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Abstract
Objectives We hypothesised that maternal diet-induced-obesity has adverse consequences for offspring energy expenditure
and susceptibility to obesity in adulthood, and that the prebiotic polydextrose (PDX) would prevent the consequences of
programming by maternal obesity.
Methods Female mice were fed a control (Con) or obesogenic diet (Ob) for 6 weeks prior to mating and throughout
pregnancy and lactation. Half the obese dams were supplemented with 5% PDX (ObPDX) in drinking water throughout
pregnancy and lactation. Offspring were weaned onto standard chow. At 3 and 6 months, offspring energy intake (EI) and
energy expenditure (EE by indirect calorimetry) were measured, and a glucose-tolerance test performed. Offspring of control
(OffCon), obese (OffOb) and PDX supplemented (OffObP) dams were subsequently challenged for 3 weeks with Ob, and
energy balanced reassessed. Potential modifiers of offspring energy balance including gut microbiota and biomarkers of
mitochondrial activity were also evaluated.
Results Six-month-old male OffOb demonstrated increased bodyweight (BW, P < 0.001) and white adipose tissue mass
(P < 0.05), decreased brown adipose tissue mass (BAT, P < 0.01), lower night-time EE (P < 0.001) versus OffCon, which
were prevented in OffObP. Both male and female OffOb showed abnormal glucose-tolerance test (peak [Glucose] P < 0.001;
AUC, P < 0.05) which was prevented by PDX. The Ob challenge resulted in greater BW gain in both male and female OffOb
versus OffCon (P < 0.05), also associated with increased EI (P < 0.05) and reduced EE in females (P < 0.01). OffObP were
protected from accelerated BW gain on the OB diet compared with controls, associated with increased night-time EE in both
male (P < 0.05) and female OffObP (P < 0.001). PDX also prevented an increase in skeletal muscle mtDNA copy number in
OffOb versus OffCon (P < 0.01) and increased the percentage of Bacteroides cells in faecal samples from male OffObP
relative to controls.
Conclusions Maternal obesity adversely influences adult offspring energy balance and propensity for obesity, which is
ameliorated by maternal PDX treatment with associated changes in gut microbiota composition and skeletal muscle
mitochondrial function.

Introduction

Maternal obesity constitutes the most common obstetric risk
factor in developed countries with direct implications not
only for maternal and neonatal morbidity and mortality but
also for increased risk of obesity in the next generation
[1–3]. Mother–child cohort studies suggest the acquisition
of obesogenic traits from mother via an undefined asso-
ciation between maternal body mass index (BMI) in preg-
nancy and risk of obesity in childhood and beyond [2].
Increasing experimental evidence suggests that exposure to
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maternal obesity in utero and during lactation, especially
maternal hyperglycaemia and insulin resistance [4] asso-
ciated inflammation and metabolic dysfunction, may con-
tribute to this relationship [5], impacting Global Sustainable
Development Goals, in terms of health and wellbeing of
current and future generations [6]. Interventions are there-
fore urgently sought.

In view of this unmet clinical need, we have investigated
the potential of a dietary supplement to improve the
maternal metabolic profile in obese pregnant mice and
thereby prevent deleterious effects on offspring metabolism,
inflammation and energy balance. Polydextrose (PDX) is a
low calorie, neutral tasting, condensation polymer of D-
glucose, sorbitol, and citric acid, which is water soluble,
resistant to digestion in the small intestine, but partially
fermented by endogenous microbiota in the large intestine,
leading to its classification as a soluble dietary fibre [7].
Randomised placebo-controlled trials and two recent meta-
analysis of studies in adult humans have reported increased
satiety, and improved glucose homoeostasis and lipid pro-
files with PDX supplementation [7–11]. Therefore, PDX
supplementation in obese women offers the potential to
improve metabolic profile and inflammation during preg-
nancy to positively impact on the developing offspring
[12, 13].

We have previously reported cardiometabolic dysfunc-
tion in the offspring of mice with diet-induced obesity [14–
17]. In this study we have addressed the effect of obesity
and PDX supplementation on offspring metabolic function,
with a focus on energy balance, both intake and expendi-
ture. Energy expenditure has been relatively under-
explored, in models of maternal/offspring obesity. A recent
meta-analysis addressing the effect of maternal obesogenic
diets in rodents on offspring food intake and body mass
concluded that, overall, effects on appetite are modest,
whereas the increase in offspring bodyweight are consistent
with permanent alterations in metabolism [18].

Materials and methods

Animal husbandry

All studies were approved locally by the Animal Welfare
and Ethics Committee (AWERB) and were conducted
under UK Home Office License (Taylor, PPL 70/7090).
Power calculations were performed based on previous
in vivo data to estimate sample size. Female C57BL/6J mice
were fed either a standard chow diet (RM1, Special Dietary
Services, UK) or a semisynthetic obesogenic diet (approx.
16% fat, 33% simple sugars, 15% protein, total energy
16.7 kJ/g (4.0 kcal/g), as previously described [14] (Sup-
plementary methods and Supplementary Table 1).

Following successful mating, a subgroup of obesogenic
diet-fed dams were randomly assigned to supplementation
with PDX (5% w/v) in the drinking water throughout
gestation and lactation (n= 34), generating three experi-
mental groups; control (Con); obese (Ob) and obese+ PDX
(ObP, Fig. 1). This concentration of PDX has previously
proven efficacious in reducing insulin resistance in adult
non-pregnant rats, without adverse effects or alteration in
calorific intake [19].

Offspring of control dams (OffCon), obese dams (OffOb)
and obese PDX supplemented dams (OffObP) were weaned
and maintained on standard chow, and one male and one
female from each litter studied at time points 30 days, 3 and
6 months of age. Therefore, no evaluation included more
than one subject of each sex from each litter.

Indirect calorimetry

Energy expenditure (EE), respiratory exchange ratio (RER)
and food intake in the offspring, were measured using
LabMaster® Automated Home Cage Phenotyping (TSE
Systems, Bad Homburg, Germany).

Organ collection

At each time point, animals were killed by rising con-
centration of CO2 or cervical dislocation, in accordance
with Schedule 1 of UK Home Office guidelines. All animals

3months
Energy Balance, 

Body composition, 
GTT

6 months
Energy Balance, Body 

composition, GTT
Obesogenic dietary 

challenge

30 days
Energy 

Balance, GTT

Fig. 1 Schematic representation of the experimental design. Female
dams were fed either an obesogenic (n= 34) or a control diet (n= 18).
Following successful mating a subgroup of obese dams were supple-
mented with 5% PDX (n= 12) in the drinking water. All offspring
were weaned onto control diet and were followed up to 6 months. I
male and 1 female was studied at each time point: 30 days, 3 months
and 6 months. At 3 months after recording baseline characteristics, 1
male and 1 female from each litter (n= 10) were exposed to the
obesogenic diet for 3 weeks and reassessed.
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were sacrificed mid-morning, blood was taken by cardiac
puncture, organs were removed and immediately snap fro-
zen in liquid nitrogen for deoxyribonucleic acid (DNA)
extraction and the fat pads (perineal, gonadal, inguinal and
subcutaneous) and the skeletal muscle tibialis anterior were
weighed.

Glucose-tolerance test

PDX has been shown to improve glucose tolerance in mice
[20]. To determine whole body glucose tolerance, an intra-
peritoneal glucose-tolerance test (i.p.GTT) was performed
in the dams at gestational day 16 (GD16) and in the off-
spring at 30, 90 and 180 days of age. Animals were injected
(i.p.) with a glucose load (1 g/kg; 10% glucose solution).
Blood glucose was measured at 15, 30, 60 and 120 min after
glucose injection using an AlphaTRAK® Glucose meter
(Abbott Animal Health).

Cytokine profile

To assess the impact of PDX on inflammatory cytokines in
obese pregnancy, a subgroup of dams (n= 5) were killed at
gestational day 16, by a rising concentration of CO2 and
maternal blood samples were taken by cardiac puncture and
serum stored at −80 °C. Twenty-four adipocytokines were
measured from pooled serum samples, using a Proteome
Profiler Mouse Adipokine Array kit (R&D Systems) (see
Supplementary methods for details).

Obesogenic dietary challenge

In a separate cohort of offspring (OffCon, and OffObP) at
3 months of age, 1 male and 1 female from each litter were
provided ad libitum access to the maternal obesogenic diet
(see above) for 3 weeks, to assess the impact of an obeso-
genic dietary challenge on the adult phenotype.

Quantitative real-time PCR

Greater brown fat distribution and activation may influence
energy expenditure due to increased metabolic activity. We
therefore evaluated expression of relevant brown fat genes
(see Supplementary Table S3 for primers and sequences).
Total RNA was extracted from brown adipose tissue (BAT)
samples with the RNeasy mini kit (QIAGEN). RNA (1 μg)
was reverse transcribed into cDNA with the Superscript II
kit (Invitrogen). Semi-quantitative real-time PCR with
SYBR Green JumpStart Taq ReadyMix (Sigma-Aldrich)
was used to detect and amplify target cDNA. Relative gene
expression was calculated using the ΔΔ Ct method. Genes

of interest were normalised to the housekeeping gene
Cyclophilin B.

Mitochondrial DNA copy number in offspring
skeletal muscle

MtDNA content varies between different cell types
depending on the bioenergetic needs, but can also change in
response to physiological stimuli, leading to alterations of
mtDNA being employed as a biomarker of mitochondrial
dysfunction [21, 22]. Total genomic DNA was isolated
from skeletal muscle using the DNeasy blood and tissue kit
(Qiagen, UK) according to the manufacturer’s guidelines,
and treated by sonication to minimise effects of dilution
bias. Absolute mtDNA copy number was determined by
real-time qPCR. The primers (see Supplementary Table 2
for sequences) used were specific to mouse mitochondrial
and nuclear genome targets (mMitoF1/R1 and mB2MF1/
R1, respectively), as detailed previously [22].

Analysis of offspring faecal microbiota

Since PDX is hypothesised to influence the maternal
microbiome [13] with vertical transfer to neonates, we
investigated broad-spectrum faecal microbiota profiles in
offspring at weaning, 3 months and 6 months of age. Off-
spring faecal samples were snap frozen and stored at
−80 °C. Samples were quantified for broad-spectrum gut
bacterial species using probes targeting six phylogenetic
groups (for detailed methods, targets and specific probes see
Supplementary methods). Phylogenetic characterisation was
performed using 16S rRNA in situ hybridisation and whole
cell fluorescence in situ hybridisation (FISH) combined
with flow cytometry as described by Rigottier-Gois and
colleagues [23] employing 16S rRNA-targeted oligonu-
cleotide probes, and targets for rRNA dot-blot hybridisation
(Panel of group- and species-specific 16S rRNA-targeted
oligonucleotide probes, Supplementary Table S4).

Statistical analysis

Data are expressed as means ± SEM. Statistical analysis was
performed with GraphPad Prism 5 (GraphPad Software Inc.,
San Diego, California, USA). When comparing more than
two groups, one-way ANOVA followed by Bonferroni post
hoc test was employed. When comparing two groups, Stu-
dent’s t-test was used. Normal distributions and equality of
variance between groups were checked by visual inspection
of scatter plots. Statistical significance was considered when
P value < 0.05. χ2 test was used to test differences in
reproductive outcomes between experimental groups.
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Results

Maternal characteristics

Bodyweight, food intake in pregnancy

There was no difference in gestational weight gain or
calorific intake during gestation between the obese dams
and the obese dams supplemented with PDX (Fig. 2a, b).

Glucose tolerance in pregnancy

The obese dams receiving PDX demonstrated improved
glucose tolerance (Fig. 2c) and a reduced area under the
glucose curve (AUC) 2 h after the i.p. glucose load com-
pared to the obese dams GD16 (Fig. 2c).

Reproductive success

Maternal obesity affected both fertility and pup survival
rates and was associated with increased rates of canni-
balism in the obese dams. Control dams had 89% suc-
cessful pregnancies and only 6% cannibalization
compared to 44% and 18%, respectively, for obese dams.
Administration of PDX in obese pregnant and lactating
dams improved fertility rates by 14% and reduced can-
nibalization of the newborn pups (P < 0.05, Chi-squared
test, data not shown).

Maternal cytokine profile at gestational day 16

Inflammatory markers were decreased in obese dams fol-
lowing PDX dietary supplementation; notably, TNF-α and
CSF-1 showed a 4-and 3-fold decrease, respectively
(Fig. 2f).

Offspring characteristics

Birth weight and litter size

There was no influence of maternal obesity or PDX on the
birth weight of offspring. There was a reduction in the litter
size due to maternal obesity, which was partially reversed
by maternal dietary supplementation with PDX during
pregnancy (Fig. 2d, e).

Body composition, energy balance and glucose tolerance at
30 days and 3 months

At 30 days of age there was no difference in bodyweight,
calorific intake, EE or glucose tolerance between offspring
of obese and lean dams (data not shown).

At 3-months-of age, offspring did not differ between
groups in bodyweight or body composition (fat pad mass)
or in calorific intake (data not shown).

Following i.p.GTT at 3 months, male OffOb showed an
increase in the peak blood glucose concentration compared
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to OffCon although the area under the glucose curve was
not different from OffCon (Fig. 3a, inset). In female OffOb,
both peak blood glucose concentration after 15 min and
AUC were elevated compared to OffCon. Maternal dietary
supplementation of PDX resulted in lower peak blood
glucose concentration in female OffObP at 15 min com-
pared with OffOb (Fig. 3a).

There was no effect of maternal obesity on male or
female 3-month-old offspring EE compared to controls.
However, maternal dietary PDX supplementation in
obese dams was associated with an increase in EE in
male OffObP compared to OffOb during both day and
nighttime (Fig. 3b). There was no effect of maternal
PDX supplementation on EE in female OffOb
(Fig. 3c).

Both male and female OffOb showed a significant
reduction in respiratory exchange ratio compared to Off-
Con, which was not observed in female OffObP
(Fig. 3b, c).

Body composition, energy balance and glucose tolerance at
6 months of age

Bodyweight of 6-month-old male OffOb was increased
compared to OffCon. Maternal dietary supplementation
with PDX was associated with a reduction in bodyweight in
male OffObP only (P < 0.001, Fig. 4a).

The increase in male OffOb bodyweight was reflected in
greater white adipose tissue (WAT) mass (Fig. 4b) com-
pared to OffCon, with an increase in the visceral fat pad
mass (mesenteric fat mass [g]: OffOb: 0.92 ± 0.08, n= 6
versus, OffCon 0.65 ± 0.03, n= 7, P < 0.05). Maternal PDX
supplementation prevented the rise in male offspring WAT
mass and mesenteric fat mass secondary to maternal obesity
(Fig. 4b, mesenteric fat mass [g]: OffOb 0.65 ± 0.03, n= 7,
versus OffObP 0.51 ± 0.06, n= 7, P < 0.05).

Male OffOb had decreased BAT compared with OffCon
(Fig. 4c) when corrected for bodyweight. Maternal dietary
PDX supplementation normalised BAT weight relative to
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controls and resulted in male offspring with higher BAT
weight compared to OffOb.

Both male and female OffOb demonstrated a greater
peak glucose concentration in response to a glucose load (i.
p.GTT, Fig. 4d) and a greater AUC compared with OffCon.
Maternal dietary PDX supplementation normalised off-
spring glucose profiles following the GTT (Fig. 4d).

Maternal obesity resulted in lower EE in male OffOb
during day and night compared with OffCon. Maternal
PDX supplementation prevented the reduced EE associated
with maternal obesity during both the active night-phase
and the day-time rest-phase. There was no difference in EE
between the female offspring at 6 months (Fig. 4e, f).

Obesogenic dietary challenge

Bodyweight

Male and female OffOb had greater bodyweight after
3 weeks’ exposure to the obesogenic dietary challenge than
similarly challenged OffCon. The exaggerated weight gain

in both male and female OffOb on the obesogenic diet was
prevented by maternal dietary PDX supplementation
(Fig. 5a).

Energy intake

Calorific intake increased across all offspring groups fol-
lowing the obesogenic dietary challenge. Female, but not
male, OffOb (Fig. 5b) increased calorific intake by 25%
compared with OffCon fed the same hyper-calorific diet.
Maternal dietary supplementation with PDX in the obese
dams prevented the increased food intake in females on the
high calorie diet.

Energy expenditure

Male and female offspring, in all experimental groups,
showed decreased EE during their active (nighttime) phase
following the high fat dietary challenge. An observed
reduction in EE after dietary challenge in adult male and
female OffOb offspring compared to control was prevented
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by maternal PDX (Fig. 5c) such that OffObP was similar to
control.

Respiratory exchange ratio

The dietary challenge normalised respiratory exchange ratio
across all groups, such that male and female OffOb no
longer showed the reduction in RER observed at baseline
(Fig. 5d).

Skeletal muscle mitochondrial DNA copy number

Mitochondrial DNA copy number was investigated as a
potential determinant of the observed reduction in energy
expenditure and glucose tolerance in OffOb. At 30 days of
age, prior to any phenotypic change in the OffOb, MtDNA
copy number ratio in male OffOb skeletal muscle was
markedly increased compared to controls (Fig. 6a). This
was prevented by maternal PDX supplementation, such that
OffObP males were similar to control. There was no sig-
nificant effect of maternal diet on mitochondrial copy
number ratio in female OffObP, although when sexes were
combined there was a highly significant effect of maternal
obesity on offspring skeletal muscle Mt/N ratio at 30 days,
which was prevented by PDX.

Biomarkers of brown fat activation

An increase in Dio2 mRNA expression in 6-month-old male
OffOb, a gene encoding Type 2 iodothyronine deiodinase
involved in thermogenesis, was prevented by maternal
dietary PDX supplementation. Pgc-1a mRNA expression
(Peroxisome proliferator-activated receptor gamma coacti-
vator 1-alpha) was increased in female OffOb and was
similarly prevented by maternal PDX (Fig. 6b). Mitochon-
drial UCP-1 involved in non-shivering thermogenesis was
upregulated in male OffObP compared to OffCon (Fig. 6b)
but unaffected by maternal obesity alone.

Gut microbiota—faecal analysis of broad-spectrum gut
bacterial species

Maternal dietary PDX supplementation increased the per-
centage of Bacteroides in the male offspring bacterial
population compared to OffCon at weaning (Fig. 6c).

In 6-month-old offspring of obese dams the microbiota
showed marked differences compated with controls (Fig.
6c). Male and female OffOb demonstrated a higher per-
centage of Eubacterium rectale–Clostridium coccoides
group compared with OffCon. There was no apparent
influence of maternal PDX treatment on OffObP at
6 months.

Discussion

Here we report, in a mouse model, the influence of maternal
obesity on offspring energy expenditure and the potential
therapeutic benefit of maternal dietary intervention with the
prebiotic polydextrose. Our main findings were firstly, that
PDX improves glycaemic control and reproductive function
in obese pregnancy, without affecting calorific intake or
gestational weight gain; secondly, that maternal PDX
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Fig. 5 Obesogenic dietary challenge. Offspring phenotype at
3 months after 3 weeks on the obesogenic diet. a Bodyweights and
b average daily calorific intake. c Energy expenditure and d RER in
male and female offspring of control (OffCon), obese (OffOb) and
obese dams supplemented with PDX (OffObP) at 3 months of age and
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obesogenic diet (OD) and maternal diet significantly accounted for
variation (two-way ANOVA). Data are expressed as mean ± SEM. *P
< 0.05, **P < 0.01, ***P < 0.001.
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treatment improves glucose homoeostasis in both male and
female offspring; and thirdly, that maternal PDX treatment
prevents offspring weight gain, via sex specific changes in
energy intake and energy expenditure. Lastly, maternal
PDX supplementation provided protection against the
effects of an obesogenic diet in adulthood.

Maternal phenotype

Polydextrose has been shown to improve adult glucose
metabolism [24] but not previously in pregnant women or

obese pregnant animals. In the present study obese dams
showed greatly improved glucose tolerance after supple-
mentation with PDX. This was associated with an
improvement in inflammatory cytokine profile in late
gestation. Maternal glycaemia (and foetal hyper-
insulinaemia) together with inflammatory mediators have
been implicated in life-long obesity risk through the altered
foetal hypothalamic neurodeveopment leading to dis-
turbance of anabolic, adipogenic and neurotrophic pathways
and permanent influences on metabolic and physiological
development [25–27].

Fig. 6 Potential mechanisms.
a MtDNA copy number in
skeletal muscle from male and
female offspring of control
(OffCon), obese (OffOb) and
obese dams supplemented with
PDX (OffObP) at 30 days of age
(n= 5–6). b mRNA expression
of brown adipose tissue
biomarkers of BAT activity at at
30 days of age. c Percentage of
bacteroides (Bac+) and
d Eubacterium
rectale–Clostridium coccoides
(Erec+) in bacteria cells (EUB
+) identified in faecal samples
from male and female offspring
of control (OffCon), obese
(OffOb) and obese dams
supplemented with PDX
(OffObP) at c weaning and
d 6 months of age (n= 6).
e Representative FACS plot.
EUB+ and gated cells. FL1
histogram, green fluorescence is
the total number of bacteria
hybridising with the EUB 338-
FITC probe. FL4 histogram, red
fluorescence, shows the
proportion of cells targeted by
the group Cy5-probe in the
sample. Data are expressed as
mean ± SEM. *P < 0.05;
**P < 0.01, ***P < 0.001.
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PDX also improved reproductive success in obese
pregnant mice, with beneficial effects on fertility and litter
size. Obesity perturbs the hypothalamic–pituitary–gonadal
axis and ovarian cycle, reducing FSH and LH in the folli-
cular and ovulatory phase while also shortening the luteal
phase to reduce progesterone levels. It is possible, therefore,
that PDX, either directly or indirectly, may influence
reproductive hormones in gestation to improve reproductive
capacity [28].

Effect of maternal obesity on offspring body
composition and glucose tolerance

Human cohort studies demonstrate that maternal overweight
and obesity is associated with greater adiposity in offspring
[5, 29]. We found that male offspring were heavier with
increased WAT mass and reduced BAT mass at 6 months of
age. The impaired glucose tolerance observed in both males
and females, at 3 months, antedates any observed changes
in body composition (BIA) suggesting an alternative cause,
potentially pancreatic beta cell dysfunction previously
implicated in this model [30] or the early changes in
mitochondrial function observed.

Effect of maternal obesity and PDX on offspring
energy expenditure

In this study we present novel evidence for the develop-
mental programming of altered EE secondary to maternal
diet-induced obesity, and prevention by maternal PDX
supplementation. PDX influenced EE from as early as
3 months of age, preceding the subsequent changes in body
composition, without affecting energy intake. Previously
the scant literature in this area includes demonstration of
reduced EE in 6-month-old infants born to overweight and
obese mothers [31], in genetically altered mice following
intrauterine exposure to gestational diabetes [32], and in 30-
day-old offspring of severely obesity rats [33]. Changes in
both RER and EE were associated with hepatic mitochon-
drial dysfunction, with reduced PGC-1α mRNA expression,
and impaired fatty acid oxidation [33]. Taken together,
these findings suggest impaired nutrient sensing and fuel
switching in offspring of obese dams. Compromised fatty
acid oxidation would be consistent with the development of
a fatty liver phenotype which we have previously described
in this rodent model [15, 17].

Response to an obesogenic environment in
adulthood: energy intake on the obesogenic diet

Female offspring of obese dams demonstrated hyperphagia
secondary to maternal obesity only when exposed to

obesogenic dietary challenge, suggesting programming of
sex specific effects on food preference, and implicating
mesolimbic reward pathways [34]. Perinatal ‘junk food’
exposure similarly increases the preference for palatable
diets in juvenile and adult rat offspring, and we previously
reported reduced Mυ-opioid receptor expression in the
ventral tegmental area (VTA) of female ‘junk-food’ off-
spring only [35, 36]. Moreover, we have previously repor-
ted in the offspring of obese rats, structural and functional
deficits in neuronal development in the hypothalamic arc-
uate and paraventricular nucleus associated with leptin
resistance and hyperphagia [37]. Prevention of female
hyperphagia by maternal PDX supplementation, therefore,
could imply protection of central neurotrophic development
in the neonatal brain.

Male offspring of obese mice had lower energy expen-
diture than controls. In man, a blunted glucose-induced
thermogenesis has been observed in obese individuals,
increasing susceptibility to obesity when consuming diets
rich in sugars [38–40]. Since OffOb males were not obese at
3 months, a programmed deficit in diet-induced thermo-
genesis or central insulin resistance at the level of the
hypothalamus could underlie the reduction in night-time EE
during the obesogenic dietary challenge. Reduced physical
activity can also play a role in reduced EE, however, this is
unlikely in the murine model employed here, since we have
previously reported that male offspring of obese mice have
a hyperactive ADHD-like phenotype [41].

Mitochondrial biogenesis and activation

The observed increase in mitochondrial DNA copy number
in skeletal muscle at 30 days of age in OffOb males is
consistent with early developmental exposure to maternal
high glucose-induced ROS, secondary to maternal obesity,
and could reflect compensatory mitochondrial biogenesis in
response to a decline in mitochondrial function [21, 42, 43].
Alternatively, the increase in MtDNA may be non-
functional and a maladaptive response to oxidative stress
[44] or hyperglycaemia [45], which can lead to an increase
in tissue MtDNA and inflammation through activating of
mTOR pathways and induction of TNFα [46]. Either way,
the data suggest an independent influence of maternal
obesity on skeletal muscle mtDNA levels and hence mito-
chondrial function prior to the development of other meta-
bolic defects, which might suggest a primary mechanism in
the developmental programming due to maternal obesity.

Biomarkers of brown fat activation

The increased expression Type 2 iodothyronine deiodinase
(D2) which mediates adaptive thermogenesis in BAT may
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reflect the increased sympathetic drive [47] previously
described in this model [14, 48, 49]. PDX may theoretically
prevent this increased Dio2 gene expression by normalising
hypothalamic development and sympathetic drive in OffOb
[37]. Indeed, others have shown that probiotics rescue
neurogenesis and behavioural deficits in dysbiotic mice
treated with antibiotics [50].

Mitochondrial UCP-1 expression was upregulated in
BAT of male offspring of obese dams treated with PDX
compared to control offspring and may contribute to the
increased energy expenditure observed. Prebiotics may
increase thermogenic capacity in BAT by increasing UCP-1
expression [51] through altering microbiota and their by-
products, short chain fatty acids, which can act as both
energy source and receptor-mediated metabolic regulators
of host energy metabolism involving processes such as
hepatic gluconeogenesis and lipid metabolism via AMPK
and PGC-1a activation [52].

Pgc1α is the master regulator of mitochondrial biogen-
esis and linked to adaptive thermogenesis, following ‘BAT
activation’. Increased Pgc1α expression in skeletal muscle
of offspring of obese dams which was prevented by
maternal PDX treatment appears counter-intuitive, as BAT
activation would be expected to contribute to greater energy
expenditure, if the observed increase in mtDNA were
indeed functional. However, in addition to stimulating
mitochondrial proliferation in skeletal muscle, PGC‐1α
activation favours enhanced lipid- over carbohydrate-
mediated mitochondrial respiration in skeletal muscle in
mice, and leads to intrinsic mitochondrial adaptations in
fatty acid-induced uncoupling and a reduction in mito-
chondrial superoxide production [53]. This ‘fuel switching’
is consistent with the observed reduction in RER, and thus
increased lipid oxidation, in offspring of obese mice and
may represent a compensatory response to reduce ROS
production, or a direct influence of the gut microbiota [52].

Offspring microbiota profile

Inheritable microbiota, passed from an obese mother to
offspring during labour, may contribute to the modern
patterns of human health and disease affecting gut barrier
integrity and energy provision [54] but also maturation of
the immune system [55], insulin sensitivity, energy expen-
diture and visceral adiposity [56]. Indeed, we have pre-
viously implicated impaired innate immunity in offspring
liver together with an increase in pro-inflammatory markers
associated with NAFLD in offspring of obese mice [17]. A
recent landmark study demonstrated that transplanted gut
microbiota from stool microbes of 2-week-old infants born
to obese mothers increases inflammation and susceptibility
to NAFLD in recipient germ-free mice [57].

Prebiotic effects of polydextrose on offspring
microbiota

Maternal supplementation with PDX in obese pregnant
mice resulted in increased abundance of Bacteroides com-
pared to controls. Administration of prebiotics has pre-
viously been shown to improve pregnancy outcomes [58]
and influence maternal transfer of microbiota and initial
establishment of bifidobacteria in the infant [59]. In obese
humans an increase in bacteroides relative abundance is
associated with weight-loss [60]. We report a similar effect
here, with maternal PDX intervention, in which obesity
traits in the offspring were reduced associated with an
increase in bacteroides relative abundance.

Conclusions

In this study, evidence has been presented that diet-induced
maternal obesity in the mouse results in reduced EE, glu-
cose intolerance and increased bodyweight in 6-month male
offspring compared to controls. Moreover, following a 3-
week obesogenic dietary challenge, offspring of obese dams
had reduced energy expenditure, increased calorific intake
an increased weight gain compared to controls. The off-
spring obesogenic phenotype is preceded by evidence of
early mitochondrial damage and changes in the gut micro-
biota, which are prevented by maternal polydextrose.
Polydextrose is a synthetic indigestible glucose polymer,
classified as a dietary fibre and therefore, safe for use in
pregnancy. However, there is currently a lack of high-
quality scientific data on the use of polydextrose, or indeed
other prebiotics, in pregnant or breastfeeding women. The
present study supports the safety and efficacy of poly-
dextrose supplementation in obese pregnancy.
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