consortium using the
GRCh38 assembly with coverage 20X at 95.6% of sites on average [6]. UK
Biobank had obtained ethics approval from the North West Multi-centre
Research Ethics Committee which covers the UK (approval number: 11/
NW/0382) and had obtained informed consent from all participants. The
UK Biobank approved an application for use of the data (ID 51119) and
ethics approval for the analyses was obtained from the UCL Research
Ethics Committee (11527/001). All variants were annotated using the
standard software packages VEP, PolyPhen and SIFT [11–13]. To obtain
population principal components reflecting ancestry, version 2.0 of plink
(https://www.cog-genomics.org/plink/2.0/) was run with the options --maf
0.1 --pca 20 approx [14, 15]. The phenotype was obtained from data field
21001-0.0, which records BMI at first assessment. Although BMI is an
imperfect indicator of adiposity it has been widely used in similar
investigations and also has the advantage that this data field is missing in
very few subjects.
Using the same approach as described previously, the SCOREASSOC

program was used to carry out a weighted burden analysis to test whether,
in each gene, the weighted burden of sequence variants which were rarer
and/or predicted to have more severe functional effects correlated with
BMI [5]. Attention was restricted to rare variants with minor allele
frequency (MAF) <= 0.01. As previously described, variants were weighted
by overall MAF so that variants with MAF= 0.01 were given a weight of 1
while very rare variants with MAF close to zero were given a weight of 10
[5]. Variants were also weighted according to their functional annotation
using the GENEVARASSOC program, which was used to generate input files
for weighted burden analysis by SCOREASSOC [16, 17]. The weights
allocated are to some extent arbitrary but took account of the analysis of
the effects of different categories of variant in LDLR on hyperlipidaemia risk

[7]. A systematic exploration of different weighting schemes has shown
than no one scheme is optimal in all circumstances but that the one used
here has reasonable performance [10]. Variants predicted to cause
complete loss of function (LOF) of the gene were assigned a weight of
100. Nonsynonymous variants were assigned a weight of 5 but if PolyPhen
annotated them as possibly or probably damaging then 5 or 10 was added
to this and if SIFT annotated them as deleterious then 20 was added. In
order to allow exploration of the effects of different types of variant on
disease risk the variants were also grouped into broader categories to be
used in multivariate analyses as described below. The full set of weights
and categories is displayed in Table 1. As described previously, the weight
due to MAF and the weight due to functional annotation were multiplied

Table 1. The table shows the weight which was assigned to each type
of variant as annotated by VEP, Polyphen and SIFT as well as the broad
categories which were used for multivariate analyses of variant effects
[11–13].

VEP/SIFT/Polyphen annotation Weight Category

intergenic_variant 0 Unused

feature_truncation 0 Intronic, etc.

regulatory_region_variant 0 Intronic, etc.

feature_elongation 0 Intronic, etc.

regulatory_region_amplification 1 Intronic, etc.

regulatory_region_ablation 1 Intronic, etc.

TF_binding_site_variant 1 Intronic, etc.

TFBS_amplification 1 Intronic, etc.

TFBS_ablation 1 Intronic, etc.

downstream_gene_variant 0 Intronic, etc.

upstream_gene_variant 0 Intronic, etc.

non_coding_transcript_variant 0 Intronic, etc.

NMD_transcript_variant 0 Intronic, etc.

intron_variant 0 Intronic, etc.

non_coding_transcript_exon_variant 0 Intronic, etc.

3_prime_UTR_variant 1 3 prime UTR

5_prime_UTR_variant 1 5 prime UTR

mature_miRNA_variant 5 Unused

coding_sequence_variant 0 Unused

synonymous_variant 0 Synonymous

stop_retained_variant 5 Unused

incomplete_terminal_codon_variant 5 Unused

splice_region_variant 1 Splice region

protein_altering_variant 5 Protein altering

missense_variant 5 Protein altering

inframe_deletion 10 InDel, etc

inframe_insertion 10 InDel, etc

transcript_amplification 10 InDel, etc

start_lost 10 Unused

stop_lost 10 Unused

frameshift_variant 100 Disruptive

stop_gained 100 Disruptive

splice_donor_variant 100 Splice site variant

splice_acceptor_variant 100 Splice site variant

transcript_ablation 100 Disruptive

SIFT deleterious 20 Deleterious

PolyPhen possibly damaging 5 Possibly
damaging

PolyPhen probably damaging 10 Probably
damaging
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together to provide an overall weight for each variant. Variants were
excluded if there were >10% of genotypes missing or if the heterozygote
count was smaller than both homozygote counts. If a subject was not
genotyped for a variant then they were assigned the subject-wise average
score for that variant. For each subject a gene-wise weighted burden score
was derived as the sum of the variant-wise weights, each multiplied by the
number of alleles of the variant which the given subject possessed. For
variants on the X chromosome, hemizygous males were treated as
homozygotes.
For each gene, multiple linear regression analysis was carried out

including the first 20 population principal components and sex as
covariates and a likelihood ratio test was performed comparing the
likelihoods of the models with and without the gene-wise burden score.
For convenience, the statistical significance is expressed as a signed log p
value (SLP), which is the log base 10 of the p value given a positive sign if
the score is positively correlated with BMI. This means strongly positive or
negative values for the SLP indicate results which are statistically
significant, while the sign indicates whether impaired functioning of the
gene is positively or negatively associated with BMI.
Gene set analyses were carried out as before using the 1454 “all GO

gene sets, gene symbols” pathways as listed in the file c5.all.v5.0.symbols.
gmt downloaded from the Molecular Signatures Database at http://www.
broadinstitute.org/gsea/msigdb/collections.jsp [18]. For each set of genes,
the natural logs of the gene-wise p values were summed according to
Fisher’s method to produce a chi-squared statistic with degrees of freedom
equal to twice the number of genes in the set. The p value associated with
this chi-squared statistic was expressed as a minus log10 p (MLP) as a test
of association of the set with BMI.
For selected genes, additional analyses were carried out to clarify the

contribution of different categories of variant. As described previously,
multiple linear regression analyses were performed on the counts of the
separate categories of variant as listed in Table 1, again including principal
components and sex as covariates, to estimate the effect size for each
category [7]. The mean effect on BMI for each category was estimated

along with the standard error and the Wald statistic was used to obtain a p
value. The associated p value was converted to an SLP, again with the sign
being positive if the mean count was positively correlated with BMI. In
these analyses, stop variants and frameshift variants were considered
jointly as “disruptive variants” and splice site variants were considered
separately, although all three types of variant might generally be expected
to have a similar LOF effect.
Data manipulation and statistical analyses were performed using

GENEVARASSOC, SCOREASSOC and R [19]. Code availability: Software
and scripts used to carry out the analyses are available at https://github.
com/davenomiddlenamecurtis.

RESULTS
There were 199,807 exome sequenced subjects for whom BMI was
recorded. There were 110,092 male subjects with mean age 56.3 (SD
= 8.0) and mean BMI 27.0 (SD= 5.1). There were 89,715 female
subjects with mean age 56.7 (SD= 8.2) and mean BMI 27.8 (SD= 4.2).
There were 20,384 genes for which there were qualifying variants,
meaning that the critical threshold for the absolute value of the SLP to
declare a result as formally statistically significant is -log10(0.05/
20384)= 5.61. This threshold was met by two genes, MC4R (SLP=
15.79) and PCSK1 (SLP= 6.61). The quantile-quantile (QQ) plot for the
SLPs obtained for all genes exceptMCR4 is shown in Fig. 1. This shows
that the test appears to be well-behaved and conforms fairly well with
the expected distribution. Omitting the genes with the 100 highest
and 100 lowest SLPs, which might be capturing a real biological
effect, the gradient for positive SLPs is 1.23 with intercept at −0.0005
and the gradient for negative SLPs is 1.03 with intercept at 0.02,
indicating only moderate inflation of the test statistic for those genes
showing a positive correlation.

Fig. 1 QQ plot of gene-level SLPs testing association with BMI. QQ plot of SLPs obtained for weighted burden analysis of association with
BMI showing observed against expected SLP for each gene, omitting results for MC4R, which has SLP= 15.79.
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For the two exome-wide significant genes, MC4R (SLP= 15.79)
and PCSK1 (SLP= 6.61), logistic regression analysis of different
categories of variants was carried out to elucidate their relative
contributions. The results are shown in Table 2, which shows
differences between the genes relating to the implicated pattern of
variants. In MC4R, disruptive variants (stop and frameshift) are
associated with a highly significant (SLP= 6.55) increase in BMI by
2.72 units, equivalent to about 8 kg for somebody of average height,
and carriers have an average BMI of 30.16. These variants occur a
total of 80 times at 19 separate positions. There are no splice site
variants. In addition, nonsynonymous variants annotated by
PolyPhen as probably damaging are also significantly (SLP= 4.29)
associated with an average increase in BMI of 2.02 units. These occur
in total 425 times at 55 positions. By contrast, other variants,
including those annotated as deleterious by SIFT, are not associated
with BMI changes. The estimated effect of the probably damaging

variants represents an average across all the variants in this category
and of course it is possible that some have major effects whereas
other do not. However inspection of the detailed results showed
that all of these variants were very rare (MAF < 0.001) and so it was
not possible to reliably assess the effect of any individual variant. In
PCSK1, disruptive variants are also significantly (SLP= 3.28) asso-
ciated with an increase in BMI of 2.29 units and carriers have a mean
BMI of 29.66. The estimated effect of splice site variants, which are
also predicted to cause LOF, is similar, an increase of 2.01 units, but
they only occur 8 times and this effect is not statistically significant.
In contrast with MC4R, there is no suggestion that variants in PCSK1
annotated as probably damaging have any effect on BMI. However
the much larger general category of protein-altering variants is
associated with a modest (0.34 units) but statistically significant (SLP
= 2.74) increase in BMI. In total these occur 2,970 times, meaning
that there is an average burden per subject of 0.015.

Table 2. Results from regression analysis showing the effects on BMI of different categories of variant within the two exome-wide significant genes,
MC4R and PCSK1.

Category Number of
different
variants

Total number
of variants

Average variant
load per subject

BMI mean
in carriers

BMI SD in
carriers

SLP Effect on mean BMI
(95% CI)

(A) Results for MC4R.

Intronic, etc 0 0

5 prime UTR 25 286 0.001431 27.82 5.08 1.02 0.47 (−0.09–1.03)

Synonymous 60 883 0.004419 28.14 5.19 −0.66 −0.19 (−0.50–0.12)

Splice region 0 0

3 prime UTR 7 49 0.000245 27.57 5.26 0.12 0.20 (−1.15–1.55)

Protein altering 140 1355 0.006782 28.24 5.42 0.03 0.02 (−0.34–0.37)

InDel, etc 1 4 0.000020 28.76 8.08 0.33 1.70 (−3.03–6.42)

Disruptive 19 80 0.000400 30.16 4.93 6.55 2.72 (1.66–3.79)

Splice site variant 0 0

Deleterious 70 452 0.002262 28.70 5.88 −0.54 −0.50 (−1.44–0.44)

Possibly
damaging

23 201 0.001006 28.42 5.51 1.68 0.92 (0.13–1.72)

Probably
damaging

55 425 0.002127 28.98 5.86 4.29 2.02 (1.02–3.02)

Subjects with no
variant

197329 0.987598 27.37 4.75

(B) Results for PCSK1.

Intronic, etc 592 20821 0.104206 27.67 4.95 0.86 0.04 (−0.01–0.08)

5 prime UTR 21 3081 0.015420 27.74 5.14 0.05 0.01 (−0.16–0.18)

Synonymous 136 3616 0.018097 28.22 5.17 0.08 0.02 (−0.15–0.18)

Splice region 35 164 0.000821 27.87 5.21 0.54 0.39 (−0.35–1.12)

3 prime UTR 27 79 0.000395 27.46 4.62 −0.09 −0.12 (−1.19–0.94)

Protein altering 292 2970 0.014864 27.73 4.96 2.74 0.34 (0.12–0.56)

InDel, etc 4 14 0.000070 26.93 6.16 −0.14 −0.45 (−2.97–2.08)

Disruptive 22 51 0.000255 29.66 6.29 3.28 2.29 (0.97–3.62)

Splice site variant 3 8 0.000040 29.59 8.40 0.64 2.01 (−1.33–5.35)

Deleterious 153 990 0.004955 27.87 5.06 0.56 0.34 (−0.28–0.95)

Possibly
damaging

53 451 0.002257 27.44 4.54 −0.41 −0.27 (−0.90–0.36)

Probably
damaging

102 602 0.003013 27.85 5.36 −0.21 −0.17 (−0.87–0.52)

Subjects with no
variant

176391 0.882807 27.34 4.73

For each category of variant, the table shows the number of different variants of that category (at different locations) and the total number of times a variant
of that category occurred. Also shown is the mean and SD of the BMI for all subjects carrying at least one variant of that category. The SLP is the signed log10 p
value from the regression analysis and the estimated effect for each category is the fitted mean change in BMI after incorporating principal components and
sex as covariates.
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One would expect that by chance 20 genes would produce SLPs
with absolute value greater than 3, equivalent to p < 0.001,
whereas in fact there are 68, suggesting that some might have an
effect on BMI while failing to reach exome-wide significance after
correction for multiple testing. These genes are listed in Table 3
and the SLPs for all genes are listed in Supplementary Table S1.
Variant category analyses were carried out for those which
seemed biologically plausible as well as for genes previously
reported to be causative of obesity as listed in the introduction.
These analyses yielded some findings of possible interest,
discussed as follows.
It is perhaps striking that two similar genes, GALNT14 (SLP=

4.72) and GALNT9 (SLP= 4.01), fall within the top 13 genes. These
enzymes catalyze the transfer of N-acetyl-D-galactosamine (Gal-
NAc) to the hydroxyl groups on serines and threonines in target
peptides. The GALNT9 intronic SNP rs11247009-A has been
reported to be associated with BMI (p= 6 × 10–9) [20]. A study
of broiler chickens claimed that in unpublished data one of the six
most highly significant variants in a genome-wide study of

Table 3. Genes with absolute value of SLP exceeding 3 or more
(equivalent to p < 0.001) for test of association of weighted burden
score with BMI.

Gene symbol SLP Gene name

MC4R 15.79 Melanocortin 4 Receptor

PCSK1 6.61 Proprotein Convertase Subtilisin/
Kexin Type 1

PTOV1 5.22 PTOV1 Extended AT-Hook Containing
Adaptor Protein

GALNT14 4.72 Polypeptide
N-Acetylgalactosaminyltransferase 14

LOC112268007 4.63 GRM3 Antisense RNA 1

RNF187 4.57 Ring Finger Protein 187

LOC102724050 4.48 Uncharacterised LOC102724050

DYNC1H1 4.21 Dynein Cytoplasmic 1 Heavy Chain 1

SMARCE1 4.15 SWI/SNF Related, Matrix Associated, Actin
Dependent Regulator Of Chromatin,
Subfamily E, Member 1

SMPD1 4.10 Sphingomyelin Phosphodiesterase 1

SATL1 4.02 Spermidine/Spermine N1-Acetyl
Transferase Like 1

GALNT9 4.01 Polypeptide
N-Acetylgalactosaminyltransferase 9

ZDHHC17 3.90 Zinc Finger DHHC-Type
Palmitoyltransferase 17

LOC101927911 3.88 Uncharacterised LOC101927911

CFP 3.85 Complement Factor Properdin

TRIP12 3.83 Thyroid Hormone Receptor Interactor 12

FOXK2 3.76 Forkhead Box K2

SHROOM2 3.70 Shroom Family Member 2

ADNP 3.66 Activity Dependent Neuroprotector
Homeobox

HSFX1 3.66 Heat Shock Transcription Factor Family,
X-Linked 1

CTAGE1 3.66 Cutaneous T Cell Lymphoma-Associated
Antigen 1

NUDT16L1 3.65 Nudix Hydrolase 16 Like 1

PRR36 3.59 Proline Rich 36

BCLAF3 3.56 BCLAF1 And THRAP3 Family Member 3

DPP8 3.55 Dipeptidyl Peptidase 8

SRPK2 3.52 SRSF Protein Kinase 2

ZC3H8 3.52 Zinc Finger CCCH-Type Containing 8

ACSL3 3.51 Acyl-CoA Synthetase Long Chain Family
Member 3

FAM19A1 3.51 TAFA Chemokine Like Family Member 1

OCRL 3.50 OCRL Inositol Polyphosphate-5-
Phosphatase

FLJ44635 3.50 TPT1-Like Protein

OS9 3.41 OS9 Endoplasmic Reticulum Lectin

UBR3 3.37 Ubiquitin Protein Ligase E3 Component
N-Recognin 3

CPA5 3.36 Carboxypeptidase A5

OR6C3 3.31 Olfactory Receptor Family 6 Subfamily C
Member 3

PTPRG 3.31 Protein Tyrosine Phosphatase
Receptor Type G

H2AFZ 3.23 H2A.Z Variant Histone 1

AMOT 3.18 Angiomotin

Table 3. continued

Gene symbol SLP Gene name

SIRT1 3.16 Sirtuin 1

CRYBG3 3.15 Crystallin Beta-Gamma Domain
Containing 3

RNASE7 3.14 Ribonuclease A Family Member 7

ATP12A 3.11 ATPase H+/K+ Transporting Non-Gastric
Alpha2 Subunit

SLC17A9 3.11 Solute Carrier Family 17 Member 9

CITED2 3.11 Cbp/P300 Interacting Transactivator With
Glu/Asp Rich Carboxy-Terminal Domain 2

NMI 3.08 N-Myc And STAT Interactor

CACNA1I 3.08 Calcium Voltage-Gated Channel Subunit
Alpha1 I

TGIF2LX 3.08 TGFB Induced Factor Homeobox 2 Like
X-Linked

BMP10 3.08 Bone Morphogenetic Protein 10

FOXD4L1 3.07 Forkhead Box D4 Like 1

UBE4B 3.05 biquitination Factor E4B

SCN8A 3.04 Sodium Voltage-Gated Channel Alpha
Subunit 8

AEBP1 −3.04 AE Binding Protein 1

ANTXRL −3.06 ANTXR Like

ATP8B2 −3.10 ATPase Phospholipid Transporting 8B2

ITLN2 −3.16 Intelectin 2

POPDC3 −3.17 Popeye Domain Containing 3

MIR6881 −3.24 MicroRNA 6881

CFAP97D1 −3.24 CFAP97 Domain Containing 1

USP4 −3.27 Ubiquitin Specific Peptidase 4

CLUH −3.27 Clustered Mitochondria Homolog

HS6ST3 −3.33 Heparan Sulfate 6-O-Sulfotransferase 3

ZBED6 −3.34 Zinc Finger BED-Type Containing 6

FAM171B −3.37 Family With Sequence Similarity 171
Member B

PKP4 −3.43 Plakophilin 4

GIT2 −3.45 GIT ArfGAP 2

NOP14 −3.93 NOP14 Nucleolar Protein

DEFB4B −4.63 Defensin Beta 4B

BAIAP3 −5.01 BAI1 Associated Protein 3
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abdominal fat was in GALNT9 and reported that GALNT9
expression in liver differed between lean and fat lines [21].
However, overall there seems to be little prior evidence to
implicate these genes as affecting BMI and they have mostly been
studied in the context of cancer progression, although there is
also a report of a homozygous frameshift variant of GALNT14
being found in a patient with nonsyndromic keratoconus. The
results of variant-wise analysis of these two genes are shown in
Table 4A, B. This shows that GALNT14 there are 302 disruptive
variants associated with a significant (SLP= 2.89) increase in BMI
of 0.88 units, while in GALNT9 there are 12 splice site variants
associated with an increase in BMI of 3.97 units (SLP= 2.44) and 9
indels associated with an increase in BMI of 4.84 units (SLP= 2.65).
36 disruptive variants in GALNT9 are also associated with an
increase in BMI of 1.14 units but this is not statistically significant
(SLP= 0.86).
The results for SIRT1 (SLP= 3.16) are potentially of interest

because SIRT1 and other sirtuins have effects similar to calorie
restriction and reduced expression of SIRT1 and SIRT2 promotes
adipogenesis and accumulation of visceral fat [22, 23]. From these
findings one might well predict that genetic variants damaging
SIRT1 might lead to increased BMI. The results from variant-wise
analysis are shown in Table 4C, which shows only weakly
significant effects from disruptive (SLP= 1.34) and possibly
damaging (SLP= 1.61) variants.
ZBED6 (SLP=−3.33) codes for a transcriptional inhibitor of IGF2

which has a major impact on muscle development in placental
mammals and CRISPR/Cas9 disruption of its binding site is being
used commercially to produce strains of pigs which are leaner and
have enhanced muscle development [24, 25]. The results for
variant-wise analysis are shown in Table 4D, showing that
disruptive variants are associated with a reduction in BMI of 1.59
units (SLP=−2.48) and deleterious nonsynonymous variants with
a reduction of 0.37 units (SLP=−1.49).
The gene with the most negative SLP, BAIAP3 (SLP=−5.01),

may have some role in insulin secretion but does not in general
seem to be an obvious candidate to have effects on BMI [26].
Splice site variants are associated with a reduction in BMI of 1.41
units (SLP=−3.47).
It is well established that variants in LEP (SLP= 0.61) and LEPR

(SLP= 0.13) can cause obesity but the gene-based analyses
produced no evidence to implicate them. The results of variant-
wise analyses are shown in Table 5A, B. It can be seen that
disruptive and splice site variants in LEP do indeed have
substantially higher BMIs but because there are only 6 of them
this does not produce a statistically significant effect, at least if one
corrects for the numbers of categories tested. There is no
suggestion that any other type of variant has an effect. By
contrast, in LEPR there are a total of 88 disruptive and splice site
variants but their effect on mean BMI is negligible, as is also the
case for other types of variant.
A common nonsynonymous variant BDNF, rs6265, causes a

Val66Met substitution which was originally reported to be
associated with anorexia nervosa and minimum BMI in anorexia
nervosa patients and whose effect on BMI was subsequently
confirmed in large GWAS samples [27, 28]. This variant shows
highly significant association in the current sample (SLP=
−21.86). The number of subjects with Val/Val, Val/Met and Met/
Met genotypes is 132,003, 60,639 and 7165 with uncorrected
mean BMIs of 27.47, 27.22 and 26.96. The per-allele effect size on
BMI as estimated from multiple linear regression analysis including
principal components and sex as covariates is −0.19 (−0.23 to
−0.15). However the gene-wise weighted burden analysis of BDNF
using rare variants produced no evidence for association (SLP=
0.41) and variant-wise analyses likewise failed to show any effect
from any category of rare variant. The mean effect size for protein-
altering variants was 0.23 but there were only 1910 of these in
total and the result does not approach statistical significance.

Of the remaining genes implicated by the analysis of the 640 K
exome study, some produced some evidence for association
which did not survive correction for multiple testing consisting of
UHMK1 (SLP=−1.53), GPR75 (SLP=−2.98), ROBO1 (SLP= 2.21),
KIAA1109 (SLP= 1.84), UBR2 (SLP= 2.69), PDE3B (SLP= 2.06),
ANO4 (SLP= 1.50), DPP9 (SLP=−2.09) and GIPR (SLP=−2.63).
However other genes showed no overall evidence for association,
consisting of GPR151 (SLP=−0.80), SPARC (SLP= 0.14), CALCR
(SLP= 0.41), KIAA0586 (SLP=−0.84) and ANKRD27 (SLP=−0.37).
Detailed variant category analyses for these genes are presented
in Supplementary Table S2. For some genes, it was possible to
identify particular variant categories which appeared to be
associated with BMJ. These consisted of disruptive variants in
GPR75 (SLP=−4.87), ROBO1 (SLP= 2.91), KIAA1109 (SLP= 3.20),
GPR151 (SLP=−2.17) and ANO4 (SLP= 1.31) whereas the broad
category of protein-altering variants produced the strongest signal
in two other genes, SPARC (SLP= 4.93) and GIPR (SLP=−4.29).
For other genes, no category of variant was associated.
Other genes previously implicated in obesity which likewise

failed to show evidence of association in either gene-wise analyses
or variant category analyses include SIM1 (SLP= 0.89), NTRK2 (SLP
= 0.88), KSR2 (SLP= 0.17), CPE (SLP=−0.35), SH2B1 (SLP= 0.78),
TUB (SLP=−0.08) and FTO (SLP= 1.02). Variant category analyses
for all genes of interest are presented in Supplementary Table S3.
In order to see if any additional genes were highlighted by

analysing gene sets, gene set analysis was performed as described
above after first removing all genes with absolute SLP value
greater than 3. In order to correct for the observed inflation of the
positive SLPs, the absolute value of each SLP was divided by an
average inflation factor of 1.13 before being utilised to contribute
to the set-wise chi-squared statistic. Following this adjustment, no
gene set produced a result significant after correction for multiple
testing. The highest MLP was 2.45, achieved by the set Specific
Transcriptional Repressor Activity. Out of 1454 sets, the fifth
highest ranked was Regulation Of Lipid Metabolic Process (MLP=
1.93). This contains 12 genes including NPC2 (SLP= 2.80), which is
involved in cholesterol transport and recessively acting variants in
NPC2 are a cause of Niemann-Pick C disease in which lipid
accumulation causes neurodegeneration [29]. NPC2 presents
cholesterol to NPC1 and rare LOF variants in NPC1 are known to
cause obesity although NPC1 does not demonstrate association
with BMI in the current sample (SLP= 0.15) [30]. In a GWAS of
obesity in F2 pigs a variant within NPC2, rs81396056, produced the
most highly significant result (p= 10−16) [31]. The results of
variant category analysis of NPC2 are shown in Table 4E and it can
be seen that there is significant (SLP= 3.10) association of
3119 splice site variants, occurring at 3 different positions, with
an average increase in BMI of 0.28. Disruptive variants are also
associated with higher BMI but there are only 111 of them and this
result is not statistically significant. Results for all gene sets are
presented in Supplementary Table S4.

DISCUSSION
These analyses help to elucidate the impact of rare genetic
variants on a complex phenotype such as BMI and also illustrate
some of the challenges of dealing with exome sequence data. The
gene-wise weighted burden analyses successfully identify two
genes already known to impact BMI, MC4R and PCSK1, but fail to
detect effects of other known obesity genes. In due course
sequence data will become available for all 500,000 UK Biobank
participants and it is reasonable to expect that this larger dataset
will produce additional results. For example, the subjects with LOF
variants in LEP do have notably higher BMIs but there are so few of
them that they do not produce a statistically significant result in
this sample. Obviously, the power to detect association depends
both on the effect size and the frequency of variants, and power
will improve with increased sample size. To take another example
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Table 4. Results from variant category regression analyses for other genes of possible interest.

Category Number of
different
variants

Total number
of variants

Average
variant load
per subject

BMI mean
in carriers

BMI SD in
carriers

SLP Effect on mean BMI
(95% CI)

(A) Results for GALNT14.

Intronic, etc 877 20167 0.100932 27.73 4.98 −0.02 −0.00 (−0.07–0.06)

5 prime UTR 38 697 0.003488 28.16 5.27 0.05 0.02 (−0.34–0.38)

Synonymous 121 5558 0.027817 27.49 4.79 −0.66 −0.08 (−0.22–0.05)

Splice region 46 1204 0.006026 28.94 5.02 −0.33 −0.10 (−0.38–0.18)

3 prime UTR 22 243 0.001216 27.22 4.71 −0.25 −0.17 (−0.78–0.43)

Protein altering 299 9851 0.049303 27.47 4.80 0.03 0.00 (−0.10–0.11)

InDel, etc 5 6 0.000030 24.72 3.11 −0.81 −2.74 (−6.59–1.12)

Disruptive 30 302 0.001511 28.24 5.35 2.89 0.88 (0.33–1.42)

Splice site variant 13 50 0.000250 27.76 4.82 0.22 0.35 (−0.99–1.69)

Deleterious 176 2302 0.011521 27.72 4.91 1.00 0.32 (−0.07–0.71)

Possibly
damaging

46 695 0.003478 27.93 4.84 0.26 0.15 (−0.36–0.66)

Probably
damaging

140 1335 0.006681 27.58 5.04 −0.18 −0.09 (−0.52–0.34)

Subjects with no
variant

171281 0.857232 27.34 4.73

(B) Results for
GALNT9.

Intronic, etc 613 25032 0.125281 27.69 4.99 −1.08 −0.05 (−0.10–0.01)

5 prime UTR 34 132 0.000661 28.21 4.57 −0.24 −0.22 (−1.01–0.57)

Synonymous 183 10134 0.050719 27.90 5.20 0.69 0.06 (−0.04–0.17)

Splice region 44 231 0.001156 27.45 4.87 0.24 0.17 (−0.45–0.79)

3 prime UTR 228 11273 0.056419 27.82 5.00 −0.12 −0.01 (−0.10–0.08)

Protein altering 362 2952 0.014774 27.66 4.95 0.43 0.13 (−0.16–0.41)

InDel, etc 5 9 0.000045 32.21 10.83 2.65 4.84 (1.68–8.01)

Disruptive 19 36 0.000180 28.17 7.12 0.86 1.14 (−0.40–2.68)

Splice site variant 7 12 0.000060 31.20 12.28 2.44 3.97 (1.24–6.70)

Deleterious 207 1626 0.008138 27.63 4.99 −0.08 −0.04 (−0.45–0.37)

Possibly
damaging

83 951 0.004760 27.68 4.79 0.46 0.21 (−0.24–0.66)

Probably
damaging

109 736 0.003684 27.69 5.05 0.50 0.25 (−0.25–0.75)

Subjects with no
variant

172467 0.863168 27.34 4.73

(C) Results for SIRT1.

Intronic, etc 590 12438 0.062250 27.35 4.81 0.10 0.01 (−0.08–0.10)

5 prime UTR 43 777 0.003889 27.39 4.75 −1.16 -0.31 (−0.65–0.03)

Synonymous 168 3064 0.015335 27.64 4.98 0.62 0.10 (−0.07–0.27)

Splice region 29 54 0.000270 28.04 4.19 0.44 0.56 (−0.68–1.80)

3 prime UTR 21 376 0.001882 28.69 4.97 −0.04 −0.03 (−0.53–0.47)

Protein altering 320 8020 0.040139 27.48 4.79 0.13 0.03 (−0.14–0.19)

InDel, etc 19 432 0.002162 27.81 5.32 0.85 0.33 (−0.12–0.79)

Disruptive 16 26 0.000130 29.44 6.52 1.34 1.79 (0.00–3.57)

Splice site variant 2 3 0.000015 31.03 6.93 0.84 3.99 (−1.47–9.44)

Deleterious 130 4552 0.022782 27.43 4.76 0.11 0.03 (−0.19–0.25)

Possibly
damaging

33 98 0.000490 28.54 5.35 1.61 1.08 (0.12–2.04)

Probably
damaging

57 257 0.001286 27.62 4.76 0.33 0.22 (−0.38–0.83)

177451 0.888112 27.37 4.75
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Table 4. continued

Category Number of
different
variants

Total number
of variants

Average
variant load
per subject

BMI mean
in carriers

BMI SD in
carriers

SLP Effect on mean BMI
(95% CI)

Subjects with no
variant

(D) Results for ZBED6.

Intronic, etc 0 0

5 prime UTR 0 0

Synonymous 145 1316 0.006586 28.12 5.36 0.39 0.11 (−0.15–0.37)

Splice region 0 0

3 prime UTR 19 104 0.000521 28.26 4.34 1.24 0.88 (−0.05–1.81)

Protein altering 322 4785 0.023948 27.44 4.80 −0.07 −0.02 (−0.18–0.15)

InDel, etc 11 102 0.000510 27.13 4.54 −0.17 −0.20 (−1.13–0.74)

Disruptive 40 74 0.000370 25.72 3.48 −2.48 −1.59 (−2.68 –0.51)

Splice site variant 0 0

Deleterious 121 914 0.004574 27.36 4.92 −1.49 −0.37 (−0.72–0.02)

Possibly damaging 69 410 0.002052 27.68 4.57 0.25 0.14 (−0.35–0.63)

Probably
damaging

99 451 0.002257 27.44 4.61 −0.01 −0.01 (−0.48–0.47)

Subjects with no
variant

193605 0.968960 27.37 4.75

(E) Results for NPC2.

Intronic, etc 118 2755 0.013788 27.50 4.81 0.41 0.08 (−0.10–0.26)

5 prime UTR 41 361 0.001807 27.75 4.57 −1.54 −0.55 (−1.05–0.05)

Synonymous 35 299 0.001496 26.68 4.53 −1.51 −0.59 (−1.14–0.04)

Splice region 11 907 0.004539 27.79 4.98 −0.10 −0.04 (−0.36–0.28)

3 prime UTR 85 1461 0.007312 27.91 4.89 0.46 0.12 (−0.13–0.37)

Protein altering 72 1573 0.007873 27.69 4.96 −0.43 −0.18 (−0.58–0.22)

InDel, etc 1 1 0.000005 23.91 −0.28

Disruptive 10 111 0.000556 28.94 5.74 1.27 0.87 (−0.03–1.76)

Splice site variant 3 3119 0.015610 27.63 4.95 3.10 0.28 (0.11–0.45)

Deleterious 41 742 0.003714 28.45 5.10 0.96 0.40 (−0.10–0.90)

Possibly damaging 12 525 0.002628 26.97 4.56 −0.68 −0.33 (−0.86–0.19)

Probably
damaging

19 68 0.000340 27.51 4.59 −0.08 −0.13 (−1.33–1.07)

Subjects with no
variant

189490 0.948365 27.36 4.75

(F) Results for BAIAP3.

Intronic, etc 1486 30454 0.152417 27.47 4.82 −1.44 −0.05 (−0.10–0.00)

5 prime UTR 29 272 0.001361 27.39 4.29 0.35 0.22 (−0.35–0.79)

Synonymous 390 4376 0.021901 27.70 4.96 0.09 0.02 (−0.12–0.16)

Splice region 144 1224 0.006126 27.75 5.09 0.18 0.06 (−0.21–0.33)

3 prime UTR 79 3417 0.017102 27.72 5.09 0.20 0.04 (−0.12–0.20)

Protein altering 700 14175 0.070943 27.37 4.77 −0.90 −0.10 (−0.23–0.03)

InDel, etc 6 26 0.000130 26.15 4.84 −0.87 −1.39 (−3.24–0.46)

Disruptive 59 293 0.001466 27.08 4.69 −0.61 −0.32 (−0.87–0.23)

Splice site variant 25 145 0.000726 26.02 3.99 −3.47 −1.41 (−2.19–0.62)

Deleterious 355 7254 0.036305 27.32 4.79 −0.01 −0.00 (−0.17–0.16)

Possibly damaging 139 1475 0.007382 27.32 4.60 −0.19 −0.06 (−0.32–0.20)

Probably
damaging

178 3773 0.018883 27.12 4.56 −0.96 −0.15 (−0.33–0.04)

Subjects with no
variant

157851 0.790017 27.37 4.75

The tables show the numbers of variant of each category, their total numbers and the mean and SD of BMI observed in variant carriers along with the SLP and
estimated effect size.
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of this issue, although the results for the BDNF Val66Met variant
are highly statistically significant, other protein altering variants in
BDNF are associated with a larger average effect size but do not
produce a statistically significant result because they are
cumulatively so much rarer.
The results provide some indication about the quantitative

effects of sequence variants but we should first note that the UK
Biobank is not completely representative. It consists of volunteer
participants who are on average older and healthier than the
population as a whole. One implication of this is that subjects with
more severe phenotypes will be less likely to be included and an
overall effect of this will be to underestimate the effect size of rare
variants which can cause morbidity and premature mortality. For
example, we can observe that LOF variants in MC4R and PCSK1 are
associated with an average increase of 2 or more BMI units but
that this estimate may well represent a floor for the real effect size,
and indeed much larger effects have been reported in a birth
cohort characterised at age 18 [32].

The public health impact of genetic variants depends on their
effect and on how many people carry them. For those categories
of variant which are rare, the proportion of people carrying such a
variant will be approximated by the average variant load because
few people will have more than one variant. Thus, we may say that
0.04% of this sample has a LOF variant in MC4R associated with an
increase of 2.7 in BMI while 0.2% have a variant annotated as
probably damaging by PolyPhen associated with an average BMI
increase of 2.0. Likewise, <0.03% of the sample has a LOF variant
in PCSK1 which tends to increase BMI by 2.3 units whereas 1.5%
carry a protein altering variant associated with an average BMI
increase of 0.3.
The analyses fail to conclusively implicate novel genes as

influencing BMI. The three which are arguably biologically the
most plausible are SIRT1, ZBED6 and NPC2 but it must be
acknowledged that the statistical evidence supporting their
involvement is fairly weak. Conversely, there are other genes with
higher statistical significance but whose function, as far as it is

Table 5. Results from variant category regression analyses for LEP and LEPR.

Category Number of
different
variants

Total number
of variants

Average
variant load
per subject

BMI mean
in carriers

BMI SD in
carriers

SLP Effect on mean BMI
(95% CI)

(A) Results for LEP.

Intronic, etc. 58 7313 0.036600 27.61 5.00 −0.16 −0.02 (−0.13–0.09)

5 prime UTR 4 13 0.000065 29.44 5.61 1.00 2.16 (−0.46–4.78)

Synonymous 45 1153 0.005771 27.77 5.13 1.71 0.32 (0.05–0.60)

Splice region 2 4 0.000020 30.91 6.67 0.83 3.41 (−1.31–8.14)

3 prime UTR 10 2486 0.012442 27.63 4.85 −0.20 −0.05 (−0.24–0.14)

Protein altering 50 1235 0.006181 28.62 5.34 −0.21 −0.07 (−0.37–0.22)

InDel, etc 1 1 0.000005 27.70 −0.01 −0.14 (−9.59–9.30)

Disruptive 4 5 0.000025 32.05 3.90 1.64 4.80 (0.58–9.03)

Splice site variant 1 1 0.000005 33.46 0.68 5.91 (−3.54–15.35)

Deleterious 18 59 0.000295 27.10 4.00 −0.48 −0.96 (−2.95–1.03)

Possibly
damaging

8 91 0.000455 27.30 4.91 0.01 0.01 (−1.06–1.09)

Probably
damaging

15 49 0.000245 27.27 4.05 0.42 0.95 (−1.21–3.11)

Subjects with no
variant

188116 0.941489 27.36 4.74

(B) Results for LEPR.

Intronic, etc 2481 51218 0.256337 27.43 4.80 −0.65 −0.02 (−0.06–0.02)

5 prime UTR 48 3200 0.016015 27.25 4.73 −0.01 −0.00 (−0.17–0.17)

Synonymous 145 4298 0.021511 27.67 4.96 −0.13 −0.02 (−0.18–0.13)

Splice region 43 147 0.000736 27.11 4.57 −0.22 −0.20 (−0.98–0.58)

3 prime UTR 19 117 0.000586 28.26 5.55 1.24 0.83 (−0.05–1.70)

Protein altering 396 3862 0.019329 27.64 4.82 −0.26 −0.07 (−0.32–0.17)

InDel, etc 3 4 0.000020 27.31 4.59 0.02 0.14 (−4.58–4.86)

Disruptive 25 53 0.000265 27.49 5.13 0.06 0.11 (−1.19–1.40)

Splice site variant 8 35 0.000175 26.47 5.69 −0.47 −0.77 (−2.37–0.83)

Deleterious 159 1950 0.009759 27.76 4.96 0.11 0.05 (−0.30–0.40)

Possibly
damaging

77 990 0.004955 27.55 4.77 0.57 0.21 (−0.17–0.60)

Probably
damaging

83 1189 0.005951 27.96 4.99 0.31 0.14 (−0.27–0.55)

Subjects with no
variant

153180 0.766640 27.36 4.74

The tables show the numbers of variant of each category, their total numbers and the mean and SD of BMI observed in variant carriers along with the SLP and
estimated effect size.
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known, does not immediately suggest that they would have a
prominent role in influencing BMI. It is clear that additional data
will be needed to arrive at definitive solutions, whether it be from
the remaining UK Biobank subjects or from alternative sources.
The results from these analyses would seem to point to very

rare variants in a fairly small number of genes as having
detectable effects on BMI but there are some caveats which are
worth stating. First, the approach used makes the assumption that
when variants are considered jointly then they will tend to have
the same direction of effect on the phenotype. This seems a
reasonable assumption for LOF variants, expected to reduce the
functioning of a gene, but the method would fail if some non-
synonymous variants reduced function but were balanced out by
others which produced gain of function. While we may expect
that on average a non-synonymous change, especially one
annotated as damaging or deleterious, will be more likely to
impair than improve function it is important to acknowledge that
if there is a good deal of heterogeneity of effect then genes and
classes of variant will fail to achieve statistical significance. Thus,
these results should not be taken to exclude the possibility that
there may be very large numbers of individually rare variants in
many genes which might cumulatively make a substantial
contribution to the overall variance of BMI in the population.
Another point to make is that association studies such as this,

especially those based on population samples, are not expected to
necessarily identify genes which affect BMI but rather genes in
which naturally occurring variation affects BMI. For example, there
are large variations in the frequency with which LOF variants are
observed in different genes, reflecting partly the size of the gene
but also selection pressures. Only 6 subjects have LOF variants in
LEP compared to thousands in NPC2 and so LEP does not produce
a detectable signal. However it may well be that by recognising
LEP as potentially having a major and direct impact on BMI,
functional studies will yield useful understanding of the under-
lying physiology. It should be noted that the selection pressures
reducing variation in a particular gene may relate to the
phenotype under consideration, here BMI, but may also involve
other biological processes impacting on fitness.
To conclude, the study of very large, exome-sequenced samples

such as the UK Biobank can afford us further insights into the
relationship between genetic variation and a quantitative, health-
related phenotype such as BMI.

DATA AVAILABILITY
The raw data is available on application to UK Biobank. Detailed results with variant
counts cannot be made available because they might be used for subject
identification. Scripts and relevant derived variables will be deposited in UK Biobank.
Software and scripts used to carry out the analyses are available at https://github.
com/davenomiddlenamecurtis.
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