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Intervertebral disc degeneration (IDD) is a common degenerative musculoskeletal disorder and is recognized as a major contributor
to discogenic lower back pain. However, the molecular mechanisms underlying IDD remain unclear, and therapeutic strategies for
IDD are currently limited. Oxidative stress plays pivotal roles in the pathogenesis and progression of many age-related diseases in
humans, including IDD. Nuclear factor E2-related factor 2 (Nrf2) is a master antioxidant transcription factor that protects cells
against oxidative stress damage. Nrf2 is negatively modulated by Kelch-like ECH-associated protein 1 (Keap1) and exerts important
effects on IDD progression. Accumulating evidence has revealed that Nrf2 can facilitate the transcription of downstream
antioxidant genes in disc cells by binding to antioxidant response elements (AREs) in promoter regions, including heme oxygenase-
1 (HO-1), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and NADPH quinone dehydrogenase 1 (NQO1). The Nrf2
antioxidant defense system regulates cell apoptosis, senescence, extracellular matrix (ECM) metabolism, the inflammatory response
of the nucleus pulposus (NP), and calcification of the cartilaginous endplates (EP) in IDD. In this review, we aim to discuss the
current knowledge on the roles of Nrf2 in IDD systematically.
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INTRODUCTION
Lower back pain (LBP) has become a profoundly debilitating and
increasingly prevalent disorder, causing a heavy socioeconomic
burden worldwide1. The leading cause of LBP is intervertebral disc
degeneration (IDD)2. However, the pathogenesis of IDD is
associated with multiple complex factors, including genetic,
epigenetic, and environmental factors, and the knowledge about
the molecular mechanisms underlying IDD remains elusive3,4. The
clinical treatments for IDD are limited to surgery, pharmacological
or other nonpharmacological interventions to relieve the symp-
toms, and more effective therapeutic strategies to address the
underlying pathology are needed for this degenerative spine
disorder5. Therefore, a better understanding of the molecular
signaling involved in IDD has been a research focus, which may
help to develop novel therapeutic targets for the successful
treatment of IDD6–9.
Redox homeostasis is crucial for the physiological maintenance

of many cellular processes, and dysregulation of redox home-
ostasis is closely associated with various pathological conditions
affecting human health10. Oxidative stress is described as the
disruption of redox homeostasis, which occurs when the balance
between reactive oxygen species (ROS) production and the
scavenging activity of the antioxidant system becomes dysregu-
lated11. Excessive accumulation of ROS induces oxidative stress,
which can cause damage to biological macromolecules such as
carbohydrates, lipids, nucleic acids, and proteins, impairing the
regular functional integrity of cells in the body12. Accumulating
evidence has revealed the roles played by oxidative stress in the

pathogenesis of various human diseases, especially age-related
disorders such as degenerative musculoskeletal diseases13–15.
Degenerated disks exhibit oxidative stress as well as increased
oxidation product levels, contributing to the development of
IDD16. Importantly, mounting evidence has revealed that therapies
targeting oxidative stress might effectively alleviate or prevent
IDD progression17.
Nuclear factor E2-related factor 2 (Nrf2) is a master endogenous

antioxidant transcription factor that has been increasingly
reported to play crucial roles in protecting cells against oxidative
stress18. Physiologically, Nrf2 is critical for the expression of
antioxidative genes, cytoprotective enzymes, and export trans-
porters, which constitute an antioxidant defense system that
maintains intracellular redox homeostasis19. The activation of
Nrf2 signaling is negatively regulated by Kelch-like ECH-associated
protein 1 (Keap1), which functions as a redox sensor for ROS and
electrophiles20,21. Under resting conditions, the activity of Nrf2 is
tightly controlled by Keap1, which mediates ubiquitination-
dependent proteasomal degradation of Nrf2 in the cytoplasm. In
the presence of oxidative stress, Keap1 undergoes a conforma-
tional change and releases Nrf2, which moves to the nucleus,
resulting in the initiation of the transcription of multiple
antioxidant genes22,23. Nrf2 signaling is considered a central hub
that modulates redox homeostasis in cells, and aberrant Keap1-
Nrf2 signaling is functionally involved in the pathology of many
diseases24–26. Interestingly, increasing evidence has revealed the
crucial roles played by the Nrf2 signaling pathway in protecting
against IDD progression27–29. To our knowledge, no systematic
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review has yet summarized the involvement of Nrf2 in disc
degeneration diseases. Therefore, in this review, we synthesize
and evaluate the results from the available literature and
comprehensively discuss the roles of the Nrf2 antioxidant defense
system in IDD.

PATHOPHYSIOLOGY OF IDD AND OXIDATIVE STRESS
Situated between the vertebral bones, each intervertebral disc
(IVD) is made of fibro-cartilaginous tissues and is one of the most
important structures of the spine. The IVD can distribute the axial
compressive load transmitted from the vertebral bodies and
enables physiological lateral and rotational flexibility of the
spine30. Anatomically, the disc consists of three major parts: the
hydrated gel-like nucleus pulposus (NP) in the center, elastic
annulus fibrosus (AF) surrounding the NP, and cartilaginous
endplates (EP) on the inferior and superior sides31. Oxidative
stress, compressive overload, nutrient stress, enhanced inflamma-
tion, and other factors can act on these parts and stimulate
aberrant cellular responses and progressive structural deficiency,
leading to disc degeneration32. IDD is characterized by a loss of
centrally situated NP cells, which are replaced with cells with a
fibroblast-like phenotype33. Another typical pathological change
in disc degeneration is accelerated extracellular matrix (ECM)
degradation, such as decreased deposition of type II collagen (Col
II) and aggrecan, which is caused by imbalanced anabolism and
catabolism34. Additionally, cellular senescence and programmed
cell death induced by inflammatory responses or other factors in
the disc significantly contribute to the pathological changes
during the complicated process of IDD9.
Oxidative stress is a critical mediator in the initiation and

progression of IDD. Oxidative stress occurs when the balance
between ROS production and the scavenging activity of the
antioxidant defense system is disrupted11. Excessive ROS accu-
mulation can induce oxidative stress, which causes damage to the
integrity and regular function of cells35. Accumulating evidence
has suggested that oxidative stress exerts significant effects on
cell fate and function and is closely related to cell viability,
senescence, programmed cell death, matrix metabolism, and
signaling network transduction of disc cells within the IVD27,36–38.

Previous studies have reported that aged and degenerated disks
exhibit decreased antioxidant activity and elevated concentrations
of oxidation products during IDD development16,17. Excessive ROS
accumulation and dysfunction of the antioxidant defense system
induce cell apoptosis and senescence and trigger inflammatory
responses in disc NP cells, accelerating IDD progression39 (Fig. 1).
Redox homeostasis in the disc also plays a crucial role in the ECM
anabolism and catabolism balance, and oxidative stress has been
found to promote ECM degradation by interacting with various
important signaling pathways in NP cells, including NF-κB
signaling, p38/MAPK signaling, and the Nrf2/ARE signaling path-
way17,40,41. Moreover, the annulus fibrosus is a crucial part of the
IVD, and oxidative stress is involved in the cell senescence,
apoptosis, and ferroptosis of disc AF cells in the pathogenesis of
IDD37,42–44. Disc EP degeneration is another critical contributor to
IDD initiation because it hinders the nutrient supply to the NP and
leads to disrupted disc homeostasis. It has been demonstrated
that oxidative stress can induce autophagy, apoptosis, and
calcification of endplate chondrocytes to modulate the EP
degeneration process38,45–47. Therefore, elucidating the key
molecular mechanisms of oxidative stress in the disc might lead
to effective therapeutic strategies for IDD.

NRF2 MEDIATED ANTIOXIDANT DEFENSE IN IDD
Nuclear factor E2-related factor 2 (Nrf2), also known as nuclear
factor erythroid 2-like 2 (NFE2L2), is a master antioxidant
transcription factor encoded by the NFE2L2 gene in humans18.
The Nrf2 protein is composed of approximately 605 amino acid
residues and possesses seven highly conserved domains, namely,
Neh1 to Neh7. Specifically, the Neh2 domain in Nrf2 participates in
binding with the Keap1 homodimer and the degradation of
Nrf248. The Neh2 domain contains two conserved motifs, DLG and
ETGE, with an intervening sequence possessing seven lysine
residues that can be ubiquitinated. DLG and ETGE are both
associated with the interaction between Nrf2 and Keap1 homo-
dimer. Physiologically, the activation of Nrf2 is regulated by Keap1,
which functions as a cysteine-rich oxidative stress sensor. Keap1 is
a substrate adaptor protein for the Cullin3 (Cul3)-containing E3
ubiquitin (Ub) ligase complex and is a cytosolic protein that

Fig. 1 The effects of oxidative stress on disc cells during IDD pathogenesis. Excessive ROS accumulation exerts important effects on the
three major types of IVD cells. Oxidative stress induces autophagy, apoptosis, and calcification of EP chondrocytes, while autophagy can act as
a protective response to oxidative damage. Oxidative stress promotes cell apoptosis, senescence, ECM degradation, and inflammation
response of disc NP cells. Oxidative stress induces cellular senescence, apoptosis, and ferroptosis in disc AF cells.
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negatively modulates Nrf2 activity49. Structurally, the Keap1
peptide is composed of 624 amino acid residues and possesses
five functional regions, namely, the N-terminal region (NTR),
intervening region (IVR), Broad complex Tramtrack and Bric-a-Brac
(BTB) domain, double glycine repeat (DGR) domain and C-terminal
region (CTR). The BTB domain is associated with the formation of
the Keap1 homodimer, and the DGR and CTR domains (collec-
tively known as the DC region) are involved in the interaction of
Keap1 with Nrf250. The ubiquitin-proteasome system (UPS) is
responsible for protein quality control and degradation and plays
key roles in the maintenance of intracellular protein home-
ostasis51. Under unstressed conditions, Keap1 can bind to Nrf2
and target Nrf2 for ubiquitination and subsequent degradation by
the proteasome. However, when ROS levels in cells are increased,
the cysteine residues of Keap1 are covalently modified, and Keap1
undergoes a conformational change, resulting in blocked ubiqui-
tination of Nrf2 and accumulation of newly synthesized Nrf252.
Then, Nrf2 is released into the nucleus, where it forms a
heterodimer with small musculoaponeurotic fibrosarcoma (Maf)
proteins53. Subsequently, Nrf2-Maf binds to the antioxidant
response element (ARE) in DNA to promote the transcription of
multiple downstream antioxidant genes, including heme
oxygenase-1 (HO-1), glutathione (GSH), superoxide dismutase
(SOD), catalase (CAT), and NADPH quinone dehydrogenase 1
(NQO1)48.
IDD is one of the most common age-related degenerative

musculoskeletal disorders. As mentioned above, the pathogen-
esis of IDD is closely associated with oxidative stress. Nrf2 is a
crucial transcription factor that can modulate the cellular
oxidative stress response. An increasing number of studies
have revealed the important roles played by the Nrf2
antioxidant defense system in preventing IDD progression.

Multiple antioxidants, including ulinastatin, dimethyl fumarate,
and cyanidin-3-glucoside, have been reported to alleviate
oxidative stress in disc NP cells by promoting the activity of
the Nrf2-mediated HO-1 signaling pathway54–57. Dimethyl
fumarate has also been demonstrated to activate Nrf2 to
promote the production of GSH in NP cells, which is one of the
most important ROS scavengers55. Another study reported that
Nrf2/HO-1 signaling activated by moracin dramatically pro-
moted the expression levels of SOD and CAT in NP cells induced
by LPS challenge58. Acacetin and wogonin were also reported
to activate the Nrf2 pathway to upregulate the expression of
important antioxidant proteins, including HO-1, SOD, and
NQO1, to ameliorate IDD progression59,60. Interestingly, it has
been reported that activating autophagy promoted
Nrf2 signaling to upregulate the expression of antioxidant
proteins, including SOD1 and SOD2, and thus protect cartilage
endplate stem cells against calcification and ECM degradation
during IDD61. In summary, activating Nrf2 signaling facilitated
the transcription of downstream antioxidant genes, including
HO-1, GSH, SOD, CAT, and NQO1, to defend against oxidative
stress in disc cells. The molecular mechanism of the Nrf2
antioxidant pathway is indicated in Fig. 2.

THERAPEUTIC POTENTIAL OF TARGETING NRF2 SIGNALING IN
IDD TREATMENT
Targeting Nrf2 to alleviate apoptosis of NP cells
The highly hydrated NP is the structural and functional center
of a disc. Dysregulated NP cell apoptosis causes damage to the
normal metabolism in the NP, which disrupts the normal
structure and physiological function of the disc and is
considered a key contributor to IDD pathogenesis. It has been

Fig. 2 Nrf2 mediates antioxidant defense in IDD. In unstressed conditions, Keap1 binds to the Cul3-containing E3 ubiquitin ligase complex,
and two molecules of Keap1 form a homomeric dimer. The Keap1 complex binds to Nrf2 for the ubiquitination and subsequent degradation
of Nrf2 by the proteasome. Under conditions of oxidative stress, Keap1 undergoes a conformational change, which leads to blocked
ubiquitination of Nrf2 and accumulation of newly synthesized Nrf2. Subsequently, free Nrf2 is translocated to the nucleus, where it forms a
heterodimer with small Maf proteins. Then, Nrf2-Maf interacts with the ARE in the promoter regions of DNA to promote the transcription of
multiple targeted antioxidant genes, including HO-1, GSH, SOD, CAT, and NQO1. Activating Nrf2 signaling protects against oxidative stress in
disc cells to alleviate IDD.
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demonstrated that the apoptosis ratio of NP cells is more than
50% in human degenerative disks, and preventing or alleviating
apoptosis of NP cells is a potential effective therapy to treat disc
degeneration32,62. Accumulating evidence has reported anti-
apoptotic roles played by Nrf2 activation in various types of
human cells63–65. Unexpectedly, targeting Nrf2 signaling regu-
lated the apoptosis of NP cells during IDD progression. Long
noncoding RNAs (lncRNAs) constitute a common and diverse
class of noncoding RNAs (ncRNAs) without protein-coding
capacity66. Recently, Kang et al.27 reported that lncRNA
ANPODRT activated Nrf2 signaling to inhibit oxidative stress
and apoptosis in human NP cells. Mechanistically, the lncRNA
ANPODRT facilitated Nrf2 accumulation and nuclear transloca-
tion to activate downstream target genes by disrupting the
Keap1-Nrf2 interaction. Moreover, Nrf2 knockdown obliterated
the antioxidative and antiapoptotic effects of the lncRNA
ANPODRT, indicating that Nrf2 activation is required for the
lncRNA ANPODRT to exert protective effects on NP cells.
MicroRNAs (miRNAs) comprise another important and large
class of short-chain noncoding RNAs that regulate downstream
genes by targeting the 3’ untranslated region (3’UTR) post-
transcriptionally. A study by Xu et al.67 revealed that a miRNA
termed miR-141-3p, which was enriched in platelet-rich plasma
(PRP)-derived exosomes, activated Keap1-Nrf2 signaling to
reverse the cell apoptosis, pyroptosis, and inflammatory
response of NP cells stimulated by H2O2. Mechanistically, miR-
141-3p interacted with the 3’UTR of Keap1 mRNA to induce its
degradation, thus leading to Nrf2 translocation to the nucleus.
More recently, Hu et al.28 reported the critical roles played

the Nrf2 agonist tert-butylhydroquinone (TBHQ) in retarding NP
cell apoptosis. The results showed that TBHQ rescued TBHP-
induced apoptosis and oxidative stress by promoting Nrf2
expression and translocation to the nucleus. Mechanistically,
TBHQ resisted oxidative stress by inducing Nrf2 activity and
increasing the Sirt3 expression level to maintain mitochondrial
homeostasis and enhance mitochondrial autophagy. Further-
more, the authors validated the therapeutic function and
mechanism of TBHQ in a rat tail disc degeneration model
in vivo. Mitoquinone (MitoQ) is a known mitochondria‐targeted
antioxidant that has shown protective effects in various
oxidative damage‐related diseases68. It has been suggested
that MitoQ alleviates sustained mitochondrial dysfunction,
oxidative stress, and apoptosis of NP cells by stimulating the
Nrf2 antioxidant pathway in vitro and ex vivo69. Luo et al.54

found that an anti-inflammatory acidic protein extracted from
human urine, ulinastatin, ameliorated the apoptosis of human
NP cells by activating the Nrf-2/HO-1 signaling pathway and
suppressing the NF-κB signaling pathway. Treatment with
ulinastatin reversed the expression of the apoptosis-related
proteins Bax and cleaved-caspase 3 and the antiapoptosis
molecule Bcl-2. Moreover, increasing evidence has revealed
other crucial molecular agents that mitigate excessive apopto-
sis of NP cells by interacting with Nrf2 signaling; these agents
include sinapic acid70, plumbagin71, dimethyl fumarate55,
luteoloside72, CDDO-ethyl amide73, cyanidin-3-glucoside57, kin-
senoside74, lycopene75, and genistein76. Taken together, these
studies revealed that activating Nrf2 signaling is a promising
strategy to attenuate the apoptosis of NP cells and treat IDD.

Targeting Nrf2 to inhibit NP cell senescence
Numerous studies have reported that the impairment of NP cell
function caused by senescence is a crucial contributor to the
dehydration of NP tissue and, more importantly, to the
initiation and progression of disc degeneration7,77,78. Senescent
disc cells are metabolically active and can secrete various
inflammatory cytokines, chemokines and matrix proteases,
which collectively are known as the senescence-associated
secretory phenotype (SASP)79,80. These inflammatory factors

have been found to disrupt the balance between ECM
anabolism and catabolism during IDD. Moreover, the SASP of
senescent cells can induce senescence in neighboring non-
senescent cells by paracrine effects, which is referred to as
paracrine senescence or secondary senescence79,81. The
increase in inflammatory factor expression levels as a result of
senescence causes a vicious cycle of degeneration and leads to
further aggravation of IDD. Obviously, protecting disc NP cells
against senescence is conducive to the amelioration of IDD.
In 2019, Cherif et al.82 reported that curcumin and o-vanillin

exhibited significant senolytic activity in human degenerative disc
NP cells. Curcumin, diferuloylmethane, has wide therapeutic
benefits via its antioxidative and anti-inflammatory properties83,
and its main metabolite, o-vanillin (2-hydroxy-3-methoxybenzal-
dehyde), shows similar effects84. This research revealed that
curcumin and o-vanillin mediated senolytic effects via
Nrf2 signaling and decreased SASP factor secretion by suppressing
NF-κB pathway activation. A recent study by Shao et al.85

demonstrated that quercetin, a natural senolytic compound,
activated Nrf2 signaling to suppress SASP factor expression and
the senescence phenotype acquisition by NP cells. Mechanisti-
cally, quercetin suppressed IL-1β-induced activation of NF-κB
pathway cascades by directly binding to the Keap1-Nrf2 complex.
A previous work reported that kinsenoside activated the AKT-
ERK1/2-Nrf2 signaling pathway in NP cells to attenuate IDD both
in vitro and in vivo74. Kinsenoside is an active monomer extracted
from Anoectochilus roxburghii, a traditional Chinese medicinal herb
that exhibits diverse pharmacological actions. Importantly, kinse-
noside has been shown to protect NP cells from apoptosis,
senescence, and mitochondrial dysfunction in a Nrf2-dependent
manner. Polydatin is a resveratrol glucoside that exerts extensive
pharmacological antioxidative, anti‐inflammatory, and anti‐aging
properties86. It has been reported that polydatin rescued
mitochondrial dysfunction, suppressed senescence, and preserved
ECM homeostasis in nucleus pulposus cells to attenuate IDD
progression by promoting Nrf2 activity87. In summary, triggering
Nrf2 activation to inhibit NP cell senescence is a potential
therapeutic strategy for IDD.

Targeting Nrf2 to regulate ECM metabolism in NP cells
Physiologically, the ECM endows the IVD with elastic and weight-
bearing properties, allowing it to absorb compression loads while
maintaining flexibility in the spine88. The ECM is mainly composed
of proteoglycans (mainly aggrecan) and Col II in disc NP tissues89.
ECM metabolism is generally modulated by degradative enzymes,
including matrix metalloproteinases (MMPs) and aggrecanases,
and their inhibitors, tissue inhibitors of metalloproteinases
(TIMPs)90,91. Degenerative disks are biochemically characterized
by an imbalanced ECM metabolism of NP cells, implicating
attenuated anabolic activities and enhanced catabolic activities in
the disc. In this process, excessive degradation of aggrecan and
Col II leads to NP dehydration and resorption and a decline in the
ability of the cells to resist mechanical loading, thus contributing
to IDD progression92,93.
A recent study reported that lncRNA NEAT1 overexpression

accelerated the ECM degradation of NP cells, while the Nrf2
activator TBHQ partially reversed the effects of the lncRNA
NEAT1 on ECM metabolism41. These results suggested that the
lncRNA NEAT1 ameliorated ECM degradation of NP cells by
regulating Nrf2 signaling pathway activation. Dimethyl fuma-
rate is a known agonist of Nrf2-responsive genes and has been
applied in certain clinically degenerative diseases94. It has been
revealed that dimethyl fumarate helped maintain the ECM
metabolic balance of human NP cells, mainly by regulating the
Nrf2/HO-1 signaling pathway55. As mentioned above, the anti-
inflammatory acidic protein extracted from human urine,
ulinastatin, also protected human NP cells from ECM degrada-
tion by activating the Nrf-2/HO-1 signaling pathway and
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suppressing the NF-κB signaling pathway54. Treatment with
either curcumin or o-vanillin increased the proteoglycan and
type II collagen content and inhibited MMP3 and MMP13
expression in human disc cells. Further experiments suggested
that curcumin and o-vanillin promoted ECM synthesis in IVD,
which was mediated by the Nrf2 and NF-κB pathways82.
Furthermore, it has been reported that some other important
biologically active components also regulated ECM metabolism
in NP cells by targeting Nrf2 signaling; these compounds
included cardamonin95, sinapic acid70, luteoloside72, cyanidin-
3-glucoside57, moracin58, acacetin59, wogonin60, lycopene75,
genistein76, and polydatin87. Altogether, these results revealed
that targeting Nrf2 signaling to alleviate ECM degradation of NP
cells is a potential therapeutic strategy for IDD.

Targeting Nrf2 to regulate the inflammatory response in NP
cells
In the initiation and progression of IDD, inflammation is widely
acknowledged as a major characteristic feature96,97. Accumulating
evidence has demonstrated that excessive inflammatory
responses can significantly affect the normal function of NP cells
and thus contribute to IDD development4,32. Dysregulated
expression of proinflammatory cytokines such as interleukin (IL)-
1, IL-6, IL-17, and tumor necrosis factor (TNF)-α has been observed
in degenerated disc NP tissues and has been involved in the
inflammatory response during IDD98. These proinflammatory
cytokines also play critical roles in the pathophysiological
processes of IDD, including NP cell apoptosis, senescence, ECM
remodeling, neovascularization, and oxidative stress4,32,99. There-
fore, regulating the inflammatory microenvironment in NP cells is
essential for IDD treatment.
Nrf2 is widely involved in the modulation of the inflammatory

response in NP cells. As mentioned above, the study by Xu et al.67

revealed that exosomal miR-141-3p activated Keap1-Nrf2 signal-
ing to regulate the inflammatory response of NP cells stimulated
by H2O2. Mechanistically, miR-141-3p directly interacted with the
3′UTR of Keap1 mRNA, causing Keap1 degradation, resulting in
Nrf2 translocation to the nucleus, and thus inhibiting proinflam-
matory cytokine (IL-1β, IL-18, TGF-β, and IL-6) production and
secretion by NP cells. It has been reported that the anti-
inflammatory acidic protein extracted from human urine, ulinas-
tatin, also dramatically suppressed the expression levels of
proinflammatory mediators in human NP cells, including IL-6,
TNF-α, iNOS, and COX-2, by activating the Nrf-2/HO-1 signaling
pathway and suppressing the NF-κB signaling pathway54. Inter-
estingly, studies have shown that cardamonin95, sinapic acid70,
and plumbagin71 protected NP cells against inflammation by
modulating Nrf2/NF-κB axis activation. The known agonist for the
Nrf2-responsive gene dimethyl fumarate has been found to
ameliorate NP cell inflammation by promoting the activity of the
Nrf2/HO-1 signaling pathway in IDD55,56. Moreover, evidence has
suggested that some other biologically active components,
including moracin58, acacetin59, and wogonin60, regulated the
inflammatory response in NP cells by regulating the Nrf2 signaling
pathway. Collectively, these data revealed that targeting
Nrf2 signaling to regulate the inflammatory response in NP cells
may be a promising therapeutic strategy for IDD.

Targeting Nrf2 to alleviate degeneration and calcification of
EP
The human IVD has large vascular channels passing through the
cartilaginous endplates at birth. With increasing age, however,
these vessels recede, leaving the disc with little direct vascular
supply100. The IVD becomes the largest avascular organ of the
body in adulthood. The cartilaginous endplates that attach the
disc to the adjacent vertebral bodies provide the major portal for
the diffusion of nutrients into the disc inner tissues100,101.
Therefore, the integrity of the EP structure is of great significance

to the maintenance of homeostasis in the IVD. Histology and
pathology have revealed that cartilaginous endplate calcification
is a major pathological characteristic of disc degeneration100,102.
The degeneration and calcification of EP hinder the transport of
nutrients and metabolite clearance in IVD and thus impair the
survival and functions of disc cells, which is considered a crucial
initiating mechanism of IDD103.
Recently, Kang et al.45 revealed the critical roles of oxidative

stress and Nrf2 signaling in the cartilaginous endplate home-
ostasis of IVD. The authors found that H2O2 stimulated oxidative
stress, mitochondrial dysfunction, and cell apoptosis of human
endplate chondrocytes, which were enhanced by Nrf2 knock-
down. Moreover, upregulation of Nrf2 expression by polydatin
treatment significantly protected endplate chondrocytes
against these detrimental H2O2-induced effects. The study also
applied the puncture-induced rat IDD model to validate the
beneficial effects of Nrf2 activation on EP and disc degenera-
tion. Interestingly, another study reported that rapamycin, a
lipophilic macrolide antibiotic isolated from the actinomycete
Streptomyces hygroscopicus, activated autophagy-Nrf2 signaling
to protect cartilage endplate stem cells against calcification and
ECM degradation61. Tumor necrosis factor-α (TNF-α) treatment
induced oxidative stress, cell senescence and the osteogenic
differentiation of cartilage endplate stem cells. Mechanistically,
rapamycin-induced autophagy to upregulate antioxidant pro-
tein expression, scavenge ROS, alleviate cell senescence and
promote the chondrogenic differentiation potential of cartilage
endplate stem cells. Moreover, the function of rapamycin-
activated autophagy in inhibiting TNF-α-induced EP degenera-
tion was realized through the regulated expression and nuclear
translocation of Nrf2. Hence, targeting Nrf2 signaling to
alleviate degeneration and calcification of EP might be an
effective therapeutic means of IDD intervention. A list of the
functional mechanisms of Nrf2 activation and related signaling
pathways in IDD treatment is presented in Table 1.

CONCLUSIONS AND PERSPECTIVES
Oxidative stress has been demonstrated to play pivotal roles in
the initiation and progression of a plethora of age-related
diseases in humans. IDD is one of the most prevalent
degenerative musculoskeletal disorders, and its pathogenesis
is closely associated with oxidative stress. Nrf2 is a master
antioxidant transcription factor and protects cells against
oxidative stress damage, similar to its role in disc cells. As
mentioned above, certain noncoding RNAs, including lncRNAs
and miRNAs, and important antioxidants, such as bioactive
compounds and small molecules from natural products, can
activate Nrf2 signaling to alleviate IDD progression. Activating
Nrf2 helps maintain the structural and functional integrity of
IVD by inhibiting cell apoptosis, senescence, inflammation
response, and ECM degradation of NP cells and alleviating
degeneration and calcification of EP (Fig. 3). Therefore,
targeting the Nrf2 antioxidant defense system is an effective
therapeutic strategy for IDD. Although pharmacological Nrf2
activators have proven the benefits of defending against
oxidative stress to prevent IDD progression in vitro and
in vivo models, further investigations are needed to discover
the details of the underlying molecular mechanism. In addition,
mitochondria are intimately related to oxidative stress, as they
are the main sources of intracellular ROS. Whether and how
Nrf2 signaling regulates mitochondrial quality control in IDD
might be a difficult but interesting area to address in the future.
In addition, crosstalk between Nrf2 and important signaling
pathways or cellular protective mechanisms, such as autop-
hagy, is evident. Therefore, there remains a need for further
systematic studies to clarify the multiple connected and
intertwined mechanisms involved in IDD.
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