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From inflammation to bone formation: the intricate role of
neutrophils in skeletal muscle injury and traumatic heterotopic
ossification
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Neutrophils are emerging as an important player in skeletal muscle injury and repair. Neutrophils accumulate in injured tissue, thus
releasing inflammatory factors, proteases and neutrophil extracellular traps (NETs) to clear muscle debris and pathogens when
skeletal muscle is damaged. During the process of muscle repair, neutrophils can promote self-renewal and angiogenesis in satellite
cells. When neutrophils are abnormally overactivated, neutrophils cause collagen deposition, functional impairment of satellite
cells, and damage to the skeletal muscle vascular endothelium. Heterotopic ossification (HO) refers to abnormal bone formation in
soft tissue. Skeletal muscle injury is one of the main causes of traumatic HO (tHO). Neutrophils play a pivotal role in activating BMPs
and TGF-β signals, thus promoting the differentiation of mesenchymal stem cells and progenitor cells into osteoblasts or
osteoclasts to facilitate HO. Furthermore, NETs are specifically localized at the site of HO, thereby accelerating the formation of HO.
Additionally, the overactivation of neutrophils contributes to the disruption of immune homeostasis to trigger HO. An
understanding of the diverse roles of neutrophils will not only provide more information on the pathogenesis of skeletal muscle
injury for repair and HO but also provides a foundation for the development of more efficacious treatment modalities for HO.
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INTRODUCTION
Skeletal muscle, which is also known as striated muscle, is the
most abundant tissue in the human body1,2. Skeletal muscle injury
is frequently clinically caused by trauma, ischemia-reperfusion,
burns, and even physical exercise but has not been linked to a
high-efficiency treatment until now2. Neutrophils are the first
infiltrating immune cells in damaged tissue and play diverse roles
in the inflammatory response3. Neutrophils are the first type of cell
to defend against invading infections caused by microorganisms;
moreover, they are also essential for regulating the process of
tissue repair and regeneration4. Over the past few years, an
increasing number of studies have focused on the complex
crosstalk between skeletal muscle and neutrophils in acute injuries
and chronic diseases1. Infiltrated neutrophils exacerbate the
original damage by assisting in the removal of damaged tissue
and the release of free radicals and protein hydrolases1. Thus,
overactive neutrophils can be significantly destructive and can
lead to severe tissue injury; moreover, they can exacerbate skeletal
muscle damage. Interestingly, neutrophils have also been shown
to contribute to tissue repair in different organs, including the
liver, lung, and bone5. Different subtypes of neutrophils may have
different functions during tissue repair, and more efficient
phagocytosis or cytokine production and dysregulation of
neutrophil heterogeneity may lead to impaired wound healing6.
Heterotopic ossification (HO) is defined as the formation of

bone in soft tissues and joints7. HOs are broadly divided into

traumatic HO (tHO), neurogenic HO (NHO), and genetic HO. It is
commonly recognized as being a complication after trauma,
surgery, spinal cord injury (SCI), or other injuries. Patients with HO
suffer from joint ankylosis, which is difficult to treat, and muscle
pain. tHO is most commonly induced by tissue injury, followed by
inflammation and subsequent events, which inappropriately
activate osteogenic or osteochondrogenic mechanisms8. Inflam-
matory factors recruit immune cells to create a microenvironment
that serves as a vital “niche” in HO initiation and progression. A
heterogeneous population of cells responds to immune cells
recruited by inflammatory osteoplastic signals to initiate the bone
formation process9. Muscle injury and its associated inflammation
appear to be indispensable triggers for HO10; however, the injury-
induced osteogenic mechanism has not yet been identified. The
role of macrophages in the HO process has been explored in
detail9. However, as neutrophils are the earliest recruited immune
cells in injured tissues, the role of neutrophils in the HO-associated
inflammatory process remains unclear, and neutrophils are
considered to be able to recruit macrophages. Neutrophils and
neutrophil extracellular traps (NETs) reportedly promote osteo-
genesis in skeletal muscle injury and play a role in the HO
process11. Moreover, there is a crosstalk between neutrophils and
macrophages, as well as nerve signaling, which represents the
major drivers of HO.
Herein, we review the molecular roles of neutrophils in skeletal

muscle injury, repair, and the process of HO. The elucidation of the
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vital role of neutrophils provides a theoretical basis for treatment
by targeting neutrophils in skeletal muscle injury-related diseases
and HO.

NEUTROPHILS IN SKELETAL MUSCLE INJURY, REPAIR AND
REGENERATION
Neutrophils, which originate from the bone marrow, constitute
approximately 60–70% of the total leukocyte population3,12. In the
classical view, neutrophils are generated from hematopoietic stem
cells and differentiate into subpopulations of neutrophil killers and
neutrophil capsers13,14. Granulocyte colony-stimulating factor (G-
CSF) is a critical regulator of neutrophil expansion and mobiliza-
tion from the bone marrow15. Furthermore, neutrophil recruit-
ment to sites of inflammation also affects the overall frequency of
neutrophils16. When they are generated in the bone marrow,
neutrophils survive for only 6–8 h in circulation, after which they
are cleared13,17. Neutrophils play one of the most well-known roles
in inflammatory and immune processes and are also extremely
diverse. Neutrophils are effective antimicrobial cells and represent
the first line of cellular defense against infection by deploying
antimicrobial elements, thus resulting in tissue damage12. After
being recognized, neutrophils activate multiple antimicrobial
mechanisms, including phagocytosis of cellular debris; degranula-
tion of antimicrobial enzymes, such as neutrophil elastase (NE)
and myeloperoxidase (MPO); DNA webs; and NETs1,17. The role of
neutrophils in tissue injury and regeneration, in addition to
infectious diseases, is becoming better understood18–20. For
example, neutrophils can significantly enhance angiogenesis to
promote the healing of fractures21. In conclusion, during their
short life, the phenotype of neutrophils substantially changes with
changes in the environment.
Skeletal muscle is physiologically important to humans and

suffers more damage than other human tissues under normal
conditions22. Skeletal muscle injuries can be divided into acute
and chronic injuries. Acute injuries are caused by perturbations
applied over a short period of time, such as lacerations,
contusions, frigidity, burns, or exposure to toxins. In injured
skeletal muscle, pathogen-associated molecular pattern (PAMP)
and damage-associated molecular pattern (DAMP) signals are
released, and various immune cells are recruited23. After skeletal
muscle injury, the activated complement system and leaky muscle
cells recruit neutrophils to participate in anti-infection reac-
tions17,24. Neutrophils first remove tissue fragments and micro-
organisms from necrotic and atrophic skeletal muscle, which is
beneficial for subsequent skeletal muscle repair. Moreover,
neutrophil-derived cytokines, proteolytic enzymes, and NETs are
also involved in this process25.
The repair of skeletal muscle involves inflammatory responses,

muscle fiber regeneration, angiogenesis, and extracellular matrix
(ECM) remodeling26. Infiltrated neutrophils release vascular
endothelial growth factor (VEGF), and matrix metalloproteinase-9
(MMP-9) after the MAPK signaling pathway is activated25,27–29,
thus promoting angiogenesis in injured muscle tissue. Moreover,
neutrophils produce secretory leukocyte protease inhibitors
(SLPIs) to accelerate wound healing after the NF-κB signaling
pathway is activated30. Satellite cells mediate the initiation of
muscle regeneration, regenerate damaged muscle fibers, and
restore muscle contractility and metabolism26. In response to
trauma, satellite cells are activated to enter the cell cycle,
proliferate briefly, and further differentiate into new muscle tubes
or fuse with damaged muscle fibers to repair muscle injury. The
infiltration of neutrophils is also beneficial for muscle regeneration
through the activation of satellite cells via the STAT pathway31–34.
At the later stage of skeletal muscle repair, neutrophils gradually
undergo apoptosis or migration, and apoptotic neutrophils are
engulfed by macrophages, which initiates a feedback repair
program and releases the tissue repair factors TGF-β and IL-10

through the TGF-β/Smad2 signaling pathway and AKT/GSK3β
pathway, respectively. This subsequently promotes the remodel-
ing of the ECM of skeletal muscle and is beneficial for restoring the
normal contraction and relaxation function of skeletal muscle35

(Fig. 1).
However, the overactivation of neutrophils, which results in

persistent inflammatory activation, leads to tissue damage.
Continuous inflammatory reactions inhibit the repair of injured
skeletal muscle and cause muscle atrophy2. Afterward, the
overreaction affects the release of superoxide anion radicals
and/or hydrogen peroxide by neutrophils, which leads to further
tissue damage36. After skeletal muscle atrophy or necrosis after
injury, due to the deposition of fibrinogen, vascular permeability
in diseased skeletal muscle increases, which accelerates the
process of skeletal muscle repair33. However, fibrinogen also
promotes the recruitment of neutrophils through interactions with
the macrophage-1-antigen integrin receptor, which may lead to
further overactivation of neutrophils and aggravate skeletal
muscle injury37. Reactive oxygen species (ROS) released by
neutrophils through the NF-κB signaling pathway are beneficial
for muscle fiber degeneration and vascular changes caused by
ischemia-reperfusion injury36,38. However, excessive ROS damages
the vascular endothelium in muscle tissue to hinder the
regeneration process of muscle39,40. Overactive neutrophils
secrete IL-17 and TGF-β, which leads to the activation of stellate
cells and the proliferation of adipose and connective tissue, thus
ultimately limiting the function of repaired skeletal muscle41–45.
The persistent infiltration of neutrophils in degenerative volu-
metric muscle loss injuries has been shown to contribute to
reducing the number of muscle satellite cells that are needed for
muscle cell regeneration, which was also attenuated by the JAK/
STAK signaling pathway46. NETs also play a very special role in the
damage of neutrophils to skeletal muscle. It is generally believed
that NETs can reverse inflammation by degrading cytokines and
chemokines and hinder the excessive recruitment of inflammatory
cells47. However, excessive NETs can lead to tissue injury. In the
presence of NETs, MMPs are released through the MAPK signaling
pathway, thus leading to skeletal muscle reinjury48. MPO and NE
promote the prolongation of inflammatory reactions, lead to
oxidative stress, and delay the repair of skeletal muscle injury17

(Fig. 2).

SKELETAL MUSCLE INJURY TO HO
HO requires inducible bone stem or progenitor cells and an
ectopic environment conducive to osteogenesis49. Burns and
mechanical injuries are major contributors to trauma-induced
skeletal muscle damage and may further cause tHO50. During
skeletal muscle injury, the first recruited immune cells are T-helper
cells and neutrophils, after which macrophages dominate infiltra-
tion after approximately 24 h51,52. Neutrophils secrete TNF-α, IL-1β,
and IL-1α, thus creating an inflammatory microenvironment53–56.
This represents the initial phase of muscle repair, followed by two
subsequent phases of muscle regeneration and fibrosis, with
muscle repair being a delicate equilibrium between muscle
regeneration and fibrosis. Nevertheless, the overactivation of
neutrophils may heighten the probability of scarring or fibrosis by
aggravating muscle damage, which is the primary factor
contributing to the gradual decline in muscle functionality and
the occurrence of HO57–59. Thus, the appropriate presence and
activation of neutrophils are crucial for the management of
muscle injury and HO.
Neutrophil-derived TGF-β and BMP signaling drive osteogenic

differentiation. TGF-β signaling regulates scleraxis expression in
skeletal muscle fibroblasts, thereby facilitating proliferation and
collagen type-I synthesis, both of which are critical for effective
tissue repair60. Furthermore, BMP signaling leads to the differ-
entiation of MSCs toward the osteogenic lineage61. This
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mechanism is a potential method of triggering tHO in vivo,
particularly when neutrophils are overactivated and release BMP
in conjunction with TGF-β. Furthermore, TGF-β can bind to
Smad2/3, which is activated to regulate inflammation when ActA
is combined with BMP receptors, thus suggesting that BMP
associates with TGF-β to induce strong tHO62,63. Smad1/5/8 can be
phosphorylated and translocated to the nucleus in the presence of
BMP-2 signaling alone in C2C12 cells, where it converts C2C12
cells to osteoblasts61. Interestingly, TGF-β inhibits HO by reducing
the nuclear translocation of the downstream protein Smad1/5/8
and preventing activation of the Wnt pathway64. Janna et al. used
metabolic profiling to demonstrate that itaconate, which is
produced by mature neutrophils at injury sites, is a metabolite
that is differentially abundant between HO and non-HO in burn/
tenotomy models of the Achilles tendon65. These mature
neutrophils contribute to prolonged inflammation by secreting
the cytokines CCL2 and IL-1β. Moreover, itaconate-producing
neutrophils return to the bone marrow for degradation by
macrophages and turnover of hematopoiesis to the myeloid
lineage.
Trauma can also lead to a local and systemic inflammatory state

with elevated inflammatory cytokines, such as TNFα, IL-1β, and IL-666.
The persistence of the inflammatory microenvironment is a
significant alteration in the development of HO, thus allowing for
neutrophils and macrophages to be overactivated and further
leading to abnormal osteogenic differentiation of MSCs by affecting
the balance of bone formation and resorption through the NF-κB
signaling pathway, thereby promoting HO66,67.
Overactivation of neutrophils causes a traumatic site to develop

into a hypoxic environment68,69. Additionally, neutrophils upregu-

late the transcription factor SOX-9, thereby promoting chondrocyte
differentiation70,71. Consequently, chondrocytes undergo excessive
proliferation and initiate the formation of a cartilage matrix, thus
ultimately leading to the occurrence of HO72–74. Furthermore,
hypoxia-inducible factor (HIF) serves as a regulator of BMP-2-
induced endochondral osteogenesis in fetal limb culture75.
Significantly, the synergistic relationship between HIF and VEGF
amplifies the expression of endothelial osteogenic growth factors,
thereby facilitating osteoblast differentiation but also attracting
bone-forming stem cells to the injured tissue72 (Fig. 3).
As shown above, during the repair process of trauma-induced

skeletal muscle injury, complex interactions among inflammatory
cells, neutrophils, macrophages, and a hypoxic environment are
the main causes of tHO. Importantly, compared with those in the
blood circulation or bone marrow, neutrophils at the site of HO
strongly express inflammatory cytokines to prolong local inflam-
mation and support abnormal cell differentiation. This finding
implies that there are local factors at the injury site that mediate
the differences in neutrophils. Moreover, macrophages are
extremely versatile cells, and the function of these cells mainly
depends on the local environment. HO site neutrophils homed to
the bone marrow and promoted the myeloid differentiation of
bone marrow stem cells. Locally present neutrophils alter the
phenotype of subsequently recruited macrophages, thus making
them a major contributor to subsequent HO progression.
Although macrophages and neutrophils are capable of producing
cytokines, the mechanism of how they are abnormally activated
by trauma and how they produce sufficient amounts of cytokines
(such as BMP and TGF-β) to cause tHO in vivo remain open
questions.

Fig. 1 Role of neutrophils in skeletal muscle repair. Neutrophils are mobilized by complement to migrate toward injured skeletal muscle
tissue to eliminate LPS and muscle debris at the injury site. Following their recruitment, neutrophils release TNF-α, IFN-γ, and NETs to affect
damaged skeletal muscle. In the repair phase, neutrophils can enhance the renewal and proliferation of satellite cells through the STAT
signaling pathway, thereby contributing to the regeneration of damaged muscle tissue. Moreover, neutrophils release VEGF, MMP-9, and IL-37
to promote angiogenesis to provide nutrients that are necessary for tissue regeneration. After neutrophil apoptosis, macrophages engulf
apoptotic remnants, thus triggering the secretion of TGF-β and IL-10, which act on skeletal muscle to restore normal contraction and
relaxation.
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MOLECULAR MECHANISM OF NEUTROPHILS IN THO
tHO requires three osteogenic conditions: osteogenic signal
induction factors, osteogenic precursor cells, and an appropriate
local microenvironment76,77. BMP signaling is one of the most
common osteogenic signaling pathways for HO-forming

progenitor cells78. Neutrophils significantly regulate major osteo-
genic markers, such as BMP 2-5, TGF-β2, RUNX2, and extracellular
matrix (ECM) proteins79. Moreover, neutrophils activate MSCs and
cause osteogenic differentiation accompanied by increased levels
of IL-1α and TGF-β80. The neutrophil-mediated inflammatory

Fig. 3 Progression of skeletal muscle injury to heterotopic ossification. Following skeletal muscle injury, the infiltration of neutrophils and
macrophages results in a localized inflammatory and hypoxic microenvironment. These neutrophils and macrophages consistently release
cytokines, including TNF-α, TGF-β1, and BMP, which facilitate the differentiation of MSCs and OPCs (markers) into osteoblasts and
chondrocytes by upregulating SOX-9, SMAD2/3, Runx2, and other factors. This process culminates in the development of ectopic ossification.

Fig. 2 Role of neutrophils in skeletal muscle injury. Following skeletal muscle injury, neutrophils release ROS, NETs, TGF-β, IL-17, and
proteases through complement recruitment to the injured site. However, the overactivation of neutrophils can result in continuous infiltration
of neutrophils and the formation of NETs at the injured site. Collagen deposition and impaired regeneration of satellite cells occur through the
release of IL-17, TGF-β, MPO, NE, and JAK/STAT signals. Furthermore, the excessive release of ROS and activation of NF-κB in neutrophils can
directly damage the vascular endothelium in muscle tissue, thus hindering muscle repair and regeneration and eventually causing muscle
atrophy.
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response enhances the chondrocyte differentiation of MSCs81. Cai
et al. demonstrated that neutrophils are initially recruited
following IL-8 implantation and transition to the N2 type82.
Subsequently, N2-neutrophil-derived stromal cell-derived factor-
1α (SDF-1a) migrates through the SDF-1/CXCR4 axis, thus leading
to PI3K/Akt- and β-catenin-mediated migration of bone MSCs for
neutrophil-initiated ossification. The depletion of neutrophils can
hinder the recruitment of all bone MSCs. N2-neutrophils also play
a role in inducing an anti-inflammatory phenotypic transformation
in macrophages. Through single-cell RNA-seq, Nunez et al.
ascertained that NETs were not present in the bone marrow or
blood subsequent to injury but were rather manifested solely at
the site of musculoskeletal injury11. Beginning on Day 3, the
formation of NETs at the musculoskeletal injury site was notably
greater in the HO model group than in the normal repair group on
Day 7 following burn and skin incision injury. Furthermore, this
localized NET formation corresponded with an elevated level of
neutrophil-TLR signaling at the injury site11.
Vascular smooth muscle cells and pericellular nerve growth

factor (NGF), which mediate tropomyosin receptor kinase A
(TrkA)+ nerve intrusion into soft tissue trauma sites, are key
features in the pathogenesis of tHO83–85. After a tendon injury,
neurogenesis occurs near NGF+ tendon cells, and the destruction
of sensory innervation or inhibition of NGF-TrkA signaling leads to
an imbalance of inflammatory and TGF-β signaling in injured
mouse tendons, thus limiting tendon repair86. NGF-p75 signaling
is also activated after skull injury, and NGF-p75 recruits resident
mesenchymal osteogenic precursors for migration to damaged
tissue87. However, the overexcitability of NGF-TrkA signaling leads
to the excessive innervation of nerves at the injured site, thus
resulting in the active expression of cartilage antigens in the
injured tendon and the transformation of FGF to TGF-β signaling,
which promotes the progression of ectopic bone84,85. Neutrophils
can produce NGF and are involved in nerve regeneration.
Neutrophils can be used for neuroprotection and axon generation
through NGF and IGF-1 signaling, thus suggesting that neutrophils

can promote HO progression through NGF signaling88,89. It is
possible that in the early stages of injury, NGF+ neutrophils are
recruited for neuroprotection. However, tissue injury triggers
smooth muscle cells to release abnormal NGF signals into the local
inflammatory microenvironment, which recruits TrkA+ neutrophils
to promote neutrophil trapping and the promotion of the
progression of HO84.
Neutrophils are also able to influence osteoblasts and

osteoclasts through Il-1β, Il-6, IFN-γ, and TNF-α90. Furthermore,
the presence of neutrophils eliminates pathogenic microorgan-
isms in a timely manner, thus potentially creating conditions
conducive to HO. Davisbk et al. demonstrated that macrophages
stimulated by LPS are more prone to convert to M1 macrophages
through the IRF/STAT signaling pathway, which has the potential
to become osteoclasts91. However, overactivated neutrophils
convert macrophages to M2 macrophages, which triggers
osteogenesis via MSCs82,91.
The mechanisms by which neutrophils interact with other cells

in the microenvironment, such as osteoblasts and osteoclasts, are
necessary to elicit HO and still require further investigation.
Additionally, when considering the limited lifespan of neutrophils,
the development of in vitro models and enhanced culture
methods for studying neutrophils may contribute to a more
comprehensive understanding of their involvement in the
formation of HO (Fig. 4).

TARGETING NEUTROPHILS IN SKELETAL MUSCLE INJURY AND
HO THERAPIES
Due to the critical and complex roles of neutrophils in skeletal
muscle injury and repair in HO, we need to distinguish between
secondary responses and potentially deleterious side effects. A
better understanding of the roles of neutrophils may help us to
consider them as promising therapeutic targets (Fig. 5).
Cyclic compressive loading within a specific range of forces

directs the rapid clearance of neutrophils to improve muscle

Fig. 4 Role of neutrophils in heterotopic ossification. The overactivation of neutrophils can contribute to the occurrence of HO. Neutrophils
interact with MSCs via an IL-Lα, IL-8, and TNF-α loop and release SDF-1α to stimulate the chondrocyte differentiation of MSCs through the
CXCR4-PI3K/Akt/β-catenin pathway. Overactivation of neutrophils also leads to significant local infiltration of NETs, which promotes
TLR9 signaling and directly facilitates the formation of HO. Furthermore, neutrophils directly eliminate LPS, thereby creating an environment
conducive to the shift of macrophages from the M1 to the M2 osteogenic phenotype, which subsequently enhances the development of HO.
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regeneration92. Another promising route for combating the
inflammatory response caused by muscle injury is to transplant
umbilical cord MSCs (UMSCs). Studies have shown that UMSCs can
attenuate neutrophil-derived acute inflammation by ameliorating
early-onset neutrophil infiltration and activation, thereby mitigat-
ing the extent of inflammation53. Some drugs have also been
found to be effective in the treatment of muscle injury. A hydrogel
system consisting of CD146, IGF-1, collagen I/III, and poloxamer
407 (termed CIC gel), which secretes CD146 to effectively promote
efferocytosis and neutrophil adhesion, could be a promising tool
for impeding muscle inflammation93. Similarly, a neutrophil-
mediated delivery system loaded with liposomes was discovered
to have the potential to deliver anti-inflammatory drugs such94 as
methotrexate (a potent immunosuppressive agent used to treat
inflammation) without impairing neutrophil viability and chemo-
taxis, through which neutrophils can retain their ability to rapidly
migrate to inflamed tissue and subsequently release drug-loaded
liposomes, thus causing the intended anti-inflammatory effect94.
Nunez demonstrated that reducing the overall neutrophil
abundance at the injury site also mitigated HO formation, whether
through pharmacological treatment with hydroxychloroquine
(HCQ), treatment with the TLR9 inhibitor OPN-2088, or mechanical
treatment with limb unloading11. Several studies have demon-
strated the ability of batroxobin to abrogate neutrophil extra-
cellular traps, which may be used to suppress inflammation and
expedite myoblast regeneration95. However, the mechanism by
which neutrophils function in skeletal muscle injury leading to HO
remains largely unknown, and more research is needed to fill in
the knowledge gaps for neutrophils to be viable targets.

CONCLUSION AND FUTURE PERSPECTIVE
Neutrophils are the initial immune cells recruited at the site of
skeletal muscle injury. They eliminate skeletal muscle debris and
microorganisms through the release of inflammatory factors,
protein hydrolases, and NETs. Following anti-infection measures,
NETs facilitate the resolution of inflammation by degrading
cytokines and chemokines, thus impeding the excessive

recruitment of inflammatory cells. Neutrophils can generate VEGF
and MMP-9 to promote tissue repair. Additionally, apoptotic
neutrophils can stimulate macrophages, thus leading to the
release of TGF-β and IL-10, thereby facilitating the remodeling of
the extracellular matrix in skeletal muscle and aiding in the
restoration of normal contractile and diastolic functions. However,
neutrophil overactivation and the persistence of NETs can result in
prolonged inflammation, which ultimately impairs the function-
ality of satellite cells and limits the overall repair process. Skeletal
muscle injury is a prominent contributor to tHO. Neutrophil
overactivation and the resulting immunological disturbances
associated with skeletal muscle injury can significantly stimulate
the production of NETs, as well as the activation of the TGF-β1 and
BMP signaling pathways in local tissue. This dysfunctional
inflammatory microenvironment serves as a catalyst for the
osteogenic differentiation of various stem cells, including MSCs.
Neutrophils can exert systemic effects on osteoblasts and
osteoclasts through a systemic inflammatory response. Moreover,
neutrophils also contribute to HO progression by affecting NGF
signaling and myeloid hematopoietic bias. However, it is
important to note that neutrophils play dual roles in the early
stages of muscle injury, either by promoting muscle repair or
contributing to the development of HO. In view of the great
heterogeneity of circulating neutrophils and neutrophils at the site
of HO, the local upstream signaling mediating this heterogeneity
is worthy of investigation. In conclusion, neutrophils themselves
may play a considerable role in the initiation and progression of
HO, and it is likely that they are also capable of regulating the role
of other cells and neural signaling. To date, studies of neutrophils
in HO are still scarce, and the mechanisms underlying their
interaction with other cells and secreted cytokines still need to be
elucidated. For example, the mechanisms by which neutrophils
are overactivated in the injured microenvironment and how NETs
are specifically localized at the injury site remain unknown and
need to be discussed in the future. This cell interaction may occur
as early as in the bone marrow and is of great concern. In
summary, neutrophils potentially exert a significant influence on
the onset and progression of HO, and they may also possess the

Fig. 5 Targeting neutrophils to skeletal muscle injury and heterotopic ossification. The treatment of skeletal muscle injury and HO is
achieved by targeting neutrophils and the resulting NETs in the injured microenvironment. Through targeted reduction of neutrophil
chemokines, the transplantation of umbilical cord MSCs (UMSCs) and mechanical loading can reduce the number of damaged neutrophils to
reduce muscle injury. Moreover, by reducing the adhesion of neutrophils, a hydrogel known as CIC can be used to control injury-induced
inflammation. In addition, batroxobin, hydroxychloroquine (HCQ), and the TLR9 inhibitor OPN-2088 can inhibit HO by clearing NETs.
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ability to modulate the functions of other immune cells. Currently,
investigations pertaining to neutrophils in the context of HO are
limited, and further elucidation is required regarding their
interactions with other cells and the cytokines that they secrete,
as well as for expanding the study to the whole body rather than
just the injured site. Moreover, given the transient lifespan of
neutrophils, enhancing in vitro models and culture techniques for
these cells would positively contribute to a more comprehensive
understanding of their role in HO.
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