
OPEN

REVIEW

Hypoxia and metabolic adaptation of cancer cells
KL Eales1,3, KER Hollinshead1,3 and DA Tennant1,2

Low oxygen tension (hypoxia) is a pervasive physiological and pathophysiological stimulus that metazoan organisms have
contended with since they evolved from their single-celled ancestors. The effect of hypoxia on a tissue can be either positive or
negative, depending on the severity, duration and context. Over the long-term, hypoxia is not usually consistent with normal
function and so multicellular organisms have had to evolve both systemic and cellular responses to hypoxia. Our reliance on
oxygen for efficient adenosine triphosphate (ATP) generation has meant that the cellular metabolic network is particularly sensitive
to alterations in oxygen tension. Metabolic changes in response to hypoxia are elicited through both direct mechanisms, such as
the reduction in ATP generation by oxidative phosphorylation or inhibition of fatty-acid desaturation, and indirect mechanisms
including changes in isozyme expression through hypoxia-responsive transcription factor activity. Significant regions of cancers
often grow in hypoxic conditions owing to the lack of a functional vasculature. As hypoxic tumour areas contain some of the most
malignant cells, it is important that we understand the role metabolism has in keeping these cells alive. This review will outline our
current understanding of many of the hypoxia-induced changes in cancer cell metabolism, how they are affected by other genetic
defects often present in cancers, and how these metabolic alterations support the malignant hypoxic phenotype.
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INTRODUCTION
The evolution of our multicellular ancestors from their single-
celled predecessors required the development of an ability to
sense changes in oxygen tension and respond with both an acute
change in cell phenotype to preserve survival, but also a more
long-term rearrangement of the surrounding architecture to
allow better oxygen perfusion. The diffusion limit for oxygen is
~ 100–200 μm, which means that for adequate oxygenation, cells
must be within this radius.1,2 However, hypoxia is not a binary
stimulus, and gradients between one functional blood vessel and
the next often allow for appropriate cell and tissue development
and function. During fetal development, hypoxia represents
a positive, necessary stimulus, required for the appropriate
patterning and function of most organs.3 Indeed, in some organs,
a gradient in the oxygen tension across the tissue is required
throughout life for their function—an example being in liver
zonation.4 However, it is becoming increasingly clear that the
cellular effects of exposure to low-oxygen tensions represent a
pernicious facet of many diseases, such as cancer, cardiovascular
disease, dementia and diabetes.

HYPOXIA IN CANCER
Hypoxia arises in tumours through the uncontrolled oncogene-
driven proliferation of cancer cells in the absence of an efficient
vascular bed. Owing to the rapid proliferation of cancer cells, the
tumour quickly exhausts the nutrient and oxygen supply from the
normal vasculature, and becomes hypoxic. This drives upregula-
tion of the production of angiogenic factors from the hypoxic
tumour sites,5 which triggers the vascularization of the tumour

mass, a phenomenon that was first reported in 1908.6 However,
the vessels formed in tumours are not associated with the same
careful co-ordination of pro- and anti-angiogenic factors as with
normal physiological angiogenesis, and lead to vascular leakiness,
chaotic architecture and non-laminar blood flow.2 The resulting
vessels are therefore not always functional, being either blunt
ended or subject to changes in direction and velocity of flow.
Finally, although the endothelial cells in normal vessels create a
smooth, cobblestone-like surface that permits laminar non-
thrombogenic flow, endothelial cells of tumour-associated vessels
have gaps between them, resulting in non-laminar flow that
makes the blood prone to clotting, and local tissue oedema.7,8

Both these outcomes result in additional hypoxic tumour regions.
As such, a solid tumour is riddled with areas of mild-hypoxia
leading to severe hypoxia and necrosis as well areas of acute
hypoxia and re-oxygenation.5,9,10 The chaotic architecture of the
tumour vasculature can also result in dynamic fluctuations in
blood flow and therefore oxygen availability, which have been
observed in distinctive patterns and represent a phenomenon
described as ‘cycling hypoxia’. The frequency of these cycles has
been shown to vary between seconds to hours and even days.10,11

The higher frequency cycling is believed to arise from the
alterations in red blood cell flux and perfusion, whereas large-scale
remodelling of the vascular network and angiogenesis are
believed to cause the lower frequency cycling hypoxia witnessed
over a matter of days.10 The diversity of hypoxic stimuli within
tumours makes it difficult to generalize on its effect on tumour
biology, and pertinent to this review, its metabolism. Indeed, the
biology of a hypoxic cancer cell is a product of the interplay
between the prevailing oxygen tension, hypoxia-induced
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signalling (often via hypoxia-inducible factor; HIF), interacting
genetic defects, and cellular damage by reactive oxygen
species (ROS).

HIFS
Reductions in oxygen tension result in the stabilization and activity
of the HIFs through the inactivation of a family of HIF prolyl
hydroxylases (PHDs).12,13 The HIF transcription factors are com-
posed of a stable β subunit, and one of two oxygen-labile α
subunits (HIF1α and HIF2α), the stability of the latter being
controlled through hydroxylation by PHDs and subsequent binding
and ubiquitylation by pVHL.14–17 This leads to the rapid degrada-
tion of the α subunits in normoxic conditions through proteasomal
activity. Further control is exerted through the oxygen-dependent
hydroxylation of a C-terminal asparagine residue (N803 in human
HIF1α) by factor inhibiting HIF1 (FIH).18,19 This modification results
in the inability of HIF1 to transactivate a subset of HIF target
genes.20 Importantly, the oxygen tension required to inactivate FIH
is lower than that of the PHDs,21 creating a graded transcriptional
response appropriate to the severity of hypoxia. To transactivate
target genes, the HIF transcription factors bind hypoxia-responsive
elements that can be either proximal or distal to the promoter of
the target genes.22,23 Through this, they regulate the expression of
a significant number of gene targets involved in angiogenesis,
metabolic adaptation, survival and migration.24–27 The two HIFα
subunits have differential expression profiles and gene targets,
providing a differential response between different tumour types.
Although HIF1α is expressed ubiquitously, HIF2α expression is more
restricted, and has been described in cell types such as hepatocytes
and endothelial cells.28 The HIF-responsive transcriptome therefore
varies between cell type, based on the expression profile of the α
subunits, as well as the severity of hypoxia. However, it has been
shown that HIF1 activity can upregulate almost all enzymes of
glycolysis, facilitating increased flux in hypoxia in most if not all cell
types.29 Importantly, in most cell types studied in chronic hypoxia,
HIF1α subunit levels are rapidly increased and stabilized within
hours, but after a few days decrease to a lower expression level.30

This is likely due to the HIF1-mediated upregulation of PHD2 (and
PHD3), which appear to retain enough activity to hydroxylate
HIF1α, resulting in its renewed degradation.30,31 In contrast, cycling
hypoxia results in an enhanced activity and stabilization of HIF1,
which is at a much greater level than witnessed in chronic
hypoxia.11 This damaging phenotype is also associated with an
increased resistance to radiotherapy and chemotherapy as well as
increased metastatic potential.11

Through the activity of HIF, cancer cells acquire many malignant
properties. It is hardly surprising therefore, that tumours exhibiting
significant hypoxia (intratumoural pO2o10 mm Hg) have been
associated with an increased risk of mortality, independently of
prognostic factors such as grade, histology, nodal status and size
of the tumour.32 Primary tumour biopsies from numerous cancers
such as breast, lung and pancreas have all been shown to exhibit
increased expression of HIF1α or HIF2α, correlating with increased
risk of metastasis and mortality.33,34 Despite the overwhelming
evidence in most tumours for the negative prognostic value of HIF
and hypoxia in the majority of cancers, there appears to be some
context dependency, as some studies have shown no prognostic
significance of HIF1α.35,36

INTERPLAY BETWEEN HIF, P53 AND MYC IN HYPOXIA
Hypoxia, and the HIF transcription factors have also been shown
to affect the function and stability of some oncogenes and tumour
suppressor genes that influence cell metabolism: the best
characterized examples being v-myc avian myelocytomatosis viral
oncogene homolog (MYC) and p53. The relationship between p53
and HIF is not straight forward: hypoxia has been shown to induce

p53 stability in some conditions, whereas not in others, and the
mechanism by which this occurs is unclear.37,38 It appears that
severity and duration of the hypoxic stimulus is likely to have a
role, with more severe oxygen tensions eliciting a strong
stabilization, perhaps through DNA damage–response
mechanisms.39 This interplay between p53 and HIF1 is thought
to result in a further gradation of the hypoxia-induced change in
metabolism that is therefore dependent on HIFs during mild or
acute hypoxic challenges, but engages p53-mediated gene
expression changes during chronic and/or severe hypoxia
(Figure 1). This could be particularly important in the control of
antioxidant-producing pathways from glycolysis, which will be
discussed below. In addition, the HIF transcription factors and MYC
also interact to alter the MYC transcriptional profile. MYC, as a
heterodimer with MYC-associated protein X (MAX), binds E-boxes
in the promoter regions of genes to transactivate its targets.40

MAX itself is controlled through binding of MAX dimerization
protein (MXD1/MAD) and MAX interactor 1 (MXI1/MAD2).41

Although the MYC:MAX dimer transactivates target genes, MAX
binding by MXI1 inhibits this. Interestingly, HIF1α can interfere
with the MYC:MAX dimer in two ways: through upregulation of
MXI1 (thereby increasing competition for MAX)42 and through
direct binding of MAX, displacing MYC. Conversely, HIF2α can bind
and stabilize the MYC:MAX heterodimer, promoting MYC-induced
transcriptional changes.43 This is more likely to be of importance
in the hypoxia-induced metabolic transformation in non-MYC-
amplified tumours, as the HIFα can be outcompeted in tumours
with high levels of MYC expression for the MAX subunit.44 The
stabilization of HIF1, HIF2 and p53 and the expression of MYC
therefore combine to form a graded response to changes in
oxygen tension with different players influencing metabolism as
the degree of hypoxia increases (Figure 1).

HYPOXIA-INDUCED CHANGES IN GLUCOSE FATE AND
CONTROL OF CELLULAR REDOX
It has been long appreciated that under hypoxic conditions
glycolytic rates are enhanced, with a resulting increase in lactate
production (Figures 1 and 2). Even small reductions in the
production of adenosine triphosphate (ATP) by oxidative
phosphorylation requires a significant increase in the rate of the
ATP-producing steps in glycolysis due to the relative molar
efficiencies of these processes (that is, glycolysis produces 2 mol
ATP/mol glucose, whereas the addition of oxidative phosphoryla-
tion produces around 36 mol ATP/mol glucose). Although hypoxia
often leads to a reduction or cessation of proliferation through
HIF-mediated upregulation of p21WAF1/CIP1, in some cancers,
proliferation is maintained through the sustained activity of mTOR
or Notch.45–48 In these cases, intracellular glucose must not only
maintain cellular ATP steady-state, but also supply biosynthetic
building blocks such as ribose-PP and one-carbon units for
nucleotide synthesis and amino acids for protein production,
putting significant pressure on glucose supply.
What has become clear recently is that cancer cells can cover

for acute loss of glucose availability through the utilization of
intracellular glycogen as a means of maintaining cell viability and
proliferation (Figure 2).49 Indeed, it was recently shown that in
response to acute hypoxia, cancer cells can increase their
glycogen storage.50 In addition, the same study showed that the
glycogen metabolism via the liver form glycogen phosphorylase,
appeared to represent an obligate metabolic pathway for cancer
cells to avoid senescence through the suppression of ROS
production.51 This is consistent with the previously described
glycogen shunt in a number of other cell types,52 and opens a
new door to potential therapeutic opportunities.53

Hypoxia directly increases lactate production and excretion due
to the effect of the changes in mitochondrial redox status elicited
by reduced oxygen availability. Under hypoxia, the nicotinamide
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adenine dinucleotide reduced: oxidized (NADH:NAD+) ratio in the
mitochondria often increases owing to slowing of electron
transport and consequent reduction in the rate of NADH
oxidation.54,55 This inhibits NADH-producing reactions in the
tricarboxylic acid cycle, thereby reducing the rate at which the
malate-aspartate shuttle can transfer the NADH produced in
glycolysis into the mitochondrial matrix (Figure 2). In order to
maintain a favourable glycolytic rate, and therefore glycolytic ATP
production, pyruvate is used to oxidize the NADH, and is
consequently reduced to lactate. As cytosolic acidification also
inhibits glycolysis, lactate is excreted from the cell through
monocarboxylate transporters, resulting in extracellular acidifica-
tion that contributes to the malignant phenotype of the
cancer.50,56,57 The enzyme that reduces pyruvate, known as
lactate dehydrogenase (LDH), is a pentameric complex consisting
of variable ratios of the A and B subunit.58 The resulting isozymes
have differing favoured direction of reaction, from LDH1
(5 × LDHB) that is inhibited by pyruvate and preferentially
oxidizes lactate, to LDH5 (5 × LDHA), which has a higher Vmax

and favours pyruvate reduction.59,60 Importantly, the hypoxia-
induced alteration in the metabolic fate of pyruvate is supported
by the upregulation of LDHA through the activity of HIF1, which
results in a majority of LDHA subunit-containing isozymes,
therefore favouring pyruvate reduction in hypoxia.59–61 Indeed,
the stabilization and activity of HIF1 in hypoxia strongly supports
and even enhances the metabolic reprogramming of glycolysis
through the upregulation of almost all glycolytic genes and the
monocarboxylate transporters that export lactate. HIF1 has been
shown to upregulate the expression of genes encoding glucose
transporters 1 and 3, glycolytic enzymes such as hexokinase 1 and
3, aldolase A and C and glyceraldehyde 3-phosphate
dehydrogenase.62 As well as altering glycolytic isozyme selection
and expression, HIF1 also modulates the function of the electron
transport chain in hypoxia through switching subunits in complex
IV, known as cytochrome c oxidase (COX). Under aerobic
conditions, cells express the COX4-1-regulatory subunit within

the COX complex. In hypoxia, HIF1 increases the expression of the
alternative COX4-2 subunit, while increased expression of the
mitochondrial LON protease leads to the degradation of the
COX4-1 subunit.63,64 This shift in subunit expression has been
suggested to aid efficiency of complex IV under reduced oxygen
conditions and to prevent inefficient electron transfer and
potential generation of ROS in hypoxia.
Alongside the NAD+:NADH redox pair used to generate ATP, the

other major pyridine-based redox pair is NADP+:NADPH, present
in lower absolute quantities in most cell types. However, despite
this low abundance, this latter redox pair is critical in maintaining
both cellular ROS-detoxification mechanisms through reduction of
the cellular redox couples such as the glutathione system, and
other key metabolic pathways such as the fatty-acid synthesis
pathway. As reducing equivalents cannot directly cross the
mitochondrial membrane, cycling systems such as the malate-
aspartate shuttle described above are used, without which the
reducing potential has to be generated in the compartment
where it is to be utilized. Importantly, both the oxidative pentose
phosphate pathway and folate pathway have been shown to be
major contributors to cytosolic NADPH production in normoxia
(Figure 2).65,66 Both of these pathways branch from glycolysis, and
although almost all carbons (5 of 6) from the oxidative pentose
phosphate pathway can re-enter glycolysis after use as reducing
potential for two NADPH production, the production of NADPH
through the metabolism of serine to glycine removes carbons
from glycolytic ATP production (Figure 2). Interestingly, the folate
pathway can also cycle reducing potential between the mitochon-
dria and cytosol through the transport of serine and glycine across
the mitochondrial membrane, due to the presence of mitochon-
drial and cytosolic forms of the enzymes involved (Figure 2). The
resulting movement of NADPH into or out of the mitochondria
could therefore be an important redox cycle in hypoxia. However,
this is yet to be comprehensively investigated. What is now
understood is that p53 stabilization can also regulate the fate of
carbons in glycolysis by increasing the entry of glycolytic

Figure 1. Decreasing oxygen tension elicits alterations in metabolism through a number of mechanisms. The direct effects of oxygen tension
on metabolism are shown within the ‘oxygenation wedge’, whereas those that are affected through signalling pathways activated in hypoxia
are shown below. ALDH4, aldehyde dehydrogenase 4; GLUT1, facultative glucose transporter 1; HIF, hypoxia-inducible factor; HK2, hexokinase
2; LDHA, lactate dehydrogenase A; MAX, Myc-associated protein X; MCT4, monocarboxylate transporter 4; mROS, mitochondrial reactive
oxygen species; MYC, V-Myc Avian Myelocytomatosis Viral Oncogene Homologue; NRF2, nuclear factor erythroid 2-related factor 2; OXPHOS,
oxidative phosphorylation; PDK1, pyruvate dehydrogenase kinase 1; PGAM, phosphoglycerate mutase.
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intermediates into the pentose phosphate pathway and folate
pathway through the modulation of the expression of key
enzymes (for example, TP53-inducible glycolysis and apoptosis
regulator and phosphoglycerate mutase.67,68 Through these
mechanisms, p53 stabilization can upregulate antioxidant produc-
tion, although this comes at the expense of glycolytic ATP
production. Importantly, as mitochondrial ROS production is
thought to increase in hypoxia, significant capability in generating
the glutathione and thioredoxin redox couples in the mitochon-
dria is required to maintain genetic stability, protein function, lipid
membrane fluidity and therefore cell viability. The mitochondrial
nicotinamide nucleotide transhydrogenase (NNT) may be critical
to this, owing to its ability to transfer reducing potential from
NAD+ to NADP+ and vice versa. The increased mitochondrial
NADH:NAD+ ratio in hypoxia may therefore suppress the move-
ment of ROS away from their sites of production through the
maintenance of reduced mitochondrial redox couples.
Another key enzyme upregulated by hypoxia-induced HIF1

activity and alters pyruvate metabolism is the kinase, pyruvate
dehydrogenase kinase 1. This HIF1-mediated effect leads to

inactivation of the pyruvate dehydrogenase complex and
subsequent loss of pyruvate oxidation. However, as HIF1 is
upregulated in most cells significantly before oxygen becomes
limiting for oxidative phosphorylation (maximal HIF stability is
thought to be ~ 1% O2, whereas respiration becomes proportional
to oxygen tension ~ 0.4–0.7% O2

69,70), it may appear at first glance
that cells react too sensitively to what could be thought of as a
mild hypoxic stimulus. However, the inhibition of the pyruvate
dehydrogenase complex in hypoxia could well be a protective
mechanism, as it has recently been shown that activation of this
enzyme complex by oncogenes is a key driver of oncogene-
induced senescence through increased oxygen consumption and
redox stress.71 This is surprisingly similar to the phenotype shown
in response to the inhibition of glycogen metabolism,51 and points
to the intriguing possibility of inducing oncogene-induced
senescence in cancers through the inhibition of one or more
obligate glucose-metabolising pathways.
An alternative use of pyruvate in hypoxia requires its

carboxylation by pyruvate carboxylase, an enzyme traditionally
associated with gluconeogenesis. This reaction has previously

Figure 2. Some of the metabolic pathways known to have altered flux or importance in hypoxia. Metabolic pathways described in the text are
shown, as are the enzymes mentioned, shown in red. Thicker lines represent those pathways in which hypoxic cells have been shown to
increase flux, or rely more on their activity. αKG, alpha-ketoglutarate; 3PG, 3-phosphoglycerate; 6PGD, 6-phosphogluconate dehydrogenase;
AcCoA, acetyl-Coenzyme A; ACO1/2, aconitase 1/2; ALD, aldolase; Asp, aspartate; Cit, citrate; CPS, cytidine triphosphate synthetase;
Fum, fumarate; G3P, glyceraldehyde 3-phosphate; G6P, glucose 6-phosphate; G6PD, glucose 6-phosphate dehydrogenase; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; Glu, glutamate; GLS, glutaminase; Gly, glycine; GPAT, glutamine phosphoribosylpyrophosphate
amidotransferase; GYS, glycogen synthase; HK, hexokinase; IDH1/2, isocitrate dehydrogenase 1/2; LDH, lactate dehydrogenase; Mal, malate;
ME, malic enzyme; OAA, oxaloacetate; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1;
PGAM, phosphoglycerate mutase; PYGL, glycogen phosphorylase; Pyr, pyruvate; Ser, serine; Suc, succinate.
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been shown as important for the proliferation of cancer cells in
glutamine-depleted conditions in normoxia.72 In addition, it was
recently shown to be critical for the proliferation of cells with
mitochondrial defects, such as loss of fumarate hydratase or
succinate dehydrogenase activities.73–75 It is therefore likely that
cells under hypoxia will demonstrate a requirement for pyruvate
carboxylase activity to re-fill tricarboxylic acid cycle carbons,
permitting the synthesis of anabolic building blocks such as
aspartate.

HYPOXIA-INDUCED CHANGES IN GLUTAMINE FATE IN CANCER
Glutamine, the most abundant non-essential amino acid in blood,
is central to the anabolism of most cells in normoxia, and its
uptake exceeds that of any other amino acid around tenfold.76

Under normoxic conditions, glutamine is oxidized to provide both
ATP through the tricarboxylic acid cycle and anabolic building
blocks for cell proliferation through fatty acid, amino acid and
nucleotide synthesis. However, a consequence of decreased
pyruvate oxidation and mitochondrial respiration during the
cellular adaptation to hypoxia is increased dependence upon
reductive glutamine flux for cell proliferation and viability.
Amplification of the oncogene MYC, which is observed in many

different cancers, has an important role governing the rate and
pathway by which glutamine is metabolized.77 MYC directly
upregulates glutamine-metabolising enzymes such as glutami-
nase, which ensures the rapid integration of both the nitrogens
and carbons from glutamine into the anabolic network. Interest-
ingly, hypoxic cells with high MYC expression have increased
oxidative metabolism of glutamine compared with cells with
normal MYC expression.78 This would actively support, and
promote a proliferative phenotype in hypoxic cells, making these
tumours more aggressive. In addition, it is likely to also increase
hypoxic ROS production, increasing genetic instability. However,
this effect may be offset by the increased glutathione synthesis
also observed in MYC-amplified cells.79 The negative effect of
increased oxidative flux in MYC-amplified tumours in hypoxia
would increase oxygen use in oxygen-limited conditions. This
would therefore not only inhibit other oxygen-dependent
metabolic reactions, but also expand areas of hypoxia and
necrosis resulting in the malignant changes associated with this.
It is also important to mention here that as p53-expression is
important for the assembly and therefore function of COX in the
electron transport chain through expression of the assembly
factor, SCO2, loss of p53 in normoxia results in a similar phenotype
to that observed in hypoxia as the malate-aspartate shuttle ceases
to function effectively.80

In cells with defective mitochondria, or those in hypoxia,
glutamine oxidation is decreased.79,81–83 As a result, reductive
glutamine metabolism has been proposed to occur in response to
increases in the alpha-ketoglutarate (αKG)/citrate ratio and has
since been implicated as an important pathway for the survival of
these cells. Reductive carboxylation describes the synthesis of
citrate using the reducing potential of NADPH via the enzymes
isocitrate dehydrogenase (IDH) 1 and 2, and aconitase (ACO) 1 and
2 (Figure 2). Notably, IDH1 and ACO1 are cytosolic enzymes,
whereas IDH2 and ACO2 are mitochondrial, forming two pathways
with the same activity but distinct localization. IDH-mediated
reductive carboxylation of glutamine-derived αKG to produce
sufficient citrate for lipid synthesis was first described in normal
brown adipocytes84 and is observed when steady-state αKG levels
are high, and that of citrate is low.85,86 The conditions required for
a shift away from oxidative glutamine metabolism and an increase
in reductive carboxylation during hypoxia are still unclear. It has
been suggested that stabilization of HIF1 promotes seven in
absentia homologue 2-targeted ubiquitination and proteolysis of
the E1 subunit of the α-ketoglutarate dehydrogenase complex,
resulting in reduced α-ketoglutarate dehydrogenase activity,

decreased glutamine oxidation and therefore increased
glutamine-dependent lipid synthesis, which is necessary for
hypoxic cell proliferation.87 However, this is not supported by
studies that suggest a requirement for α-ketoglutarate dehydro-
genase and NNT activity for reductive carboxylation in cells either
in normoxia86 or with mitochondrial defects, such as fumarate
hydratase or complex III deficiency.88 Interestingly, this latter study
again highlights the important role for the NNT, which has been
suggested to allow the transfer of reducing potential from NADH
produced by α-ketoglutarate dehydrogenase to NADPH that can
be used to drive the IDH-mediated reaction.88 The discrepancies
between these studies may lie in the nature of the perturbation:
the former study investigated de facto hypoxia with its down-
stream HIF-mediated signalling, whereas the latter studies
observed cells under normoxia: either wild-type, or with
mitochondrial defects.
This may highlight the importance of cellular redox status in the

control of mitochondrial functions, including reductive carboxyla-
tion. This is particularly apparent with respect to the ACO
enzymes. Mitochondrial ACO has long been known for its
susceptibility to ROS-mediated inactivation through oxidation of
its Fe-S active site.89 In these conditions, when the pool of active
ACO2 is significantly reduced, the use of IDH2-mediated
mitochondrial pathway for reductive carboxylation would be less
efficient, which is consistent with the findings from Metallo et al.,90

although the specific contributions of IDH1&2 (and therefore
ACO1&2) in reductive carboxylation are still not entirely clear. The
cytosolic form of ACO is also of interest, as it has a key role in the
regulation of iron-uptake in the absence of iron, or after oxidation
of its Fe-S cluster. In these situations, it has a non-catalytic role as
the iron-sensing post-transcriptional regulator of mRNA transla-
tion, iron-regulatory protein 1.91–93 This protein binds to iron-
regulatory elements in the 5’ region of a number of mRNAs
including transferrin and ferritin, inducing increased uptake of
extracellular iron.94,95

Despite decreased mitochondrial respiration and increased
activity of reductive carboxylation, hypoxic cells can maintain
and in some cases even upregulate oxidative glutamine metabo-
lism, accounting for the majority of ATP synthesis through
oxidative phosphorylation in these conditions.78,90,96 It is thought
that this activity also facilitates the production of mitochondrial
NADPH through the activity of malic enzyme (ME), which converts
malate to pyruvate, and is found to be expressed at high levels in
some tumours.97,98 Although this is likely an important source of
mitochondrial NADPH in some circumstances, it is not clear what
additional benefit mitochondrial ME activity provides in the
presence of an active NNT. Instead, the reduction of malate to
pyruvate in the cytosol by ME1, perhaps as part of a malate-
pyruvate shuttle in hypoxia (using pyruvate carboxylase), may
provide a cytosolic source of NADPH.65 Interestingly, in normoxia,
neither ME, IDH1&2 nor NNT were shown to be major NADPH
sources by small interfering RNA knockdown.65 However, as
genome-scale flux balance analysis by the same authors predicted
a significant role for malic enzyme, it is likely that other pathways
were capable of compensating in its absence.65

‘ALTERNATIVE’ CARBON SOURCES IN HYPOXIA
The metabolism of both glucose and glutamine are progressively
altered with decreasing oxygen tension. It is thought that the
reduction in oxygen use before oxygen becomes limiting for
oxidative ATP production may not only reduce the potential for
ROS production, but also may spare oxygen for other cellular
processes. There is now increasing evidence that in the absence of
fully functional metabolic pathways in hypoxia, cancer cells
harness exogenous and endogenous carbon sources other
than glucose and glutamine to supply required metabolic
intermediates.
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The inhibition of pyruvate oxidation leads to a loss of
mitochondrial acetyl-CoA production from glucose, and a
requirement for another source of this important high-energy
metabolite to continue a complete tricarboxylic acid cycle. As
previously described, an alternative source of this is through the
reductive carboxylation of glutamine in hypoxia. However, in
addition to becoming more reliant on reductive glutamine
metabolism for lipogenic acetyl-CoA production,82 hypoxic cancer
cells are also able to metabolize exogenous acetate to derive
sufficient acetyl-CoA for lipid biomass production.99 Indeed, the
majority of hypoxic acetyl-CoA production in the latter study was
shown to derive from acetate, not glutamine.99 Acetyl-CoA
synthetase, the enzyme responsible for this reaction, is found to
be critical for hypoxic cancer cell survival, and its expression is
induced in response to hypoxia for lipid synthesis.100 Changes in
the availability of acetyl-CoA in the cytosol and mitochondria
under hypoxia are likely to alter the acetylation of target proteins
in these compartments, which include a number of key metabolic
enzymes such as glutamate dehydrogenase and mitochondrial
superoxide dismutase.101 It is likely that mitochondrial acetyl-CoA
concentrations decrease in hypoxia due to the inhibition of
pyruvate dehydrogenase complex activity, but at present this is
unknown.
There is also limited data on the effect of hypoxia-induced

autophagy on cancer cell metabolism. Although it is accepted that
damaged organelles, especially mitochondria, are cleared through
autophagy under hypoxia, the fate of the nutrients released from
these organelles is currently unknown. However, a metabolomics
profile consistent with nutrient release due to autophagy has been
reported.102 It is likely that the nutrients released from processes
such as mitophagy are used to support ongoing cell viability and
repair of cellular structures such as DNA in hypoxic cancer cells.
Indeed this is somewhat supported by the limited evidence
available that shows a drop in ATP and increase in cell death upon
inhibition of autophagy in hypoxia.102

Interestingly, it was recently shown that Ras-transformation of
cells resulted in an increase in macropinocytosis—a process by
which cells engulf extracellular fluid and its contents—to supply
amino acids for metabolism in normoxia.103 Although macro-
pinocytosis has not formally been shown to be induced in hypoxic
cancer cells, a recent study found that uptake of unsaturated lipids
(lysophospholipids) increased in hypoxic cancer cells, and that this
was phenocopied in normoxia by Ras-transformation.104 Hypoxic
cancer cells may have difficulty in synthesising the correct species
of lipids for appropriately functional membranes at a rate that
would keep up with their oncogenic drive, due to hypoxia-
mediated loss of glucose oxidation and inhibition of the oxygen-
dependent desaturation of fatty acids (stearoyl-coA desaturase;
SCD1). Uptake of exogenous unsaturated fatty acids, similar to the
Ras-induced macropinocytosis for amino acid supplementation,
allows them to maintain rapid proliferative rates despite a hostile
microenvironment.

METABOLIC COMPLEMENTATION
Most tumours are characterized by regions of necrosis, mild and
severe hypoxia and normoxia. As such, in this heterogeneous
environment, there are significant opportunities for metabolic
complementation between different microenvironments and cell
types. An example of the latter is the oxygen-sparing activity of
tumoural vascular endothelial cells, which, as the cells most
proximal to the blood supply, are highly glycolytic.105 This permits
oxygen to permeate further into the tumour, alongside the
remaining glucose and other nutrients that can be oxidatively
metabolized. However, an interesting and potentially very
important metabolic interplay between hypoxic and normoxic
tumour areas was revealed by Sonveaux et al.106 in 2008. The
authors showed that much like some other tissues, normoxic

tumour areas can oxidize lactate as a significant carbon source,
sparing glucose and allowing it to diffuse further away from the
tumour vasculature.106 Indeed, upon reaching the hypoxic tumour
areas, anaerobic metabolism was used to metabolize the glucose
to lactate, which could then be used by the normoxic tumour
areas. This metabolic symbiosis is now considered a strong
therapeutic target, most likely through the inhibition of one or
more of the monocarboxylate transporters required to transport
lactate in and out of the cell.107

CONCLUSIONS
Although our knowledge of metabolic transformation in cancer
has improved markedly over the past few years, the impact of
hypoxia on most cellular metabolic pathways is still not entirely
clear. Hypoxia-induced metabolic re-wiring is designed to permit
cell and tissue survival during the metabolic stress. For some
diseases we need to support these changes in order to preserve
tissue function. However, hypoxia drives malignant progression in
cancers, resulting in poorer survival through resistance to therapy
and increased metastatic potential. We therefore need to under-
stand how hypoxia alters cellular metabolism in order to be able
to target these pathways, thereby killing these malignant cells.
Targeting those pathways that are merely more highly utilized in
hypoxic cancer cells, such as glycolysis, are unlikely to be clinically
viable, as the therapeutic window may be difficult to achieve.
However, other approaches that identify those pathways that are
usually dispensable, but become fundamental to survival under
hypoxia, are likely to result in therapeutic targets that have little to
no side-effects to normal tissue. Although these therapies will not
efficiently target the normoxic areas of tumours, they would be
expected to increase the efficacy of other commonly used
interventions such as radiotherapy, thereby improving the overall
survival of patients.
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