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Abstract
Rheumatoid arthritis (RA) is a complex chronic systematic disease with progressive destruction of the joints by invasive
synoviocytes. To characterize the key regulators involved in the development of RA, we obtained multilayer
epigenomics data including DNA methylation by whole-genome bisulfite sequencing, miRNA profiles, genetic
variations by whole-exome sequencing, and mRNA profiles from synoviocytes of RA and osteoarthritis (OA) patients.
The overall DNA methylation patterns were not much different between RA and OA, but 523 low-methylated regions
(LMRs) were specific to RA. The LMRs were preferentially localized at the 5′ introns and overlapped with transcription
factor binding motifs for GLI1, RUNX2, and TFAP2A/C. Single base-scale differentially methylated CpGs were linked
with several networks related to wound response, tissue development, collagen fibril organization, and the TGF-β
receptor signaling pathway. Further, the DNA methylation of 201 CpGs was significantly correlated with 27 expressed
miRNA genes. Our interpretation of epigenomic data of the synoviocytes from RA and OA patients is an informative
resource to further investigate regulatory elements and biomarkers responsible for the pathophysiology of RA and OA.

Introduction
Rheumatoid arthritis (RA) is characterized by a pro-

gressive destruction of joints by invasive synoviocytes. It is
not only a chronic systematic disease but also a complex
genetic disease. Approximately 1% of the world popula-
tion currently suffers from this disease. Genome-wide
association studies have identified meaningful genetic
variants relevant to RA1–3. Mutations in the major his-
tocompatibility complex, class II gene HLA-DRB1, are
common signatures for the greatest genetic risk4. Never-
theless, genetic discoveries are not sufficient to completely
explain the disease. The finding that the concordance rate
of RA for monozygotic twins is only 15% implies that the
inherited DNA sequences alone may not contribute to the
low concordance rate5. Moreover, gene expression pro-
files of RA patients are usually heterogeneous6. Generally,

the markers identified by comparative analysis of gene
expression are not always detected in replication studies7,
suggesting that analysis with only common genetic var-
iants or gene expression profiles is not sufficient for a
comprehensive understanding of RA6.
Epigenetic modifications are related to many human

diseases. Highly dynamic epigenetic changes are con-
trolled by the complex interplay between environmental
cues and chromatin context8, and they give rise to diverse
phenotypes9. Epigenetic homeostasis is vital for cells to
maintain normal cellular functions. Any uncontrolled
epigenetic perturbations can lead to diseases, especially
cancers10,11. Furthermore, the precise interpretation of
the epigenetic landscape is more informative for classifi-
cation than the simple identification of differentially
expressed genes12,13. DNA methylation is one of the
major epigenetic mechanisms widely examined for
understanding the development and diagnosis of human
diseases14. Several studies have reported the role of DNA
methylation in the pathogenesis of RA15–17. MicroRNAs
(miRNAs) are another important class of epigenetic reg-
ulators that ensure robust animal development and
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homeostasis by fine-tuning the expression of target
genes18. For example, the expression changes of miRNAs
can also contribute to autoimmunity9.
However, there have been critical limitations in the

previous studies about DNA methylation. The DNA
microarray-based results are only valid for a subset of the
genome covered by probe sequences on the chip. To
overcome this limitation, the whole-genome bisulfite
sequencing (WGBS) method was developed to cover all
cytosines in the genome and is becoming an easily
accessible technique. WGBS allows for comprehensive
genomic coverage, high quantitative accuracy, and
remarkable reproducibility19.
An extensive analysis of WGBS data enables discovery

of various types of DNA methylation domains and sites
previously not identified. First, partially methylated
domains (PMDs) are large continuous regions with low
methylation, up to several Mbp in size20. PMDs are linked
to repressive chromatin and gene silencing21,22. Second,
more localized hypomethylated regions ranging in size
from 5 to 100 kbp, termed DNA methylation valleys
(DMVs), are involved in regulating genes encoding tran-
scription factors (TFs) and developmental regulators23,24.
Finally, smaller localized low-methylated regions (LMRs)
are located in distal regulatory regions and usually asso-
ciated with TF binding20,25. Generally, LMRs are not
colocalized with CpG islands, and their DNA methylation
is inversely correlated with the activity of distal regulatory
regions.
Here, we focused on the DNA methylation profiles of

synoviocytes isolated from joint replacement surgery of
RA and OA patients and identified that some focal
methylated regions could be regulatory regions in RA.
Using DNA sequences enriched in the focal methylated
regions, the potential TF-binding sites associated with
DNA methylation were discovered. Single CpG sites with
differential methylation patterns can be regarded as
potential biomarkers and provide a starting point to
examine the epigenetic regulation of disease-relevant
genes. The integration of DNA methylation with
miRNA expression and exome sequencing data may
deepen our current knowledge of RA and OA.

Materials and methods
Isolation and primary culture of synoviocytes
Synoviocytes were isolated by enzymatic digestion of

synovial tissue specimens obtained from RA and OA
patients subjected to total joint replacement surgery. The
tissue samples were minced into 2- to 3-mm pieces and
treated for 4 h with 4mg/ml type I collagenase (Wor-
thington, Freehold, NJ, USA) in Dulbecco's modified
Eagle's medium (DMEM) at 37 °C under 5% CO2. Dis-
sociated cells were centrifuged at 500 × g, resuspended in
DMEM supplemented with 10% fetal calf serum (FCS), 2

mM L-glutamine, 100 units/ml penicillin, and 100 ng/ml
streptomycin and plated in a 75-cm2

flask. Only adherent
cells were further cultivated in DMEM supplemented with
10% FCS until the number of primary cells reached at
least 3–5 × 106, ensuring sufficient genomic DNA and
RNA for the DNA methylation and transcriptome analy-
sis. All patients’ samples were collected under the
approval of the institutional review board (IRB) at Seoul
St. Mary’s Hospital, College of Medicine, the Catholic
University of Korea and in accordance with the Declara-
tion of Helsinki. Written informed consent was obtained
from all patients.

Sequencing Library preparation and data generation
Genomic DNA was isolated from the primary cells and

treated with sodium bisulfite for the WGBS analysis on
the HiSeq2500 platform (Illumina, USA). Another DNA
methylation assay was performed using the Infinium
Human Methylation 450K BeadChip Kit (Illumina, USA)
following the manufacturer’s instructions. The exome was
captured by SureSelect Human All Exon V4+UTRs
(Agilent, USA) and subjected to sequencing. miRNA-seq
was performed after adding both 5′ and 3′ RNA adapters
to each end of the purified small RNA fragments. Gene
expression data were obtained with the Human HT-12 v4
Expression BeadChip Kit (Illumina, USA).

DNA methylation data analysis
The overall experimental procedure is summarized in

Fig. 1. The details are provided in the Supplementary
Information.
WGBS data were analyzed using the Bismark program

(version 0.14.0). The methylation of appropriate internal
control markers in the N4BP2 gene was examined as
previously described26. Most samples showed typical high
methylation except for one sample (OA_120), which was
excluded in the following analyses. A hierarchically clus-
tered heatmap was generated with the top 500 CpGs
showing the highest variability. Another heatmap was
plotted using the recursively partitioned mixture model
(RPMM) as previously described27.
Broad PMDs for each sample were inspected in a similar

manner as previously described28. All steps were pro-
cessed with the MethylSeekR Bioconductor package.
PMDs were regarded as shared when a PMD detected in
at least one sample of RA colocalized with one found in
any OA sample. A PMD detected in only one sample of
either RA or OA was defined as specific.
After masking PMDs from the genome, the remaining

regions were segmented into smaller methylated regions
using MethylSeekR as previously described28. The hypo-
methylated regions were classified into unmethylated
regions (UMRs) or locally LMRs according to the number
of CpGs they contained (UMRs ≥ 30, LMRs < 30). RA-
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specific LMRs were denoted as those detected in more
than two samples of RA but not in any sample of OA, and
vice versa. The levels of methylation around 1.5 kb from
the center of specific LMRs were measured, and then, the
differential LMRs were dissected by k-means clustering.
Genomic annotations of LMRs were performed using the
HOMER program (version 4.7.2). The locations of all
enhancers inferred from chromatin landscapes29 were
compared to those of LMRs, and then, the ratio of the
overlap in RA-specific LMRs to that in OA-specific LMRs
was calculated. The significance was determined by
Pearson’s chi-squared test.
To identify LMR-linked sequence features, sequences in

the 100 bp flanking regions from the center of specific
LMRs were divided into five subsets, which were then
used for de novo motif discovery. A heatmap showing
motif occurrence in each region was plotted using four
subsets except a subset used for the discovery. The rela-
tionship between specific LMRs with TF-binding motifs
and their target genes was tested by adapting the gene set
enrichment analysis (GSEA). With absolute Pearson cor-
relation coefficient >0.5 and permutation P < 0.05, direct
comparisons between LMRs and genes 5 kb downstream
of LMRs were made.
At the nucleotide level, differentially methylated CpGs

(DMCs) between RA and OA were identified by logistic
regression in the MethylKit with methylation differences
>0.2 and P < 2.42 × 10−9 (0.05/20,605,641, Bonferroni
correction). To identify differentially variable CpGs
(DVCs) between RA and OA, where the samples in one
group showed relatively consistent methylation levels but
in the other group had variable methylation levels,
Levene’s test in the missMethyl package was performed
with FDR < 0.05. The significance of the overlap between

DMCs and DVCs was determined by Fisher’s exact test
with P < 2.2 × 10−16 and permutation test with P < 0.001.

Analysis of Infinium Human Methylation 450K BeadChip
data
Image data were analyzed using BeadStudio 2.0 (Illu-

mina, USA). Loci on autosomes were retained, but those
in any sample with P > 0.01 were excluded. Data were
processed by color balance adjustment, background level
correction, and quantile normalization. After additional
filtering steps, the methylation levels in the remaining
probes were additionally normalized.

Network analysis for disease-related pathways
PhenomeExpress was used to build gene expression

subnetworks in RA and OA and identify core disease
pathways. Disease-relevant phenotypes were used as seeds
to construct subnetworks. The phenotypic IDs are as
follows: HP:0001370 (rheumatoid arthritis), HP:0002758
(osteoarthritis), MP:0003724 (increased susceptibility to
induced arthritis), HP:0002960 (autoimmunity),
MP:0001844 (autoimmune response), HP:0008271
(abnormal cartilage collagen), HP:0002829 (arthralgia),
HP:0005262 (abnormality of the synovia), MP:0020252
(abnormal collagen level), and ZP:0008630 (abnormally
increased rate collagen biosynthetic process). Among the
constructed subnetworks, those enriched with specific
functions were selected. DMCs and DVCs were overlaid if
they were located within genes in the subnetworks.

miRNA-seq data analysis
miRNA sequencing data were analyzed using miRDeep2

(version 0.0.7). Only adaptor-trimmed reads were aligned
to miRBase version 21. Expression of mature miRNAs was

OA RA

Extraction of synoviocytes

miRNA-seq Exome-seqBeadChipWGBS +
BeadChip

DNA 
methylation

mRNA 
expression

miRNA
expression

Genetic 
variants

DNA methylation mRNA expression

Genetic variantsmiRNA expression

LMR

DMC/DVC
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10  bp6
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1 bpDMC/
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Fig. 1 An overview of experimental procedures with RA and OA. The types of data produced in this experiment are DNA methylation, mRNA
expression, miRNA expression, and rare genetic variants. Differentially methylated regions (DMR) were separately investigated according to their sizes.
The stretching ellipse represents the resolution of each type of DMRs identified. WGBS whole-genome bisulfite sequencing, PMD partially methylated
domain, LMR low-methylated region, DMC differentially methylated CpG, DVC differentially variable CpG
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normalized to all aligned reads. Differentially expressed
miRNAs were identified using the DESeq Bioconductor
package with fold change >2 and unadjusted P < 0.05.
Then, miRNAs expressed in at least 50% of samples were
selected. The degree of DNA methylation of miRNAs
including 5 kb upstream regions were examined with their
expression levels. By applying absolute Spearman corre-
lation coefficient >0.5 and permutation P < 0.05, sig-
nificant miRNA–mRNA pairs were identified. Statistically
significant miRNAs were selected by identifying their
target mRNAs (negative Spearman correlation coefficient
with permutation P < 0.05). Using the list of genes tar-
geted by miRNAs, Gene Ontology (GO) analysis was
performed by ClueGO (version 2.2.3), and functionally
organized subnetworks were constructed with P < 0.05.
Then, DMCs and DVCs within target genes were deter-
mined for further analysis.

Exome data analysis
Rare genetic variations were detected by the TREVA

pipeline30. To find RA-specific mutations, only genes with
variants found in more than two RA samples were
selected. To assess whether a particular variant originated
from background noise, Samocha’s statistical framework31

for interpretation of de novo mutation was applied with a
conservative significance threshold (P= 1.0 × 10−8).

Other analysis
The downstream analyses were implemented with R

(version 3.1.3; R Foundation for Statistical Computing,
Vienna, Austria, www.r-project.org) and Bioconductor
packages32 version 3.1 (www.bioconductor.org).

Results
Global DNA methylation pattern between RA and OA
Thirteen RA and ten OA samples were selected from a

large patient cohort in this study (Fig. 1, Supplementary
Table S1). For WGBS analysis, 12 RA and 8 OA samples
of high quality were selected. The overall sequencing
results exhibited 22.2× average coverage and 86.0% of
CpGs covered ≥5× on average (Supplementary Table S2).
Non-CpG methylation was as low as 0.1%. To assess the
bisulfite conversion rate, the methylation of N4BP2 gene26

was measured as an internal control, and samples showing
low N4BP2 methylation levels were excluded, for exam-
ple, OA_120 (Supplementary Figure S1a).
Individual CpG methylation predominantly displayed

the bimodal pattern of most CpGs being fully methylated
or unmethylated (Supplementary Figure S1b, c). Methy-
lation profiles from the Infinium 450K array data analysis
were highly concordant with those from the WGBS ana-
lysis (Supplementary Figure S2). The distribution of
average methylation was quite similar between RA and
OA. Usually, high methylation variance across samples

may contribute to heterogeneity specific to diseases33.
However, the RA and OA samples showed a similar dis-
tribution of standard deviations (SDs) (Supplementary
Figure S1d). Furthermore, the unsupervised hierarchical
clustering using the top 500 CpGs with the highest
methylation variability did not clearly distinguish RA from
OA (Supplementary Figure S1e). The result was identical
using the RPMM27, which is a clustering method speci-
fically developed for DNA methylation (Supplementary
Figure S1f). A broad inspection of methylation revealed
the presence of PMDs in RA and OA (Supplementary
Figure S3). However, very small fractions were specific to
each disease. These results indicated that the global
methylation pattern is almost similar between RA and
OA.

Focal methylated regions as regulatory regions
Notably, more than 3.5 million CpGs (17.0%) exhibited

a low to intermediate level of methylation in the range
from 0.1 to 0.5 (Supplementary Figure S1b). Clusters of
this population generated distinct focal regions termed
localized LMRs. After excluding PMDs, a hidden Markov
model was applied to identify UMRs and LMRs in indi-
vidual samples (Fig. 2a). To define RA- or OA-specific
LMRs, all detected LMRs were divided by the k-means
clustering method. Finally, 523 disease-specific LMRs
were identified (426 for RA, 97 for OA) (Fig. 2b, Sup-
plementary Table S3). Although methylation in LMRs was
generally lower than surrounding regions, the difference
between RA and OA was obvious. A hierarchical clus-
tering of the Jaccard index clearly grouped RA samples
different from OA samples, indicating that LMRs are a
signature of RA and OA (Fig. 2c).
Approximately half of the RA-specific LMRs were

located in genic regions (Fig. 2d). Many genic LMRs were
located in intron regions. They were preferentially posi-
tioned at the 5′ ends along genes (Fig. 2e). For instance,
32.8% (78/238) of intronic LMRs were detected in the first
introns. Compared to OA-specific LMRs, RA-specific
LMRs were enriched at enhancers of immune or blood
cell types but depleted at enhancers of mesenchymal cell
types (Fig. 2f, Supplementary Table S3). These results
suggested that RA-specific LMRs most likely act as distal
regulatory elements for immune responses.
DNA-binding proteins, especially TFs, have their own binding

motifs or consensus sequences. Three known motifs (GLI1,
RUNX2, and TFAP2A/C) were sequence features enriched in
RA-specific LMRs. Control regions were selected from
sequences that had the same genomic distribution as LMRs but
were not LMRs (Fig. 3a). These motifs found in RA-specific
LMSs were not detected in OA-specific LMRs. Moreover, no
motif was discovered as common in LMRs between RA and
OA. Next, we explored the potential functional role of LMRs as
cis-regulatory elements. By matching LMRs to the nearest genes,
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the GSEA revealed that RA-specific LMRs were highly enriched
in the RA upregulated genes (Fig. 3b, Running Enrichment
Score (RES)= 1.47, FDR q-value=0.009). In contrast, OA-
specific LMRs showed negative enrichment (RES=−1.10, FDR

q-value=0.166). Among RA-specific LMRs allocated to the
nearest genes, the methylation of 21 LMRs showed significant
correlations with expression of the matched genes (P<0.05, 20
negative, 1 positive, Supplementary Table S4). For example, an
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LMR detected only in RA samples was located in the first intron
of the endothelial PAS domain-containing protein 1 (EPAS1)
gene, often known as hypoxia inducible factor 2 (HIF2A), which
is a pivotal component in RA pathogenesis34 (Fig. 3c). Hypo-
methylation of this LMR in RA is coupled with increased
expression of EPAS1. These results suggest that LMRs may be
crucial factors showing the difference between RA and OA.

Differentially variable and DMCs
Single base-scale methylated CpGs can be valuable as

easy-to-measure biomarkers for assessing the status of a
disease or medical condition. There were 19,390 DMCs
(11,058 hypermethylated and 8332 hypomethylated) in
RA compared to OA (Supplementary Table S5). Addi-
tionally, DVCs (5570 hypervariable and 6444 hypovari-
able) in RA compared to OA were identified
(Supplementary Table S5). Out of DMCs and DVCs, 394
CpGs were significantly overlapped (Fig. 4a, Fisher’s exact

test with P < 2.2 × 10−16, permutation test with P < 0.001).
Considering both DMC and DVC together demonstrated
a lower balanced error rate of classification than when
considering only one of them, suggesting that they are in
complementary relations for classification (Fig. 4b).
To test whether there was pathogenic disease relevance

with DMC or DVC, a combinatorial analysis of single
base-scale methylated CpGs and gene expression profiles
was performed. This analysis led to the identification of
six significant subnetworks using PhenomeExpress35

(Table 1, Fig. 4c, d, Supplementary Figure S4). For
example, the first subnetwork was related with wound
response, tissue development and collagen fibril organi-
zation (Fig. 4c). DMCs and DVCs were highly con-
centrated in genes encoding collagen proteins and
proteins interacting with NEDD4L, an E3 ubiquitin pro-
tein ligase. The second subnetwork harbored genes
associated with the transforming growth factor beta
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(TGF-β) receptor signaling pathway, in which DMCs and
DVCs were also detected in hub genes (Fig. 4d).

MicroRNAs and DNA methylation
After filtering miRNA sequencing data, ten RA and

seven OA samples were selected and further examined.
Sequencing results are summarized in Supplementary
Table S2. mirDeep2 (ref. 36) was used to identify differ-
entially expressed miRNAs (DEmiRs) between RA and
OA. Thirty-nine DEmiRs were found with a fold change
>2 and unadjusted P < 0.05. Among them, 28 miRNAs
were expressed in at least 50% of samples (Fig. 5a, Sup-
plementary Table S6). Then, miRNA expression was
compared to single base-scale CpG methylation. With
absolute Spearman correlation coefficient >0.5 and per-
mutation P < 0.05, the comparison showed that 201 CpGs
were significantly correlated with 27 miRNAs located near
the CpGs (Fig. 5b, Supplementary Table S6).
Using previously predicted miRNA–mRNA pairs, novel

target genes of these 27 miRNAs were investigated. As
expected, negative Spearman correlation coefficients were
shown in 227 pairs with 16 miRNAs (permutation P <
0.05) (Supplementary Figure S5, Supplementary
Table S6). From the list of miRNAs and genes, gene
ontology and pathway annotation network analysis by
ClueGO37 provided a gene subnetwork of stress-activated
MAPK cascade and toll-like receptor 4 (TLR4) signaling
pathway, where 43.8% (7/16) of target genes contained
DMCs or DVCs (Fig. 5c).

Rare genetic variants irrelevant to DNA methylation
Whole-exome sequencing analysis was used to iden-

tify the genetic variations by examining all protein-
coding sequences. Eleven RA and seven OA samples
were selected to identify rare genetic variants specific to
RA or OA. The sequencing results exhibited 92.2×
coverage and covered 94.7% of exomes (≥20×) (Sup-
plementary Table S2). There was no obvious difference
in mutation rates between RA and OA (deleterious
variation, P= 0.67; loss of function mutation (nonsense,
splice site, frameshift), P= 0.15; missense mutation, P=
0.80). In total, 97 genes with sequence variations
detected in at least two RA samples but not in OA
samples were identified.
Recently, Samocha et al.31 developed a framework for the

interpretation of de novo mutations by distinguishing
disease-related mutations from background variations.
Applying Samocha’s model to our exome data revealed that,
unlike OA, there were significant mutations in RA (con-
servative significance threshold (P= 1 × 10−8)) (Fig. 6a).
IGFN1 and TTC40 had more mutations than predicted. All
mutations in IGFN1 were missense but neutral (Fig. 6b). A
variant in TTC40 was missense and neutral, whereas two
variants were missense and deleterious. However, the TTN
gene with the longest coding sequence was not significant
because the number of observed mutations was below the
cutoff value. Similarly, genes such as HLA-DMA, HLA-
DMB UCMA, HPGDS, ITM2B, and OR2W1 did not exhibit
significant de novo mutations. The relationship between de

(see figure on previous page)
Fig. 4 Single base-scale methylated positions with average and variability. a Venn diagrams with the number of differentially methylated CpGs
(DMCs) and differentially variable CpGs (DVCs). b The distribution of balanced error rates of classification using DMCs or DVCs. Significance levels
were estimated from permutation test with 999 Monte Carlo replications. c The largest subnetwork is linked to response to wounding, tissue
development, and collagen fibril organization. Yellow areas denote where DMCs or DVCs are concentrated. Colors in large boxes represent gene
expression levels in RA relative to OA. Red is upregulated, and green is downregulated. Stacked bar plots represent the number of DMCs or DVCs in
certain genes. DMCs are colored red (hypermethylated) and blue (hypomethylated), while DVCs are colored orange (hypervariable) and green
(hypovariable). d The second largest subnetwork is related to TGF-β receptor signaling

Table 1 Significantly enriched biological functions in each subnetwork

Network no. No. of nodes Empirical P value Description

1 89 1.52E-08 Response to wounding

4.16E-08 Tissue development

2.55E-07 Collagen fibril organization

2 6 3.11E-05 Regulation of cell differentiation

3 22 1.24E-08 Transforming growth factor beta receptor signaling pathway

4 6 1.75E-04 Microtubule-based movement

5 7 4.74E-05 Negative regulation of transport

6 5 6.98E-04 Negative regulation of signal transduction
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novo mutations in RA and DNA methylation was not
correlated (Fig. 6c, d).

Discussion
DNA methylation plays an important role in the

pathogenesis of RA15–17. However, genome-wide studies
for DNA methylation in RA have mainly been based on

the DNA microarray technique, and the results cover only
a subset of the genome as limited by probes. Here, we
reported the first investigation of whole-genome DNA
methylation of synoviocytes from RA and OA patients
through WGBS technology. The WGBS results demon-
strate comprehensive genomic coverage, high quantitative
accuracy, and outstanding reproducibility19. In our data,

Fig. 5 Identification of differentially expressed miRNAs between RA and OA. a A heatmap with miRNAs identified as differentially expressed.
Raw counts of the miRNAs were transformed into Z-scores and color scaled. b Scatterplots describe methylation in the single CpGs and miRNAs
expression in individual samples. Box plots show methylation (top) and miRNA expression in each disease (right). c A subnetwork of
microRNA–mRNA pairs. Colors in circles represent gene expression levels in RA relative to OA. Red is upregulated and green is downregulated. Blue
arrows average negative correlations. Inner bar plots represent the number of DMCs or DVCs in certain genes. DMCs are colored red
(hypermethylated) and blue (hypomethylated), while DVCs are colored orange (hypervariable) and green (hypovariable)
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the overall distribution of DNA methylation was almost
similar between RA and OA, which is in discord with
previous observations showing prominent global hypo-
methylation in RA synoviocytes38,39. The methylation
patterns were too heterogeneous among individual sam-
ples even in the same disease to identify specific large-
scale regions. However, we could find distinct focal
regions termed LMRs with hundreds of base pairs. The
methylation profiles of LMRs could clearly distinguish RA
from OA. Approximately half of LMRs were located in
genic regions, particularly in the introns at 5′ ends. This
finding is consistent with the previous finding that the
first introns within most genes are important in tran-
scription and subject to easy epigenetic modification,
association with TFs, and open chromatin structure for-
mation40. Compared to OA-specific LMRs, RA-specific
LMRs were enriched in enhancers of immune or blood
cell types but depleted in enhancers of mesenchymal cell
types. Fibroblast-like synoviocytes in joints originate from
mesenchymal cells. However, the synoviocytes from RA
patients show altered phenotypes compared to the cells in
normal tissue41. The presence of different LMRs between
RA and OA reflects functional changes of synoviocytes in

patients and supports their importance as regulatory
elements for the particular immunological functions in
RA.
Some RA-specific LMRs overlapped with specific motifs

of TFs such as GLI1, RUNX2, and TFAP2A/C. These TFs
are closely related to the TGF-β pathway42–44. GLI1 is a
zinc-finger protein and mediates Sonic hedgehog (Shh)
signaling. A recent study observed that activated Shh sig-
naling drives proliferation of synoviocytes in RA45. It is
known that Shh signaling is involved in cartilage damage in
RA46. RUNX2 is essential for skeletal development, and its
known target genes are osteopontin, collagenenase 3, and
VEGF, which are engaged in the RA pathogenesis47. A
previous study observed that RUNX2 is important in the
development and migration of plasmacytoid dendritic
cells48, which can be recruited to RA synovial tissue49.
However, little is known about the role of TFAP2A/C in
RA, and a further study will help us to understand its role.
Therefore, it is plausible that DNA methylation is related
with RA in connection with TFs.
One of the fundamental roles of DNA methylation is

transcriptional regulation. In our data, some LMRs spe-
cific to RA were highly linked with relatively upregulated
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Fig. 6 Identification of significant rare genetic variants. By analyzing RA and OA exome sequencing data, sites and frequency of variants were
identified. a A heatmap showing significance levels of detected variants. Degrees of significance levels are color scaled. White points are significant
variants, and black points are not significant. A yellow line describes the cutoff. b A heatmap showing the number of variants in each sample. c The
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genes. For example, HIF-2α, the product of the EPAS1
gene, plays a pivotal role in the pathogenesis of RA34.
GPC6 has been identified in a genome-wide association
analysis50 and shown to be differentially expressed in
synovium with chronic inflammation51. LTBP1 is impor-
tant in the TGF-β pathway in RA synoviocytes52, and
NDRG1 is necessary for apoptosis signaling53. Because
LMRs act as distal regulatory regions or TFs20,25, addi-
tional distant genes influenced by the LMRs can be
identified by a technique to capture long-range chromatin
interactions54,55.
A few studies have raised the possibility of single base-

scale methylated CpGs as biomarkers in multiple
cases14,56,57. As a biomarker, single CpG methylation can
be more easily detected than other types of information
such as proteins, metabolites, etc. In addition, several
studies have mentioned the potential of CpGs with dif-
ferential variable methylation as good biomarkers33,58–60.
Our RA-specific DMCs and DVCs may also be potential
biomarkers. A combination of single base-scale methy-
lated CpGs and gene expression profiles could help to
understand pathogenic mechanisms of RA. In disease-
relevant subnetworks, DMCs or DVCs were located in
genes encoding collagen, NEDD4L-related molecules, and
TGF-β-related molecules, specifically. These results sug-
gest that those single CpGs could participate in the reg-
ulation of RA-relevant genes.
Among 28 differentially expressed miRNAs (DEmiRs)

between RA and OA, 27 miRNAs showed significant
correlations with DNA methylation at the single CpG
level. It suggests that single CpGs may also have a
potential role in the regulation of miRNAs. In this study,
we identified novel target genes of dysregulated miRNAs
in RA. Functionally organized subnetworks of miRNAs
and mRNAs were closely related to biological functions
such as the stress-activated MAPK cascade and
TLR4 signaling pathway. TLR2 and TLR4 are highly
expressed in RA synovial fibroblasts and probably con-
tribute to the destructive phase of RA61. A group of
DEmiR target genes with DMCs or DVCs was identified
in the subnetworks. These genes might be potentially
regulated by DNA methylation at the transcriptional level
and targeted by miRNAs at the post-transcriptional level.
An approach to analyze DNA methylation together with

rare genetic variants is quite different from other
epigenome-wide association studies14,16,62 that attempt to
link epigenetic changes with common genetic variants.
Consequently, our approach enabled detection of genes
associated with rare genetic variants by applying Samo-
cha’s statistical framework31. Following this statistical
analysis for identification of de novo mutations, we
obtained confident results by excluding false-positive
genes. For instance, TTN is a known false positive in
many studies due to its long coding sequence31,63.

Furthermore, polymorphisms of the DMA and DMB genes
do not influence susceptibility to develop RA64. Rare
genetic variants identified in RA may be independent of
DNA methylation. Moreover, IGFN1 and TTC40 were
unidentified in gene expression data (Supplementary
Table S4). Therefore, their role in the pathogenesis of RA
is not clear at this moment; thus, their biological sig-
nificance should be further examined by an in-depth study.
In conclusion, we identified the epigenetic features in

RA and their roles in transcriptional regulation. In parti-
cular, our research focused on DNA methylation and
miRNA profiles. Despite the intrinsic heterogeneity in RA
samples6,7, the comparative DNA methylation analysis at
multiple layers with PMD, LMR, and DMC/DVC pro-
vided a way to interpret DNA methylation profiles to
understand the disease pathogenesis. Additionally, our
data of DNA methylation, miRNA, gene expression, and
rare genetic variants generated from the same synovio-
cytes of RA or OA patients could provide valuable
resources for developing biomarkers and key regulators
related to the pathological phenotype of RA.
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