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Osteoarthritis (OA) is the most common form of arthritis. It is characterized by progressive destruction of articular cartilage and the
development of chronic pain and constitutes a considerable socioeconomic burden. Currently, pharmacological treatments mostly
aim to relieve the OA symptoms associated with inflammation and pain. However, with increasing understanding of OA pathology,
several potential therapeutic targets have been identified, enabling the development of disease-modifying OA drugs (DMOADs). By
targeting inflammatory cytokines, matrix-degrading enzymes, the Wnt pathway, and OA-associated pain, DMOADs successfully
modulate the degenerative changes in osteoarthritic cartilage. Moreover, regenerative approaches aim to counterbalance the loss
of cartilage matrix by stimulating chondrogenesis in endogenous stem cells and matrix anabolism in chondrocytes. Emerging
strategies include the development of senolytic drugs or RNA therapeutics to eliminate the cellular or molecular sources of factors
driving OA. This review describes the current developmental status of DMOADs and the corresponding results from preclinical and
clinical trials and discusses the potential of emerging therapeutic approaches to treat OA.
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INTRODUCTION
The key feature of osteoarthritis (OA) is the gradual loss of
articular cartilage. Other OA-related manifestations include
osteophyte formation at joint margins and bone remodeling that
accompanies bone marrow lesions and subchondral bone
sclerosis1–4. Synovial inflammation and meniscal damage are
common features of OA. All of these OA manifestations
collectively lead to the impairment of joint function and the
development of chronic pain, and OA is widely considered a
whole-joint disease5.
OA treatment has been largely limited to steroidal or

nonsteroidal anti‐inflammatory drugs that provide symptomatic
relief from pain and inflammation6. Next-generation OA treat-
ments, often referred to as disease-modifying OA drugs
(DMOADs), are under development and aim to modify the
underlying OA pathophysiology and alleviate the associated
structural damage to prevent long-term disability. Although
DMOADs are not yet available in the pharmaceutical market,
several clinical trials are ongoing7. One group of promising
DMOADs delays cartilage degeneration by targeting pro-
inflammatory cytokines, the proteolytic activities of catabolic
enzymes, and the Wnt pathway. Another group of drugs
stimulates the regenerative potential of cartilage to counteract
matrix loss in osteoarthritic cartilage. The emerging DMOAD
therapies under active investigation aim to eliminate senescent
chondrocytes or use RNA-based approaches to modulate OA-
inducing mechanisms.

DMOADS BASED ON THE MOLECULAR MECHANISMS
UNDERLYING OA PATHOGENESIS
Based on recent advances in our understanding of the mechan-
isms underlying OA pathogenesis, various DMOADs have been
developed. In particular, an imbalance between matrix anabolism
and catabolism contributes to osteoarthritic cartilage degenera-
tion4,8. The DMOADs that are currently in clinical trials aim to
restore the homeostasis of matrix metabolism.

Pro-inflammatory cytokines and matrix-degrading enzymes
Therapeutic strategies targeting pro-inflammatory cytokines,
matrix-degrading enzymes, or Wnt signaling have been devel-
oped to delay the catabolism of cartilage matrix in OA patients.

Targeting pro-inflammatory cytokines
Interleukin (IL)-1 and tumor necrosis factor (TNF) are the most
well-characterized pro-inflammatory cytokines and stimulate the
production of inflammatory mediators, such as prostaglandin E,
nitric oxide synthase, chemokines, and other cytokines, in the joint
microenvironment9–13. Furthermore, IL-1 and TNF directly pro-
mote the expression of matrix metalloproteinases (MMPs) and
other matrix-degrading enzymes involved in cartilage degenera-
tion9,10. Therefore, there have been rigorous attempts to treat OA
by inhibiting the IL-1 and TNF pathways (Fig. 1). However, the
results of clinical trials of therapeutic candidates that block these
pro-inflammatory cytokines have been rather unsatisfactory
despite the fact that these candidates effectively suppress the
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inflammatory phenotypes in chondrocytes in vitro14. Intra-articular
injection of anakinra, an IL-1 receptor antagonist that obstructs the
receptor binding of both IL-1α and IL-1β, into 160 individuals with
knee OA did not reduce OA-associated pain or cartilage turnover
during weeks 4–12 of administration in a random controlled trial
(NCT00110916, phase II clinical trial)15. Likewise, a randomized
double-blind controlled trial (NCT00110942, phase II clinical trial) of
AMG108, which is a monoclonal antibody against IL-1 receptor type
I that blocks the receptor binding of both IL-1α and IL-1β, did not
provide sufficient clinical benefits16. ABT-981 (a dual neutralizing
antibody against IL-1α and IL-1β) was tested in patients with hand17

or knee18 OA. Neither two phase II clinical trial (NCT02384538 and
NCT02087904) showed substantially improved outcomes, indicat-
ing that ABT-981 is ineffective in treating OA. In a clinical trial
involving 43 hand OA patients with random allocation to groups
administered adalimumab (TNF antibody) or placebo for 12 weeks,
no significant difference in hand pain was noted between the two
groups19. Similarly, in a trial of 90 patients with hand OA, etanercept
(a decoy receptor that binds to TNF) did not differ from placebo in
alleviating pain after 24 weeks of administration20.

Targeting matrix-degrading enzymes
MMPs are a family of zinc-dependent proteolytic enzymes that
degrade the components of the extracellular matrix21. Various
MMPs are upregulated in the degenerating cartilage of OA
patients22,23. Although some of the developed MMP inhibitors
have shown notable effects on preclinical OA models24–28, only a
few have entered clinical trials for patients with mild-to-moderate
knee OA (Fig. 1).
The clinical efficacy of PG-116800, a small-molecule inhibitor

with a high affinity for MMP-2, -3, -8, -9, -13, and -14, was tested in
401 patients with knee OA with random allocation to treatment
groups that also included a placebo group29. No statistically
significant difference in knee-joint space width or the Western
Ontario and McMaster Universities Osteoarthritis Index WOMAC
score was observed between the test and placebo groups.
Furthermore, some side effects, such as restricted joint motion
and arthralgia, were observed in the test group29. Although the
cause of these adverse effects remains unclear, MMP inhibitors
may broadly affect the matrix turnover in musculoskeletal tissues
other than cartilage30. Accordingly, these studies provide evidence
that broad-spectrum MMP inhibitors are unlikely to be suitable for
OA treatment due to their side effects.

MMP-13 has attracted the most attention as a promising
therapeutic target because it has the highest substrate specificity
against type II collagen, the most abundantly present collagen in
cartilage. Wang et al. examined the effect of CL82198, a specific
MMP-13 inhibitor, on inhibiting MMP-13 activity in a preclinical
model of OA24. In mice with surgically induced OA, different doses
of CL82198 or control saline was intraperitoneally injected daily
beginning 1 day after the surgery. OA progression was
significantly alleviated after CL82198 administration. No follow-
up clinical studies on this compound have been performed yet.
Recently, Baragi et al. developed the MMP-13 inhibitor ALS 1-0635
and evaluated its efficacy in an OA rat model31. The researchers
orally administered ALS 1-0635 to rats twice a day for 3 weeks and
found that ALS 1-0635 protected the cartilage from osteoarthritic
destruction. Of note, frequent administration of the relatively high
dose of 60 mg/kg ALS 1-0635 was effective, suggesting potential
shortcomings associated with the low substrate specificity of ALS
1-0635.
ADAMTS-4 and -5 are principal enzymes responsible for

cleaving aggrecan, the major proteoglycan in articular cartilage.
Knockout of Adamts5 but not Adamts4 in mice alleviated OA-
induced proteoglycan loss in cartilage, suggesting that ADAMTS-5
is the primary enzyme responsible for aggrecan cleavage32,33.
GLPG1972 is a highly selective, orally bioavailable small molecule
that inhibits ADAMTS-534 (Fig. 1). Two phase I studies
(NCT02851485 and NCT03311009) showed that GLPG1972 was
safe and well tolerated without any evident adverse events35,36.
The drug caused a decrease up to 53% decrease in the serum
levels of the aggrecan neo-epitope generated by ADAMTS-5
catalytic activities. Unfortunately, a recent phase II study
(NCT03595618) with 938 patients did not meet the primary
endpoint, pending detailed results to be reported37. Another
novel ADAMTS-5 inhibitor under development is nanobody
M6495. Nanobodies are single-domain monoclonal antibodies
whose antigen-binding sites are composed of one heavy chain;
thus nanobodies are markedly smaller in size than conventional
monoclonal antibodies38. M6495 is a bifunctional nanobody that
can bind to both ADAMTS-5 metalloproteinase/disintegrin
domains and human serum albumin (Fig. 1). The binding of
M6495 with albumin extends its half-life in vivo39. In a phase I
clinical trial (NCT03224702), M6495 was subcutaneously injected
into healthy male subjects and demonstrated an acceptable safety
and tolerability profile40. Another phase I study (NCT03583346)

Fig. 1 Pharmacological management of OA by blocking pro-inflammatory cytokines and matrix-degrading enzymes. IL-1 and TNF are the
major pro-inflammatory cytokines that stimulate the production of matrix-degrading enzymes and inflammatory mediators in joint tissues.
MMP and ADAMTS family members degrade the extracellular matrix components of cartilage, promoting osteoarthritic cartilage destruction.
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was conducted to validate the safety and efficacy profile in OA
patients. The results are expected to be announced in the near
future.
The cysteine cathepsin family is composed of eleven mem-

bers41,42. Cathepsins B, H, K, L, and S are the best-known members
of the cathepsin family and can degrade native collagens and
other components of the ECM43–45. In particular, increased
expression of cathepsin K has been observed in the degenerative
cartilage of human OA46,47. Multiple selective cathepsin K
inhibitors have been shown to be effective in treating OA in
animal models, ameliorating cartilage degeneration48,49 or joint
pain50,51. MIV-711, an orally administered small-molecule cathe-
psin K inhibitor, is in clinical development for OA treatment
(Fig. 1). In a phase I trial (NCT03443453) evaluating bioavailability,
MIV-711 was found to be safe and well tolerated in healthy
subjects52. MIV-711 did not meet the primary endpoint for the
Numeric Rating Scale (NRS) knee pain score in the phase II clinical
trial and its extension substudy (NCT02705625 and NCT03037489).
Nevertheless, MIV-711 has shown some beneficial effects in terms
of cartilage thickness, as assessed by radiological analysis, and OA-
associated pain measured according to WOMAC53–55, leaving
room to further improve the clinical efficacy of cathepsin K
inhibitors.

The Wnt pathway
The Wnt signaling pathway is transduced through a large family of
Wnt glycoproteins (19 genes in mammals)56. β-Catenin is one of
the important protein in canonical Wnt signaling, which regulates
the development and homeostasis of joints57. Activation of the
Wnt signaling pathway has been noted in the cartilage, bone, and
synovial membrane in OA patients58,59.
Canonical Wnt signaling starts with Wnt binding to Frizzled

receptors, leading to the disruption of the β-catenin destruction
complex. Stabilized β-catenin then translocates into the nucleus
and interacts with the transcription factors T-cell factor (TCF) and
lymphoid enhancer factor (LEF), activating the expression of Wnt
target genes60,61. Interestingly, β-catenin levels are frequently
upregulated in OA joint tissues, causing chondrocyte hypertrophy
and synovial inflammation62–66. Canonical Wnt signaling plays an
essential role in regulating bone remodeling and repair57,
indicating that this signaling pathway needs to be carefully
modulated in the joint when developing Wnt-targeting therapeu-
tic strategies. Indeed, previous strategies targeting members of
the Wnt pathway, such as β-catenin or upstream members, have
not resulted in FDA-approved drugs67,68, suggesting that the
selective regulation of Wnt target genes or approaches that spare
β-catenin may be necessary.
Notably, lorecivivint (also known as SM04690) was identified

through high-throughput screening for compounds targeting the
Wnt signaling pathways and demonstrated efficacy in mitigating
cartilage degeneration in a rat model of OA69. Later, the anti-
inflammatory and chondroprotective effects of lorecivivint were
found to be unrelated to β-catenin but were mediated by the
inhibition of two intranuclear kinases, CLK2 and DYRK1A70. In a
phase I trial (NCT02095548) involving 61 patients with moderate-
to-severe knee OA, intra-articular administration of lorecivivint
effectively restricted systemic exposure of lorecivivint and did not
induce any severe adverse events, thus validating the safety of this
compound71. In a phase IIa proof-of-concept study (NCT02536833)
involving 455 patients, compared with placebo treatment,
lorecivivint treatment did not meet the primary endpoint of
improvement set by the WOMAC pain score by week 1372.
However, at week 52, patients treated with the 0.07mg dose
showed significant improvements compared with those in the
placebo group72. In a phase IIb study (NCT03122860), among the
695 patients treated with either of four different doses (0.03, 0.07,
0.15, and 0.23 mg), those treated with 0.07 and 0.23 mg showed
statistically significant improvements in OA-associated pain

according to the NRS and WOMAC pain score73. The phase II
clinical trial (NCT03706521) was completed in December 2020, but
the results had not yet been reported when this review was
prepared. Other ongoing or scheduled clinical trials (Phase II:
NCT03727022 and Phase III: NCT03928184, NCT04385303, and
NCT04520607) are underway to test the efficacy of long-term
administration of lorecivivint at the optimized dose of 0.07 mg.

Cartilage regeneration
DMOADs targeting catabolic factors are effective in delaying
further cartilage degeneration but are insufficient in reconstruct-
ing degenerated tissue. Regenerative therapy aims to restore the
normal architecture and function of a damaged joint. Cartilage
regeneration is mediated by the chondrogenic differentiation of
stem cells and the synthesis of cartilage matrix by chondro-
cytes3,74. However, the regenerative capacity of cartilage tissue in
joints markedly declines with age and traumatic joint injuries.
Kartogenin is a small molecule that stimulates chondrogenic

differentiation in mesenchymal stem cells (MSCs) and was
developed by Johnson et al. in 2012 for the purpose of cartilage
regeneration74. Kartogenin binds to filamin A and consequently
interrupts the interaction of filamin A with the transcription factor
core-binding factor β subunit, thereby upregulating type II
collagen and aggrecan expression74. While kartogenin showed
promise in stimulating cartilage regeneration, several challenges
remain in its clinical applications. Recently, through extensive
medicinal modifications, KA3475 was developed as an analog of
kartogenin, and this variant significantly improved the potency
and chemical stability of kartogenin. With an improved safety and
efficacy profile, KA34 has recently finished a phase I clinical study
(NCT03133676) with 60 OA patients, but the results have not yet
been reported.
LNA043 is a novel angiopoietin-like protein 3 (ANGPTL3)

agonist76. Human ANGPTL3 is a 460-amino-acid polypeptide that
is mainly involved in regulating lipid metabolism and angiogen-
esis77. The current patent (US20160213748A1) claims a novel role of
ANGPTL3 in facilitating the chondrogenic differentiation of MSCs. An
ANGPTL3-variant polypeptide has been shown to enhance chon-
drogenesis, playing a chondroprotective role in a preclinical OA
mouse model (US20160213748A1, WO2014138687A1). A phase I
clinical trial (NCT03334812) of LNA043 in patients with knee cartilage
defects was completed early based on favorable outcomes in terms
of safety and tolerability. An additional phase I study (NCT02491281)
of knee OA patients further confirmed the safety of LNA043 without
eliciting any noticeable immune responses. The researchers also
showed that the compound was effectively delivered by penetrating
the cartilage layers, enhancing the anabolic activities of cartilage.
Patients with cartilage lesions and knee OA are currently being
recruited for the phase II trial (NCT03275064) of LNA043.
Tankyrase inhibition has been suggested as a potential strategy

to simulate regenerative potentials in osteoarthritic cartilage3.
Pharmacological inhibition of tankyrase induces chondrogenic
differentiation in MSCs and stimulates the expression of cartilage-
specific matrisome, collectively ameliorating osteoarthritic carti-
lage destruction in preclinical models of OA3. Recent accomplish-
ments in fostering the regenerative capacity of adult cartilage
suggest the clinical potential of regenerative therapy as an OA
treatment.

OA-associated pain
Chronic pain is one of the prominent symptoms of OA, and the
clinical management of OA largely aims pain relief. Molecular
pathways eliciting chronic pain are regulated in a complex
manner via the peripheral and central nervous systems. Although
cartilage is an aneural tissue, nociceptors are abundant in other
tissues of the joints, such as the joint capsule, synovium,
subchondral bone, and ligaments78. Specific receptors on the
peripheral terminal, such as heat receptors, chemoreceptors, and
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mechanoreceptors, detect diverse stimuli, including cytokines,
chemokines, neuropeptides, and prostaglandins78,79. These factors
form a biochemical milieu that elicit OA-associated pain in the
joint. With the progression of peripheral sensitization, joint
movement within the normal range becomes painful. Central
sensitization also contributes to an abnormal state of responsive-
ness or increased gain in the nociceptive system80. Collectively,
OA patients experience hypersensitivity to noxious stimuli, which
is generally characterized by mechanical allodynia or hyperalge-
sia81,82. There have been recent advances in understanding the
cellular and molecular basis of mechanical allodynia and
hyperalgesia development in OA-affected joints. The critical role
of nerve growth factor (NGF) in damaged joint environments has
been linked to pain development in OA patients83,84.
NGF is a member of neurotrophins in the peripheral and central

nervous system85. On peripheral nociceptors, the interaction of
NGF and its receptor, tropomyosin-related kinase A (TrkA),
activates transient receptor potential cation channel subfamily V
member 1 (TRPV1) and contributes to pain hypersensitivity
associated with tissue damage86,87. NGF expression is elevated
in various cell types (e.g., synoviocytes, chondrocytes, osteoclasts,
and some immune cells) in the synovium, cartilage, and
subchondral bone in patients with knee OA85,88,89. Therefore,
NGF has been suggested to be a rational target whose inhibition
may effectively manage OA-associated pain in joints78.
Tanezumab is a humanized IgG2 monoclonal NGF antibody that

effectively interferes with the binding of NGF to its corresponding
receptors90. Phase II clinical trials (NCT00394563) showed that a
single intravenous injection of tanezumab substantially reduced
pain in patients with knee OA83. A randomized phase III clinical
study (NCT02709486) with a 24-week follow-up period demon-
strated the significant efficacy of subcutaneously injected
tanezumab in controlling OA-associated pain in the hip or knee91.
However, safety concerns have been raised recently, along with
the report that tanezumab increases the onset of rapidly
progressive OA and abnormal peripheral sensation92.
Fasinumab, a human monoclonal NGF antibody93, has been

tested in multiple clinical phase trials involving patients with knee
or hip OA. A phase IIb/III double‐blind clinical trial (NCT02447276)
was conducted with 421 patients with moderate-to-severe knee or
hip OA, and 346 patients completed the study94. Patients were
randomized to receive 1, 3, 6, or 9 mg fasinumab or placebo which
was administered subcutaneously every 4 weeks for 16 weeks
with a 36-week follow-up. Fasinumab induced significant reduc-
tions in OA-associated pain and improvements in physical
function for patients with OA. A phase III clinical trial
(NCT02683239) has been conducted to test the long-term safety
and efficacy of fasinumab in knee or hip OA patients, but the
results have not yet been reported.
Fulranumab, another human monoclonal antibody against

NGF95, underwent a phase II clinical trial (NCT01094262) involving
196 patients with moderate-to-severe chronic knee OA. Patients
were subcutaneously injected with 3 or 9 mg fulranumab or
placebo every 4 weeks for 12 weeks. Fulranumab administration
improved the NRS knee pain score compared with that of the
active comparator oxycodone96. In another phase II clinical trial
(NCT00973141), patients with knee or hip OA were randomized to
receive subcutaneous injections of placebo or various doses of
fulranumab. Knee and hip pain, as assessed by the WOMAC score,
were effectively alleviated by fulranumab administration (3 mg
every 4 weeks or 10 mg every 8 weeks) as early as 4 weeks, and
the effect was maintained for up to 53 weeks. However, rapidly
progressive OA was observed as an adverse effect97. In phase III
clinical trials (NCT02336685, NCT02336698, NCT02289716, and
NCT02301234), patients with moderate-to-severe OA were rando-
mized to receive subcutaneous injections of placebo or fulranu-
mab (1 or 3 mg every 4 weeks) in the 16-week double-blind phase,
followed by a 52-week posttreatment follow-up phase.

Fulranumab improved pain management and physical function
in patients with OA98.

Emerging approaches for DMOAD development
This section discusses new technologies and modalities emerging
from the fundamental understanding of OA pathogenesis.
Senescent chondrocytes accumulate in osteoarthritic cartilage
and serve as a source of chronic inflammation in joints. Senolytic
approaches aim to specifically remove these senescent cells. The
versatility of noncoding RNAs (ncRNAs) in regulating a broad
range of targets has stimulated the recent focus on RNA
therapeutics, and there are now several FDA-approved RNA-based
therapeutics in the pharmaceutical market. These therapeutics
involve small interfering RNAs (siRNAs), microRNAs (miRNAs), or
antisense oligonucleotides (ASOs) and will serve as new modalities
of DMOADs, enabling the modulation of previously undruggable
targets in joint tissues.

Targeting cellular senescence
Cellular senescence refers to a state in which the cell cycle is
irreversibly arrested99,100. In cartilage, oxidative stress associated
with aging and mechanical overload mainly cause the accumula-
tion of senescent chondrocytes22. Senescent chondrocytes trigger
the formation of an arthritic joint microenvironment through the
secretion of pro-inflammatory cytokines and proteases, which are
referred to as senescence-associated secretory phenotype (SASP)
factors and collectively accelerate osteoarthritic cartilage degen-
eration and synovial inflammation2,22,100,101. Two possible strate-
gies to modulate the detrimental effects of senescence involve the
use of senolytics that selectively eliminate senescent cells100,102–108

and senomorphics (i.e., senostatics) that abrogate the inflamma-
tory senescent secretome102. UBX0101, developed as the first in-
class small molecule sensitizing the senolysis of senescent
chondrocytes, has shown positive results in a posttraumatic OA
mouse model100. This senolytic drug, which decouples p53 from
the MDM2-mediated degradation pathway, was tested in a phase
I, double-blind, randomized, placebo-controlled trial involving 48
OA patients (NCT03513016). The clinical outcome showed a
reduction in OA-associated pain without notable adverse events
when UBX0101 was administered at high doses of 1.0–4.0 mg109.
Unfortunately, the recently completed phase II trial
(NCT04129944) with 180 patients did not demonstrate sufficient
clinical efficacy in terms of joint pain relief.
Navitoclax (ABT-263), the most well-established senolytic drug,

inhibits Bcl-2 and Bcl-xL and has been shown to attenuate OA
manifestations, including cartilage degeneration and subchondral
bone sclerosis, in a posttraumatic OA rat model107. Interestingly,
neither UBX0101 nor navitoclax injection exerted any protective
effect against age-associated OA in mice, whereas the combina-
tion of these two drugs ameliorated OA progression in aged
animals110. It appears that senolytic strategies should be refined
before they can be used in the clinic. Senomorphics, which
modulate the phenotypes of senescent cells without killing them,
may serve as alternative options to eliminate SASP factor
expression and thereby abrogate the detrimental effects of
senescent chondrocytes on OA development.

RNA-based therapeutics
ncRNAs have emerged as regulators of inflammation111,112,
chondrocyte apoptosis113, and ECM degradation114,115, which are
related to OA-pathogenic mechanisms. To date, more than 50
ncRNAs, including circular RNAs, long noncoding RNAs (lncRNAs),
and miRNAs, have been reported to be differentially regulated in
OA, affecting the onset and progression of the disease111,116,117.
RNA therapeutics have multiple benefits over traditional small-
molecule- or antibody-based approaches, including versatility in
their design to modulate target gene expression118. RNA
therapeutics can be subcategorized into three major groups:
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siRNAs, miRNAs, and ASOs. These three groups use different
mechanisms of action to silence their target genes but share
common challenges in their clinical use: mainly in vivo delivery
and stability issues119. Although RNAs are widely used to
modulate target gene expression in vitro, their low stability and
delivery efficiency in vivo limit their use as therapeutic agents120.
The recent breakthrough in lipid nanoparticle (LNP) formulations
has dramatically improved both the stability and delivery of RNA
molecules, resulting in the first FDA-approved siRNA therapeutic
in 2018121.
MMP-13 and ADAMTS-5, two critical catabolic enzymes

responsible for the degradation of type II collagen and aggrecan,
respectively, have been the prime targets of RNA-based therapies.
Hoshi et al. examined the effect of chemically modified Mmp13 or
Adamts5 siRNA, alone or in combination, in a posttraumatic OA
mouse model122. Significant improvements in OA manifestations
were observed in all three siRNA-treated groups (Mmp13 siRNA
alone, Adamts5 siRNA alone, or combination) compared with the
control-siRNA group. Furthermore, the combined treatment group
displayed a better therapeutic outcome than the Adamts5–siRNA-
only group.
The NF-κB pathway is the most well-known regulatory pathway

governing inflammatory responses in OA14,123,124. Intra-articular
delivery of a peptide nanoparticle containing an NF-κB siRNA
alleviated cartilage degradation and synovitis in a surgically
induced OA model125. Hypoxia-inducible factor-2α (HIF-2α) is
another key transcription factor that controls the collective
expression of matrix-degrading enzymes during OA develop-
ment126,127. Intra-articular injection of an Epas1-targeting siRNA
encapsulated in LNPs and the chondrocyte-affinity peptide
DWRVIIPPRPSAC alleviated cartilage degeneration and synovial
inflammation in a mouse model of OA128.
Compared with an siRNA, which is generally designed to

exclusively knockdown a single target gene, a miRNA regulates
the expression of hundreds of target genes simultaneously and
has broader impacts on the transcriptome and chondrocyte

physiology. There are currently no miRNAs in a clinical trials for OA
treatment. Several miRNAs that can potentially delay osteoarthritic
processes by modulating matrix degradation and synthesis or
autophagy are listed in Table 1. In contrast, ASOs, which are short
single-stranded oligodeoxynucleotides, can be used to degrade
target RNAs that promote OA129. An ASO has been used to target
miR-204, which suppresses the proteoglycan synthesis pathway
and augments chronic inflammatory responses in senescent
chondrocytes. This miR-204-targeting ASO effectively attenuated
OA manifestations and pain development in a preclinical mouse
model of OA2.

Challenges and future directions of newly developed drugs
An important aspect of OA treatment is the consideration of
diverse clinical syndromes and pathological conditions associated
with stages of disease progression130–132. There is emerging
evidence of the heterogeneity and complexity of OA pathogen-
esis, which urges modifications to the current “one-fits-all”
treatment guidelines. Distinct molecular-level mechanisms are
being rapidly elucidated to account for the diversity of OA-
associated symptoms and pathogenesis. Therefore, it is urgent to
establish guidelines for personalized OA treatments.
There is another vital need for the development of biomarkers

that enable the early diagnosis of OA. Many of the developed
DMOADs aim to delay degenerative processes in articular
cartilage. Evidently, these approaches can be particularly effective
in treating patients in the early stage of OA when significant
cartilage remains, rather than in the late stage of OA. Therefore,
when coupled with early OA diagnosis, DMOADs can fully exert
their designated effects, ensuring a superior prognosis in patients
with OA.

CONCLUSIONS
With advances in the understanding of the basic molecular
mechanisms underlying OA pathology, multiple DMOADs have

Table 1. List of miRNAs that inhibit osteoarthritis (OA) progression.

microRNA Cell or tissue type Mechanism Reference

miR-132-3p MSCs Ectopic expression of miR-132-3p increases proteoglycan accumulation and the
expression of aggrecan, type II collagen, and SOX9.

133

miR-107 Chondrocytes miR-107 suppresses chondrocyte apoptosis and upregulates the expression of type
II collagen while downregulating IL-1β and MMP-13.

134

miR-140-3p Chondrocytes, MSCs miR-140-3p ameliorates OA progression and promotes chondrogenesis by
targeting CXCR4.

135

miR-140-5p/149 Chondrocytes miR-140-5p/149 targets Fut1 to promote chondrocyte proliferation and autophagy. 136

miR-93-5p Chondrocytes miR-93-5p targets Tcf4 and the lncRNA CASC2 and promotes chondrocyte viability
by suppressing apoptosis and the expression of Mmp3 and -13.

137

miR-335-5p Chondrocytes miR-335-5p alleviates the inflammatory responses in chondrocytes by upregulating
autophagy-related factors (Beclin-1, ATG5, and ATG7).

138

miR-106a-5p Articular cartilage miR-106a-5a suppresses OA by targeting Glis3. 139

miR-9-5p Chondrocytes miR-9 promotes chondrocyte proliferation and anti-apoptotic responses by
targeting the NF-κB pathway.

140

miR-502-5p Chondrocytes miR-502-5p suppresses IL-1β-induced apoptosis by targeting TRAF2. 141

miR-145 Chondrocytes miR-145 targets MKK4 and downregulates matrix-degrading enzymes (MMP-3,
MMP-13, and ADAMTS-5).

142

miR-26a/26b Chondrocytes miR-26a/26b suppresses IL-1β-induced matrix degradation by targeting FUT4. 143

miR-411 Chondrocytes miR-411 downregulates MMP-13, upregulates type II collagen, and induces
autophagy in chondrocytes.

144,145

miR-27a Synoviocytes, chondrocytes miR-27a inhibits synovial angiogenesis and chondrocyte apoptosis by inhibiting
PLK2 and promotes autophagy.

146,147

miR-27b Chondrocytes miR-27b downregulates MMP13. 114

MSCs mesenchymal stem cells.
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been developed, resulting in several promising outcomes from
clinical trials. In this review, we discussed multiple DMOAD
options, such as those targeting inflammation, matrix-degrading
enzymes and the Wnt pathway to ameliorate the degradation of
cartilage matrix. Several regenerative DMOADs have shown
promise in promoting the chondrogenic differentiation of stem
cells and the reconstruction of cartilage matrix. Senolytic/
senomorphic strategies and RNA therapeutics have been sug-
gested to be new modalities of DMOADs, enabling the modulation
of previously undruggable targets in joint tissues. DMOADs have
certainly reached the point of clinical application. Their ultimate
approval and availability on the pharmaceutical market are
coming and will aid in the treatment of one of the most
devastating joint diseases.
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