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Identification of differentially expressed miRNAs in individual
breast cancer patient and application in personalized medicine
F Peng1, Y Zhang1, R Wang1, W Zhou1, Z Zhao1, H Liang2, L Qi1, W Zhao1, H Wang1, C Wang1, Z Guo1,3 and Y Gu1

MicroRNAs (miRNAs) have key roles in breast cancer progression, and their expression levels are heterogeneous across individual
breast cancer patients. Traditional methods aim to identify differentially expressed miRNAs in populations rather than in individuals
and are affected by the expression intensities of miRNAs in different experimental batches or platforms. Thus it is urgent to
conduct miRNA differential expression analysis at an individual level for further personalized medicine research. We proposed a
straightforward method to determine the differential expression of each miRNA in an individual patient by utilizing the reversal
expression order of miRNA pairs between two conditions (cancer and normal tissue). We applied our method to breast cancer
miRNA expression profiles from The Cancer Genome Atlas and two other independent data sets. In total, 292 miRNAs were
differentially expressed in individual breast cancer patients. Using the differential expression profile of miRNAs in individual
patients, we found that the deregulations of miRNA tend to occur in specific breast cancer subtypes. We investigated the
coordination effect between the miRNA and its target, based on the hypothesis that one gene function can be changed by copy
number alterations of the corresponding gene or deregulation of the miRNA. We revealed that patients exhibiting an upregulation
of hsa-miR-92b and patients with deletions of PTEN did not tend to overlap, and hsa-miR-92b and PTEN coordinately regulated the
pathway of ‘cell cycle’ and so on. Moreover, we discovered a new prognostic signature, hsa-miR-29c, whose downregulation was
associated with poor survival of breast cancer patients.
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INTRODUCTION
MicroRNAs (miRNAs) are short (approximately 22 nt), endogenous
non-coding RNAs that regulate gene expression by promoting
mRNA degradation or repressing mRNA translation. MiRNAs that
function as oncogenes or tumor suppressors are differentially
expressed in cancer patients compared with normal samples.1

The fold change, T-test and significance analysis of microarrays are
the most used methods to detect differentially expressed miRNAs
in cancer. The fold change is simple but has the obvious
disadvantage that it does not provide an estimation of
significance. The T-test and significance analysis of microarrays
rely on the assumption that expression values are normally
distributed. These intensity-based methods are also affected by
experimental batch effects and data normalization processes.2

Some studies have proposed new methods, such as the rank
product,3 which use the relative order of gene expression values
within each sample, considering that the relative order is more
robust against batch effects and insensitive to data
normalization.4,5 However, these new methods are not
appropriate for determining differentially expressed miRNAs in
individual breast cancer samples. Differentially expressed miRNAs
are highly heterogeneous among individuals of the same cancer
type.6 Gaire et al.7 discretized miRNAs based on their expression
level rankings in each sample and roughly discretized the first 5%
of the miRNAs as low expression and the last 5% as high
expression, which lacks statistical estimation.
To avoid these problems, our previous work proposed a method

called RankComp to detect differentially expressed genes (DEGs)

in individual cancer samples using the disrupted ordering of gene
expression values in individual cancer sample, based on the
observation that the relative ordering of gene expression is overall
stable in a particular type of normal tissue but widely disturbed in
cancer.8 RankComp performed well in analyzing mRNA expression
profiles, which contain tens of thousands of genes. However,
because miRNA expression profiles contain only hundreds
of miRNAs, RankComp was sensitive to the rank changes of
miRNAs in individual patients and not suitable to be applied to
individual-level analysis of miRNAs.
The same biological process can be disturbed by the

deregulation of miRNA expression or an aberration of their
corresponding miRNA targets.7,9 For example, the cell cycle
process may become oncogenic by attenuating the
tumor-suppressor gene PTEN or by elevating the expression of
hsa-miR-29b, which can attenuate PTEN activity in cancer. PTEN
and hsa-miR-29b regulate the cell cycle process in a mutually
exclusive manner, which indicates that deregulated expression of
the miRNA and genomic alterations of its targets do not tend to
co-occur in the same patient.7 Hence, it is important to detect the
deregulation of hsa-miR-29b in individual patients along without
alterations of PTEN. In our previous study, we discovered that both
the deregulation of miRNAs and alterations of BRCA1/2
could coordinately disrupt the DNA repair process and further
affect the overall survival of ovarian cancer patients receiving
platinum-based treatment.9 Thus it is necessary to develop a
method to determine differentially expressed miRNAs in individual
patients. Moreover, deregulated miRNAs are considered as
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diagnostic and prognostic biomarkers because of their significant
roles in proliferation, apoptosis and invasion in breast cancer.10,11

Some studies use the average or median score or the expression
level as cutoffs to distinguish between high- and low-risk
patients.9,12–14 However, these methods are arbitrary in setting a
threshold for prognostic marker detection and are difficult to
include in practical application.15–17 To overcome the limitation of
these threshold-based methods, it is essential to develop a new
method to detect prognostic biomarkers that can be used to
obtain prognostic predictions for individual breast cancer
patients.18

Breast cancer is a complex disease that is characterized by
heterogeneity of genetic and epigenetic alterations. Aiming to
detect miRNAs with aberrant expression in individual breast
cancer patients, we developed a simple and intuitive procedure to
determine whether miRNAs are differentially expressed in an
individual patient. Given that the expression of miR-B was
approximately constant across the cancer and normal samples,
the reversal relationship of miR-A and miR-B may be because of
the differential expression of miR-A, which can be used as
evidence to determine whether miR-A is differentially expressed in
individual cancer compared with normal samples. In our analysis,
applications of our method were to detect deregulation of
miRNAs in specific breast cancer subtypes and miRNA–target
pairs with mutually exclusive alterations in breast cancer.
Furthermore, based on the individual differential miRNA profiles
in breast cancer, we identified that hsa-miR-29c was a new robust
prognostic maker for breast cancer, which did not rely on
presetting thresholds for prognostic prediction.

RESULTS
Identification of reversal miRNA pairs in The Cancer Genome Atlas
(TCGA) miRNA training data set
We distinguished miRNA pairs with stable rank relationships from
all pair-wise miRNAs and detected reversal miRNA pairs using
Fisher’s exact tests across 81 pair-wise breast cancer and normal
samples (Table 1). In total, 6872 of the 64 565 stable miRNA pairs
were significantly reversed in cancer samples compared with
normal samples. According to the filtering criteria (see Materials
and methods and Figure 1), we used 676 miRNA pairs to
determine the differential expression of 292 miRNAs in individual
breast cancer samples in the training data set. For example, the
expression value of miR-379 was greater than miR-152, miR-361
and miR-574 in 98.8, 100 and 100% of normal samples,
respectively. In cancer samples, however, the expression value of
miR-379 was smaller than those of miR-152, miR-361 and miR-574
in 13.6, 35.8 and 7.4% of the samples, respectively, which was
significantly different compared with the proportions in normal
samples (false discovery rate (FDR)o0.1).

Performance evaluation in TCGA miRNA testing data set
Using the miRNA reversal pairs derived from the training data set,
we determined whether the 292 miRNAs were differentially
expressed in individual patients of a testing data set containing
17 pair-wise breast cancer and normal samples (Table 1).
Averagely, 53 miRNAs were differentially expressed in each
patient, and the average precision was 90.94% for individual
breast cancer patients. Each miRNA was detected with differential
expression in 3.1 patients on average, and the average precision
was 90.97%. In the main text, all results were based on the top
three reversal pairs. The top five and seven reversal pairs showed
similar results (Table 2). However, when using the RankComp
method,8 only 17.5 miRNAs were differentially expressed in each
breast cancer patient on average, and the average precision for
each patient was 68.18%. Each miRNA was detected with
differential expression in 1.01 breast cancer patients on average,
and the average precision for each miRNA was 51.88%. Thus our
method performed better at identifying differential expression
miRNAs in individual breast cancer samples.
The paired 81 normal samples in the training data set were used

to simulate for disease samples. In the training data set, averagely
50 miRNAs, among which 40 miRNAs were upregulated and 10
miRNAs were downregulated, were detected with differential
expression in an individual patient by our method. Averagely, 1
miRNA was differentially expressed in 14 patients. Thus 40 and 10
randomly selected miRNAs in each disease sample were
separately set to be differentially upregulated and downregulated
by adding or subtracting the maximum absolute value of the
corresponding miRNA in the original expression values. Each
miRNA was set to be differentially expressed in 14 disease samples
during the simulation process. The results showed that
average values of sensitivity, specificity and F-score were 93.28,
93.36 and 0.9172, respectively. When increasing the number of
samples in which each miRNA was differentially expressed, slight
changes in sensitivity, specificity and F-score were observed for
each scenario (Table 3).

Breast cancer subtype-specific miRNAs
Breast cancer contains many subtypes, including luminal A,
luminal B, HER2-enriched, basal-like and normal-like, and the
alterations of miRNAs maybe subtype specific.19,20 According to
the differential expression profile of miRNAs in individual breast
cancer patients and the known subtype labels of breast cancer, we
tested whether deregulation of miRNAs tended to be in specific
subtypes by hypergeometric distribution model. Totally, we found
that 26 miRNAs, 79 miRNAs, 55 miRNAs, 105 miRNAs and 3
miRNAs were significantly altered in luminal A, luminal B,
HER2-enriched, basal-like and normal-like, respectively (Po0.05,
Supplementary Table S1). Some breast cancer subtype-specific
miRNAs discovered by us have been confirmed by
previous studies. For example, the hsa-miR-106b tended to be
upregulated in basal-like breast cancer samples (P= 1.68 × 10− 8,

Table 1. Statistics of the miRNA and mRNA expression data

Data set Data type Tumor Normal Paired Platform

TCGA miRNA 81 81 Ya IlluminaHiSeq_miRNASeq
miRNA 17 17 Y IlluminaGA_miRNASeq
miRNA 743 / / IlluminaHiSeq_miRNASeq and IlluminaGA_miRNASeq
mRNA 525 22 / Agilent custom 244 K whole-genome microarrays

GSE22220 miRNA 210 / / Illumina Human v1 MicroRNA expression beadchip
mRNA 216 / / Illumina humanRef-8 v1.0 expression beadchip

GSE19536 miRNA 101 / / Agilent-019118 Human miRNA Microarray 2.0 G4470B
mRNA 114 / / Agilent-014850 Whole Human Genome Microarray 4x44K G4112F

Abbreviations: miRNA, microRNA; TCGA, the cancer genome atlas. aY, the data set has the pair-wise tumor and normal samples.
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hypergeometric test), which has been confirmed by Farazi et al.21

The hsa-miR-17 was reported as a basal-like subtype-specific
miRNA,22 and our results showed that the breast cancer patients
with upregulation of hsa-miR-17 were significantly enriched in
patients with basal-like subtype (P= 2.22 × 10− 16). The Venn
diagram was used to show the number of miRNAs shared
between or among subtypes (Figure 2).

Coordinated deregulation of miRNAs and copy number alterations
of their targets
Based on the hypothesis that the mutual exclusivity of
deregulation expression of miRNA and copy number alteration
of its targets could coordinately disrupt the similar pathways,
we identified 42 mutually exclusive miRNA–target pairs

Step 4: Determine whether miR-A is differentially expressed in individual cancer samples

miR-A> miR-B
miR-A> miR-C
miR-A> miR-E

Cancer samples

Samples detected with reversal miRNA pair 

Samples detected without reversal miRNA pair

Samples in which the miR-A is differentially expressed
Samples in which the miR-A is not differentially expressed

high

low low

highmiRNA expression profile
Normal sample Cancer sample

miR-A

miR-B

Step 1: Filter stable miRNA
pairs in normal samples

miR-A < miR-B     100%
miR-A < miR-C       99%
miR-A < miR-D       99%
miR-A < miR-E       98%
miR-A > miR-F       97%
miR-A > miR-G      96%
miR-A < miR-H      96%

miR-A > miR-N      20%

…

Step 2: Filter the significantly reversal 
miRNA pairs in cancer samples

miR-A < miR-B miR-A > miR-B

Normal sample N1 N2

Cancer sample M1 M2

miR-A > miR-B        p=1.31E-05
miR-A > miR-C        p=2.34E-08
miR-A > miR-E        p=4.38E-03
miR-A < miR-F        p=1.31E-05

miR-A < miR-G        p=6.51E-01

Fisher’s exact test

Step 3: Filter the miRNA pairs that could determine whether
miR-A is differentially expressed in individual sample. 

miR-A > miR-B
miR-A > miR-C
miR-A > miR-E

…

…

…

miR-A < miR-I        85%

Figure 1. The schematic overview of the analysis procedure.

Table 2. Summaries of the average precision of samples and miRNAs

Top pairs TP (miRNA) TP+FP (miRNA) Precision (miRNA) TP (sample) TP+FP (sample) Precision (sample)

Top 3 pairs 2.82 3.10 90.97% 48.41 53.23 90.94%
Top 5 pairs 2.52 2.76 91.30% 43.24 47.41 91.20%
Top 7 pairs 2.23 2.44 91.39% 38.35 41.88 91.57%

Abbreviations: FP, false positive; miRNA, microRNA; TP, true positive.

Table 3. Sensitivity, specificity and F-score in the simulated data

Sample numbera Sensitivity Specificity F-score

14 0.9328 0.9336 0.9172
20 0.9059 0.9772 0.9328
30 0.8606 0.9787 0.9009
40 0.8521 0.9764 0.8902
50 0.8574 0.9774 0.8955
60 0.8706 0.9768 0.9045

aThe number of samples with differential expression of one microRNA.
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(Supplementary Table S2), which showed the consistent
differential expression of target genes in miRNA deregulated
samples and target altered samples when compared with
normal samples and significant pathway overlap at Po0.05.
Here we took the tumor-suppressor gene PTEN with deletions in
breast cancers as an example. In all, 214 and 154 breast cancer
patients carried the deletions of PTEN and hsa-miR-92b,
respectively. Thirty-five samples were overlapped between
the two sample sets, which were significantly less than expected
by random chance (P= 0.022, hypergeometric test, Figure 3).
The PTEN was significantly downregulated in both the breast
cancer samples with upregulation of hsa-miR-92b and the breast
cancer samples with deletion of PTEN when compared with the
normal cohort (P= 9.53 × 10− 7 and P= 2.93 × 10− 16, T-test). The
pathway enrichment results revealed that hsa-miR-92b-related
DEGs were significantly enriched in 13 pathways (Po0.05,
hypergeometric test) and that PTEN-related DEGs were
significantly enriched in 22 pathways (Po0.05, hypergeometric
test). Four pathways (‘Cell cycle’, ‘p53 signaling pathway’,
‘Spliceosome’ and ‘Oocyte meiosis’) were overlapped between
the two pathway lists, which cannot be expected by random
chance (Po0.05, hypergeometric test). Thus the upregulation of
hsa-miR-92b and deletions of PTEN could coordinately regulate
the cell cycle pathway and hence to contribute to the progression
of breast cancer. Moreover, we found that deregulation of hsa-
miR-92b was luminal A subtype specific (Supplementary Table S1).
Thus the mutually exclusive alterations between miRNAs and
targets also reflect the mutual exclusivity of breast cancer subtype
alterations (Figure 3).

Prognosis-related differential expression of miRNAs
For each miRNA, 743 TCGA breast cancer patients were divided
into two groups: patients with and without differential expression
of that miRNA. Cox regression analysis and log-rank tests were
used to recognize prognosis-related miRNAs. Our results identified
that six miRNAs (hsa-miR-98, hsa-miR-29c, hsa-miR-221, hsa-
miR-127, hsa-miR-1224, hsa-miR-99a) were significantly associated
with the overall survival of breast cancer patients in the TCGA data
set (Supplementary Table S3).
Among the six miRNAs that have potential prognostic value for

breast cancer, only the hsa-miR-29c could be detected differential
expression information in two independent data sets (GSE22220
and GSE19536). Thus we took hsa-miR-29c as an example for
further analysis. Hsa-miR-29c was differentially downregulated in
148 of the 207 samples in the GSE22220 data set, 9 of the 99
samples in the GSE19536 data set and 55 of the 444 samples in
the TCGA data set. For each data set, we further divided the
samples into two groups: hsa-miR-29c downregulated group and
others. Patients in the ‘hsa-miR-29c differentially downregulated’
group displayed significantly shorter median survival time than
those in the ‘others’ group in the TCGA (P= 3.60 × 10− 4, log-rank
test, Figure 4), GSE22220 (P= 1.15 × 10− 2, log-rank test, Figure 4)
and GSE19536 data sets (P= 6.35 × 10− 3, log-rank test, Figure 4).
According to the PAM50 classification method,23 we divided the
breast cancer samples into basal-like, HER2-enriched, Luminal A,
Luminal B and normal-like subtypes for GSE22220 and GSE19536
data sets, respectively. We tested whether hsa-miR-29c was an
independent prognostic marker for breast cancer using multi-
variate cox regression analysis. When considering other clinical
factors, including subtype information, the results of multivariate
cox regression analysis showed that hsa-miR-29c exhibited
significant association with patient survival in TCGA (hazard ratio
(HR) = 4.31, 95% confidence interval (CI) = (1.94, 9.60),
P= 3.49 × 10− 4, Table 4) and the GSE22220 (HR= 1.91, 95%
CI = (1.04, 3.50), P= 0.038, Table 4) data set, and was marginally
significant in GSE19536 (HR = 4.02, 95% CI = (0.77, 21.02), P= 0.099,
Table 4). We also performed the multivariate cox regression
analysis on all the other five miRNAs and all of them were
significant in TCGA data set (Po0.05, Supplementary Table S4).
Furthermore, we also used T-test to detect DEGs between the hsa-
miR-29c downregulated group and others in each data set and
performed pathway enrichment analyses in the three data sets.
Scrutinizing the top four enriched pathways from the three
pathway lists, ‘Cell cycle’ and ‘DNA replication’ were overlapped,
which was not expected by random chance (Po0.05, hypergeo-
metric test, Supplementary Table S5).

DISCUSSION
In this article, we proposed a new rank-based but powerful
individual-level method to detect differentially expressed miRNAs.
Gene dysfunction can be ascribed to genomic alterations (such as
copy number alteration) of the corresponding gene or
modification of the expression of the miRNA that attenuates the
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target gene.7 With this approach, it would much easier to combine
genomic alterations and differential expressed miRNA at indivi-
dual level for integrated analysis. Thus one application of our
method is to detect mutually exclusive miRNA–target pairs that
may coordinately participate in the same pathways. Deregulation
of miRNA expression and genomic alterations of its targets may
affect the same pathways and result in the same functional
regulation, as revealed by the pathway enrichment results in our

study. Another application of our method is to identify breast
cancer subtype-specific deregulated miRNAs. The results showed
that our method could detect some new subtype-specific miRNAs
as well as the well-known breast cancer subtype-specific miRNAs,
which indicated the reliability of our method.
Moreover, our method can be used to identify prognostic

biomarkers for breast cancer. In total, the deregulated expression
levels of six miRNAs were associated with overall survival of breast
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Figure 4. Kaplan–Meier survival curves between patients with and without differential expression of hsa-miR-29c in three data sets. The green
and red lines represent patients with and without differential expression of the miRNA, respectively. (a) Kaplan-Meier survival curves in the
data set of TCGA; (b) Kaplan-Meier survival curves in the data set of GSE22220; (c) Kaplan-Meier survival curves in the data set of GSE19536.

Table 4. Univariate and multivariate Cox regression analyses of the differential expression of hsa-miR-29c and other clinical factors

Characteristics Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

TCGA
hsa-mir-29c 3.68 (1.80, 7.51) 3.56E-04 4.31 (1.94, 9.60) 3.49E-04
ER+ vs ER− 0.67 (0.34, 1.31) 0.24 0.87 (0.25, 3.03) 0.82
PR+ vs PR− 0.58 (0.31, 1.06) 0.076 0.45 (0.17, 1.16) 0.099
Stages 1 and 2 vs ⩾ 3 2.55 (1.41, 4.62) 1.96E-03 2.53 (1.35, 4.74) 3.68E-03
Age ⩾ 50 vs o50 years 1.47 (0.76, 2.87) 0.26 1.51 (0.72, 3.17) 0.28
Basal-like vs others 0.92 (0.43, 1.98) 0.83 0.34 (0.08, 1.36) 0.13
Her2-enriched vs others 1.96 (0.87, 4.42) 0.11 0.83 (0.25, 2.76) 0.76
Luminal A vs others 0.58 (0.32, 1.06) 0.077 0.50 (0.22, 1.15) 0.10
Luminal B vs others 1.66 (0.81, 3.43) 0.17 2.97 (0.74, 9.12) 0.13

GSE22220
hsa-mir-29c 2.04 (1.14, 3.64) 0.015 1.91 (1.04, 3.50) 0.038
ER+ vs ER− 1.74 (1.03, 2.95) 0.039 2.04 (1.18, 3.53) 0.011
Size o20 vs ⩾ 20 mm 1.98 (1.14, 3.44) 0.015 1.05 (0.62, 1.77) 0.87
Grades 1 and 2 vs ⩾ 3 1.52 (0.94, 2.48) 0.090 1.93 (1.11, 3.38) 0.021
Age ⩾ 50 vs o50 years 0.80 (0.51, 1.26) 0.33 1.29 (0.70, 2.37) 0.42
Basal-like vs others 1.45 (0.84, 2.52) 0.18 2.66 (1.02, 6.95) 0.046
Her2-enriched vs others 1.99 (1.05, 3.76) 0.035 3.14 (1.18, 8.35) 0.022
Luminal A vs others 0.57 (0.35, 0.92) 0.023 1.03 (0.43, 2.48) 0.95
Luminal B vs others 1.87 (1.12, 3.11) 0.017 2.48 (1.01, 6.08) 0.047

GSE19536
hsa-mir-29c 4.72 (1.74, 12.79) 2.31E-03 4.02 (0.77, 21.02) 0.099
ER+ vs ER− 0.40 (0.18, 0.90) 0.026 0.48 (0.12, 1.95) 0.30
HER2+ vs HER2− 1.36 (0.50, 3.69) 0.55 3.30 (0.77, 14.18) 0.11
TP53+ vs TP53− 2.99 (1.34, 6.68) 7.74E-03 4.09 (1.23, 13.62) 0.022
Basal-like vs others 1.62 (0.60, 4.33) 0.34 0.17 (0.02, 1.21) 0.076
Her2-enriched vs others 0.85 (0.29, 2.49) 0.77 0.14 (0.02, 1.21) 0.074
Luminal A vs others 0.78 (0.34, 1.79) 0.56 1.15 (0.23, 5.64) 0.86
Luminal B vs others 0.96 (0.29, 3.22) 0.95 0.20 (0.02, 1.74) 0.14

Abbreviations: ER+/− , estrogen receptor positive/negative; HER2+/− , human epidermal growth factor receptor-2 positive/negative; HR, hazard ratio;
PR+/− , progesterone receptor positive/negative; TP53+/− , TP53 mutation yes/no.
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cancers, and hsa-miR-127 has previous evidence for their
prognostic effects in breast cancer patients.24 Furthermore,
hsa-miR-29c was validated as a new robust prognostic biomarker
for breast cancer in our study. Patients with hsa-miR-29c
downregulation displayed significantly shorter survival than
patients without hsa-miR-29c downregulation. Multivariate
Cox survival analyses demonstrated that hsa-miR-29c was
independent of other clinical factors, including the subtypes,
except in the GSE19536 data set, which may be because the
majority of samples in this data set (75 of the 99 samples) were
censored. Compared with the artificial cutoffs used to identify
prognostic biomarkers, our method does not need to accumulate
many patients to determine the optimal threshold in practice. In
clinical translational application, we only need to compare the
expression values of hsa-miR-29c and its reversal miRNA
(hsa-miR-30b), which are achieved by our method. Furthermore,
we validated that the individual-level differential expression
profile of hsa-miR-29c was reliable in the three data sets by the
pathway enrichment results. The reproducible pathway
enrichment results indicated that downregulation of hsa-miR-29c
participated in the pathways of cell cycle and DNA replication by
regulating its targets and further affecting breast cancer survival,
which deserves further experiments to investigate the detailed
mechanism.
Harrell’s concordance index (C-index) is a popular measure to

quantify the predictive accuracy of the prognostic marker and
could be used in clinical practice.25 A higher C-index value than
0.5 indicates a better overall concordance between the predicted
risk classification and the observed survival.26 Thus we calculated
the C-index to quantify the predictive accuracy of the miRNAs.
The C-index values of hsa-miR-29c were 0.602, 0.566 and 0.584 for
TCGA, GSE22220 and GSE19536, respectively. C-index values of the
six miRNAs are presented in Supplementary Table S3. Notably, to
identify prognostic signature with higher C-index for breast cancer
patients, we need to integrate multiple miRNAs that have
potential prognostic value for breast cancers and corresponding
targets to construct effective classifier, which warrants our future
detailed work.
Both our method and the RankComp are based on the notion of

stable/reversal gene or miRNA pairs to perform individual-level
analysis of differentially expressed mRNAs or miRNAs in cancer.
Our method gets reversal miRNA pairs from the population of
cancer samples. However, the RankComp tests whether the stable
gene pair is reversal in each individual, which is sensitive to rank
changes in small number of gene pairs if the gene list is small,
such as the miRNA expression profile. Comparing the results
derived from the two methods, our method is suitable to analyze
the differential expression of the small amount of miRNAs or
genes in individuals, and the RankComp is effective in analyzing
the expression profiles with large number of genes.
Nevertheless, our present method also has some limitations.

First of all, although the positive predictive value, sensitivity,
specificity and F-score are relative high, our method may have
insufficient power to detect all samples with differential expres-
sion of one miRNA. However, for each miRNA, though a certain
number of samples with differential expression of the miRNA may
be missed, many miRNA–target pairs with mutually exclusive
alterations can be identified, which indicates that the identified
differentially expressed miRNAs in individual patients captured by
our method are true. Moreover, the prognostic marker hsa-
miR-29c identified by our method can be reproducible in other
two independent data sets. Second, our method depends on
sufficient numbers of normal samples to discern the stable relative
order of miRNA pairs. To apply our method to other cancer types,
one possible way to address this limitation is to collect previously
accumulated normal samples from different data sets. Third, the
step of calculating variable coefficients for the reversal miRNAs in
our method may be weakly affected by the batch effect. However,

all the reversal miRNA pairs are obtained based on relative order
of expression values, which is robust against batch effects and
data normalization. Although all the reversal miRNA pairs could be
used to determine the differential expression for the miRNA, to
increase the precision, we used the top three miRNAs with
smallest variable coefficients. The smaller the variable coefficients
of the miRNAs are, the less the results are affected by the batch
effect and normalization process. Finally, the miRNAs that are
simultaneously detected across different microarray platforms are
limited, which seriously affect the number of miRNAs that can be
performed individual level analysis for breast cancer. Fortunately,
more and more high-throughput next-generation sequencing
data are emerging, which can overcome this shortcoming.

MATERIALS AND METHODS
Data and preprocessing
Level 3 miRNA expression profiles detected by IlluminaHiSeq and
IlluminaGA platforms were obtained from the TCGA data portal
(http://tcga-data.nci.nih.gov/tcga/). There were 98 pair-wise breast cancer
and normal samples, among which the 81 pair-wise samples from the
IlluminaHiSeq platform was set as the training data set and the 17 pair-
wise samples from the IlluminaGA platform was used as the testing data
set (Table 1). The data set of 743 breast cancer samples without matched
normal controls was used for application analysis. The level 3 mRNA
expression profiles, including 525 breast cancer samples and 22 normal
samples, were detected by Agilent mRNA expression microarrays in TCGA
(Table 1). Two independent data sets, GSE19536 and GSE22220 (Table 1),
were downloaded from Gene Expression Omnibus. Gene expression levels
were quantile normalized and log2 transformed using the R program. The
copy number alteration data of breast cancer were downloaded from
http://gdac.broadinstitute.org/runs/stddata__2014_01_15/data/BRCA/.27

As Mermel et al.28 did, we used the cutoffs of log2 ratio 40.1 for detecting
amplifications and log2 ratio o − 0.1 for detecting deletions and got the
copy number alteration profile for each gene. Only the genes that showed
consistency in copy number alterations and mRNA expression levels
(amplification corresponding to higher expression in mRNA and deletion
corresponding to lower expression in mRNA compared with the samples
without copy number alterations, which were tested by T-test with
Po0.05) were retained for following analysis.

KEGG pathways
Two hundred and thirty-four pathways were downloaded from the Kyoto
Encyclopedia of Genes and Genomes (KEGG, Release 58.0).29 These
pathways covered 5981 unique genes for pathway enrichment analysis.

miRNA–target interaction data
In this study, the miRNA–target interaction data set was obtained from the
following nine databases: TargetScan,30 miRanda,31 PITA,32 PicTar,33

miRBase,34 DIANA-microT,35 miRTarBase,36 miRecords,37 and RNAhybrid.38

Only miRNA–target interactions appearing in at least two databases were
retained.9

Definition of reversal miRNA pairs
The expression values of miRNAs within each sample were ranked in
descending order (Figure 1). Each miRNA expression value was converted
to its rank within each sample (the smallest expression value correspond-
ing to the minimum rank and the greatest expression value corresponding
to the maximum rank). Pair-wise comparisons were performed for all
miRNAs to identify miRNA pairs with stable ordering in normal samples.
Stable miRNA pairs were defined as patterns of rank in which miR-AomiR-
B appeared in 495% of normal samples. Reversal miRNA pairs were
defined as miRNA pairs that displayed a significant reversal ordering in
cancer samples compared with their stable ordering in normal samples
(miR-AomiR-B→miR-A4miR-B) using Fisher’s exact test at a FDRo0.1.

Method work-flow
Step 1: Identification of stable miRNA pairs in normal samples.
Step 2: Identification of reversal miRNA pairs in cancer samples.
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Step 3: Two criteria were used to filter the reversal miRNA pairs that
could determine whether a miRNA was differentially expressed in an
individual patient. We used miR-A as an example. First, only the miRNAs
that had the same deregulation directions as miR-A in the miR-A reversal
pairs were retained. Here the deregulation directions indicated
upregulation or downregulation in the cancer group compared with the
normal group. Second, we calculated the variable coefficients in all
samples for the miRNAs in the miR-A reversal pairs and ranked these
miRNAs by the variable coefficients in increasing order. If there were o3
reversal pairs for miR-A, all were retained; otherwise, only the top 3 reversal
pairs were retained for determining whether miR-A was differentially
expressed in individual samples. In the main text, the results of the top
three miRNA pairs are presented, and similar results of top five and seven
miRNA pairs are listed in Table 2. We hypothesized that, if the expression
level of miR-B was approximately constant across the cancer and normal
samples, the reversal relationship of miR-A and miR-B should occur
because of the differential expression of miR-A, which could be used as
evidence to determine whether miR-A was differentially expressed in
individual cancer samples compared with normal samples.
Step 4: The selected reversal miRNA pairs (miR-A4miR-B, miR-A4miR-C

and miR-A4miR-E) were used to determine whether miR-A was
differentially expressed in an individual patient in the testing data set. If
the pattern of miR-A4miR-B occurred in an individual patient, the
rectangle was marked with blue color, otherwise it was marked with gray
color. If more than half of reversal miRNA pairs were detected in a patient,
we concluded that miR-A was differentially expressed in this individual,
which was marked with red color (Figure 1). Notably, the deregulation
direction of miR-A was determined from the cancer group compared with
the normal group.

Evaluation of performance
We used the breast cancer samples with matched normal samples to
evaluate the performance of our method. If the expression of miR-A in
cancer samples was greater than that of matched normal samples, the
gold standard deregulation direction of miR-A was upregulated (and vice
versa). True positive (TP) represented miRNAs whose deregulation
directions were the same as the gold standard, whereas false positive
(FP) represented miRNAs whose deregulation directions were judged as
the opposite of gold standard. Precision was calculated as positive
predictive value: TP/(TP+FP).39

Moreover, a simulation was performed to evaluate the performance of
our method. To keep the intrinsic structure of real miRNA data, the
simulations were conducted based on the real miRNA data set. Here the
sensitivity for each miRNA was defined as the ratio of correctly identified
samples with differential expression of the miRNA to all samples with
differential expression of the miRNA. The specificity for each miRNA was
defined as the ratio of correctly identified samples without differential
expression of the miRNA to all samples without differential expression of
the miRNA. The F-score, a harmonic mean of sensitivity and specificity, was
calculated as follows:

F� score ¼ 2ðsensitivity´ specificityÞ
sensitivityþ specificity

After performing the same simulation 1000 times, the average sensitivity,
specificity and F-score values were used to evaluate our method.

Detection of mutually exclusive miRNA-target pairs with
coordinated effects
For each miRNA and its target, a mutually exclusive pair was defined as the
differential expression of that miRNA and copy number alterations of its
target did not tend to co-occur in the same patient,7 which was tested
using the hypergeometric distribution (Po0.05). Then we used the
following criteria to filter the mutually exclusive pairs and find coordinated
effects of miRNA expression changes and gene copy number alterations in
breast cancer. First, we only retained the mutually exclusive pairs that
showed upregulation of miRNA and deletion of its targets or down-
regulation of miRNA and amplification of its targets. Second, as the
miRNA–target pairs have been associated with loss or gain functions of
the targets, it should be possible to observe the respective changes in the
gene expression as well. Thus we only retained the mutually exclusive pairs
that showed consistent expression changes of the targets, which means
that the target is significantly downregulated or upregulated in both the
samples only with differential expression of the miRNA deregulated

samples and the samples only with the copy number alterations of the
target when comparing with the normal cohort (T-test, Po0.05). Finally,
for each mutually exclusive miRNA–target pair, based on the hypothesis
that differential expression of the miRNA and copy number alterations of
its target would affect the same pathway during the progression of breast
cancer, we detected DEGs (miRNA-related DEGs) between samples only
with differential expression of the miRNA and normal samples and DEGs
(target-related DEGs) between samples only with copy number of
alterations of the target and normal samples using T-test. The genes with
FDRo0.05 were defined as DEGs. Then we used the hypergeometric
distribution model to test whether the two DEG lists were significantly
enriched with pathways derived from the KEGG database. We identified
two lists of pathways that were significantly enriched at Po0.05. And we
used the hypergeometric distribution model to test whether the overlap
between the two pathway lists was significant more than expected by
chance. Only those mutually exclusively pairs that passed the pathway test
were retained.

Statistical and survival analysis
The survival differences between different groups of patients were
estimated using the log-rank test,40 and survival curves were plotted
using the Kaplan–Meier method.41 Cox proportional hazard models were
used for univariate and multivariate survival analyses.42 Benjamini–
Hochberg multiple testing correction was used to estimate the FDR when
multiple testing correction was applied.43 All statistical analyses were
performed using R 3.0.0 (www.bioconductor.org).
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