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Arginine dependence of tumor cells: targeting a chink in
cancer’s armor
MD Patil1, J Bhaumik1, S Babykutty2, UC Banerjee1 and D Fukumura2

Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in
numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because
of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are
auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid
demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase,
arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These
arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered
anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be
advanced as anti-cancer modalities.
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INTRODUCTION
Amino acids play a major role in regulating important cellular
events in both normal and malignant cells. Besides their role in the
synthesis of hormones and peptides, amino acids also function as
cell signaling molecules, playing a modulatory role in gene
expression.1 Amino acids regulate RNA synthesis by diverse
mechanisms ranging from regulating transcription factors
assembly,2 to total mRNA turnover.3,4 Amino acids are major
determinants of a normal cellular physiology, therefore potential
signaling pathways such as amino acid response (AAR) pathway
sense their altered metabolism (Figure 1). Hence, amino acid levels
in the body are critical for important cellular functions.5–9

There is a significant difference between the metabolism of
normal and malignant cells.10 For instance, bio-energetic require-
ments for homeostasis in normal cells are fulfilled by catabolic
metabolism. On the other hand, the majority of the tumor cells
alter their metabolic program ('metabolic remodeling') and
consume additional nutrients in order to maintain a balance
between elevated macromolecular biosynthesis11 and adequate
levels of ATP for survival.12,13 However, the endogenous supply of
nutrients becomes inadequate during intense growth. Thus tumor
cells depend on exogenous nutrients in their microenvironment to
fulfill the elevated energy requirements, that is, they become
auxotrophic for nutrient and energy sources.14–16 Deprivation of
amino acids results in growth inhibition or death of tumor cells by
the modulation of various signaling cascades.6–9,17,18

Exogenously incorporated enzymes that deprive amino acids
could be a novel strategy for the treatment of auxotrophic
tumors. The first Food and Drug Administration approved
heterologous enzyme for the treatment of cancer was Escherichia
coli L-asparaginase.19 L-asparaginase exploits the differences
on their dependence of normal and leukemic cells toward

L-asparagine.20 L-asparaginase has been proven to be a promising
agent for the treatment of L-asparagine auxotrophic T-cell acute
lymphoblastic lymphoma (T-ALL). Use of L-asparaginase in T-ALL
opened up new windows of ‘amino acid-depriving therapy’.
Currently, there is a resurgence of interest in enzyme-mediated
amino acid deprivation as a new therapeutic approach for cancer
treatment.6,7,21,22 For example, arginine depletion can inhibit
tumor cell proliferation and induce cell death pathways. Here we
endeavor to provide a basic understanding of the roles of arginine
in normal and tumor cell with emphasis on current knowledge
and developments in the application of enzyme-mediated
arginine-depriving therapy as a potential anti-cancer approach.

ENZYME-MEDIATED ARGININE DEPRIVATION: A POTENTIAL
ANTI-CANCER APPROACH
Arginine is involved in the regulation of various molecular
pathways and thus the availability of arginine can modulate key
metabolic, immunological, neurological and signaling pathways of
the cells (Figures 2 and 3).23,24 Auxotrophy toward arginine by
certain tumor cells (particularly that of hepatocellular carcinoma
and melanoma) has been well characterized.25,26 Normal cells,
when deprived of arginine, undergo cell cycle arrest at Go/G1

phase and become quiescent. If reinstated with arginine, the
majority of the normal cells recover to their normal proliferation
status. However, arginine deprivation in tumor cells does not
arrest cell cycle at G1 phase and continue to be in a cell cycle,
leading tumor cells to undergo unbalanced growth and eventually
lead to the activation of apoptotic pathways.27,28

Owing to the involvement of arginine in a plethora of cellular
pathways, arginine dependence of tumor cells has rapidly
emerged as a potential target for cancer.29 However, dietary
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restriction results in the reduction of only 30% of plasma
arginine.30 Thus, arginine degrading enzyme-mediated arginine
deprivation has been proposed as a potential anti-cancer therapy
by various research groups.27–35 Enzymes that can be used for
arginine deprivation therapy (ADT) include arginine deiminase
(ADI), arginase and arginine decarboxylase (ADC) as discussed
below (Figure 3).

ARGININE DEIMINASE
ADI (E.C.3.5.3.6) is a prokaryotic enzyme originally isolated from
Mycoplasma, which catalyzes an irreversible deimination of the
guanidine group of L-arginine to citrulline and ammonium ion.36

Normal cells are able to convert citrulline into arginine through
argininosuccinate synthetase (ASS) and ASL, expression of which
are tightly regulated. However, the expression of ASS/ASL is
downregulated in certain tumor cells by unknown mechanisms
and these cells are unable to convert citrulline to arginine.30–33,37

This makes the tumor cells auxotrophic for arginine for their
growth and cellular functioning. ADI-mediated arginine depriva-
tion leads to apoptotic cell death, selectively of arginine
auxotrophic ASS (− ) tumor cells sparing the ASS (+) ADI resistant
normal cells38 (Table 1). Incidence of ASS deficiency varies
depending on the tumor type and expression level of ASS has
been proposed as a biomarker for identification of ADI sensitive
tumors.24,25,39–42

In 1990, Miyazaki et al.43 were the first to report the growth
inhibition of Mycoplasma infected human tumor cells. The cause
of growth inhibition of human tumor cell lines was identified as a
ADI produced by Mycoplasma. In vitro growth-inhibitory dose of
Mycoplasmal ADI appeared to be 1000 times lower than that of
bovine liver arginase. Subsequently in 1992, growth-inhibitory
activity of ADI was demonstrated in ASS-downregulated human
melanoma cells.44 These pioneering studies established ADI as a
potential anti-cancer enzyme (Figure 4).

PEGylated ADI
Being microbial in origin, ADI has serious disadvantages of
eliciting strong antigenicity and rapid plasma clearance (half-life
of 4 h). To circumvent these limitations, several studies have
aimed to extend the plasma half-life of ADI and to minimize its
antigenicity. In 1993, Takaku et al.45 addressed these problems for
the first time by polyethylene glycol (PEG) modification. Remark-
ably, PEGylation of Mycoplasma arginini ADI enhanced its cytotoxic
potential in vivo and once a week intravenous injection of PEG-ADI
at a dose of 5 U per mouse (10 mg protein per kg) depleted
plasma arginine to an undetectable level at least for a week,
whereas native enzyme required 10 daily injections to achieve
similar effects. Nevertheless, PEGylation of Mycoplasma hominis

Figure 1. AAR pathway. Restriction of essential amino acids activates
the general control nondepressible protein 2 (GCN2) kinase by
increasing uncharged tRNA pool.196 Activated GCN2 kinase phos-
phorylates the translation initiation factor eIF2α. Phosphorylated
eIF2α binds more tightly to eIF2β, inhibiting the exchange of GDP
for GTP. Inhibition of GDP exchange for GTP further inhibits the
binding of eIF2 complex to methionine aminoacyl tRNA, leading to
inhibition of translational initiation.197 Recently, SLC38A9 has been
identified as an upstream positive regulator of the mTOR pathway.
Amino acids activate the RAG GTPases, which then recruit mTOR to
the lysosomal surface. Rheb also localizes to lysosomal membrane.
mTOR activation occurs only when both RAG GTPases and Rheb are
active. Upon amino acid deprivation, tuberous sclerosis complex
translocates to lysosomal surface and promotes GTP hydrolysis by
Rheb and thereby inhibiting mTOR complex.164

Figure 2. Involvement of arginine in human physiology. Arginine is a dibasic, cationic amino acid and is considered as ‘conditionally essential’
amino acid. Arginine plays a crucial role in innate and adaptive immunity. For example, increased role of arginine in myeloid-derived
suppressor cells results in the impairment of T-cell proliferation and function.190 Arginine has been identified as the sole physiological
precursor for NO, a key performer in many cellular regulatory functions. Arginine also is a precursor of two important amino acids, proline and
glutamate.198 One of the most important roles of arginine is its implication in the synthesis of polyamines through the diversion from NO
synthesis pathway. Polyamines are known to promote tumor growth, invasion and metastasis.199 Arginine also has a vital role in the synthesis
of nucleotides, creatine, agmatine and hormones such as insulin and prolactin.200
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ADI also resulted in significant enhancement of arginine lowering
potential of native M. hominis ADI.46,47 Recently, PEGylation and
pharmacological properties of an engineered ADI originated
from Pseudomonas plecoglossicida have been studied. PEGylated
P. plecoglossicida ADI remarkably improves the stystemic half-life
(by 11-folds) and found to exhibit superior efficacy than native ADI
in depleting plasma arginine.48

PEG-ADI has also shown promising outcomes for the treatment
of human malignancies. In March 1999, ADI-PEG20, PEGylated
recombinant Mycoplasmal ADI was approved as an orphan drug
by the US Food and Drug Administration for the treatment of
hepatocellular carcinoma (HCC) and malignant melanomas.
Subsequently in July 2005, European Agency for the Evaluation
of Medicinal Products granted orphan drug status to ADI-PEG20
for the treatment of HCCs.49

ADI-PEG20 is currently undergoing clinical investigation as a
randomized double-blind phase III trial in patients with advanced
HCC (NCT 01287585), phase II studies in patients with ASS-
negative metastatic melanoma (NCT 01279967) and phase II
studies in patients with relapsed small-cell lung cancer
(NCT 01266018)50 (Table 2). Outcomes of the previous clinical
studies were also encouraging, achieving response rates of 25 and
47% in melanoma and HCC, respectively (Table 2). Moreover,
grades III and IV toxicities have not been observed in clinical
investigations involving ADI-PEG20 in metastatic melanoma and
HCC patients.51,52 Therefore, clinicians are looking forward to the
establishment of ADI-PEG20 as a potent anti-cancer modality.

Tumor sensitivity toward ADI
The auxotrophicity of tumors toward arginine and their sensitivity
toward it can be attributed to the lack or reduced expression of
ASS in tumors.25,37–39,53 Notably, numerous tumor cells that are
deficient in ASS expression, are sensitive toward ADI treatment
(Table 1). Transfection of an expression plasmid containing human
ASS cDNA in HCC and melanoma cells confers severe resistance to
ADI treatment compared with ASS-negative cells.47 Till date, most
promising targets for ASS expression-dependent ADT identified
are human melanoma and HCCs. Other promising targets include
malignant pleural mesothelioma, renal cell carcinoma, prostate

cancer, T-ALL and osteosarcoma.50 However, molecular mechan-
isms underlying tumor sensitivity toward ADI treatment, by
downregulation of ASS expression in tumor cells, are still elusive.
Promoter hypermethylation-dependent silencing of ASS gene is an
endorsed mechanism of ASS gene repression.37,54–56 Methylation
frequency of the ASS promoter upto 50–80% level at the CpG loci
is documented across a broad range of lymphomas. In contrast,
normal lymphoid samples were found unmethylated.26 Treatment
of ADI-PEG20 to ASS-methylated lymphoma cell lines revealed
dramatic decrease in the proliferation rate and viability count, by
inducing caspase-dependent apoptosis, without affecting normal
lymphoblastoid cell lines. Demethylation-induced resistance to
ADI-PEG20 treatment has also been confirmed in cutaneous
T-cell lymphoma cell lines, as their incubation with 5-Aza-dC
(demethylating agent) for 8 days which resulted in partial
demethylation, followed by transcriptional activation and synth-
esis of ASS protein.26

Recently Rabinovich et al.57 have confirmed that proliferation of
the osteosarcoma cells is supported by downregulation of ASS, by
facilitating pyrimidine synthesis via activation of CAD (carbamoyl-
phosphate synthase 2, aspartate transcarbamylase and dihydroor-
otase) complex. As cytosolic aspartate serves as a substrate for
both ASS and for CAD complex, ASS downregulation can enhance
aspartate availability for CAD for the synthesis of pyrimidine
nucleotides to promote proliferation. Thus, aspartate transport can
be exploited as an additional therapeutic target in tumors with
ASS downregulation, especially in those ones which develop
resistance to arginine-depriving enzymes.

Tumor resistance toward ADI
ASS-deficient tumors are sensitive to ADI treatment; however,
arginine deprivation eventually upregulates ASS expression in
tumor cells and thereby confers resistance toward ADI.25,58

Transcriptional induction of ASS expression and increase in ASS
mRNA level is reported in human embryonic kidney cells
and melanoma cells during arginine starvation.59,60 Transcription
factors such as c-Myc and HIF-1α are involved in the upregulation
of ASS expression under arginine-depleted conditions.60

E-box and GC-box are the important sequences located between

Figure 3. Arginine synthesis and homeostasis pathways. Arginine is synthesized as an intermediate in the urea cycle. Arginine homeostasis is
mainly achieved by catabolism. In neonates, the gene expression of arginine anabolic enzymes such as 1-pyrroline-5-carboxylase, ASS and
ASL is low. Thus, arginine is considered as an essential amino acid in neonates. After birth, the expression of ASS and ASL increases and
expression of arginase is found undetectable at this stage.201 Arginine can be degraded by arginase, ADC, ADI and NOSs (please note that ADI
is not a mammalian enzyme). The products of arginine catabolism have important roles in tumor cell biology. For example, ornithine, the
product of arginase, is diverted to polyamine synthesis via ornithine decarboxylase. NOSs degrade arginine into citrulline and NO. Citrulline is
recycled to urea cycle, while NO is as a modulator of important metabolic and signaling cascades. Agmatine is synthesized by decarboxylation
of arginine via ADC and has an important role in neurotransmission.
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Table 1. Use of arginine catabolizing enzymes in ADT (Experimental studies)*

Enzyme used for
deprivation

Cell line Source and Cell type Studies carried out Reference

ADI HSC-3
HSC-4

Human tongue squamous carcinoma Cell growth inhibitory effect of ADI (purified from
Mycoplasma infected cell lines) in comparison with
arginase

43

CaSki Human cervix squamous
C41 Human carcinoma
A549 Human cervix squamous epithelium
SCC Human colon adenocarcinoma
T98G Human glioblastom

HeLa Human cervix Concentration dependent effect of ADI on cell
proliferationCHO Chinese hamster ovary 102

FF9 Fetal foreskin fibroblast

HUVEC Human umbilical vein endothelium Anti-angiogenesis effect of ADI by inhibiting
capillary-like tube formation

102

SNU-1 Human stomach adenocarcinoma Anti-proliferative effect and ADI induced cell cycle
arrest and apoptosis

202

L5178Y Mouse lymphoblastic leukemia Inhibition of cell division 203

MCF7 Human mammary adenocarcinoma Effect of ADI on the regulation of cellular protein
and polyamine synthesis

85

A549 Human lung carcinoma

SNUOT-Rb1
Y79

Human retinoblastoma ASS expression related sensitivity of cells towards
ADI

204

ADI-PEG20 CWR22Rv1* Human prostate Autophagy and caspase independent apoptosis 71

A2058
SK-Mel-2

Human melanoma Combination effect of ADI and TRAIL 66

HUVE Human umbilical vein endothelium Cell cycle progression and apoptosis 78

SaOS Human osteosarcoma Inhibition of NO using PEGylated ADI
WAC2 Human neuroblastoma
Y-79 Human retinoblastoma Effect of ADI-PEG20-mediated arginine deprivation

on the production of NO

103

Meth AC 14 Human sarcoma
SK-LC-13*
SW1271
NCI-H82

Human small cell lung ASS expression related sensitivity of cells towards
PEG-ADI, induction of autophagy and caspase-
independent apoptosis

39

A375
SK-mel-2*
SK-mel-28*

Human melanoma Specificity of ADI for degradation of arginine and
other amino acids; ASS expression dependent
sensitivity of HCC and melanomas towards ADI

47

SK-hep-2*
SK-hep-3*
HEP3B

Human HCC

A2058*
SK-MEL-2

Human melanoma Involvement of Ras/PI3K/ERK pathway in induction
of c-Myc stabilization and up-regulation of ASS

61

MDA-MB-231 Human breast
Karpas-422 Human B-cell lymphoma Correlation between ASS methylation status and

sensitivity of the cells towards ADI
MyLa
SeaX

Human T-cell lymphoma 26

OEC-M1
SCC-15
HONE-1

Human head and neck cancer Potential clinical correlation between ASS
expression and tumor prognosis

205

A375
Sk-Mel2
A2058
MEL-1220

Human melanoma The role of ASS gene expression in
ADI response/resistance

72

MIA-PaCa-2*
PANC-1
Capan-1
HPAF II

Human pancreatic cancer The role of ASS gene expression in
ADI response/resistance

74

Bovine liver
arginase

L1210 Murine lymphocytic leukemia Cell proliferation and non-recoverable cell death of
malignant cells on restoration of arginine

187

HeLa Human cervical adenocarcinoma
SAos-2 Human osteogenic sarcoma Cell proliferation and ASS expression dependent

recycling of citrulline to arginine

132

A375
MEWO

Human melanoma
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−85 and − 35 nucleotides in the ASS promoter region that
modulate ASS expression through their interactions with
c-Myc and HIF-1α. Under the normal concentrations of arginine,
HIF-1α (but not c-Myc) binds to E-box and thus acts as a negative
regulator of ASS expression. Under the conditions of arginine
depletion, HIF-1α is degraded and replaced by up-regulated
c-Myc, which directly binds to E-box; thus, c-Myc acts as a positive
regulator of ASS expression (Ref. 60; Figure 6). Recently reported in
melanoma cells, inhibition of ubiquitin-mediated protein degrada-
tion is a molecular mechanism responsible for the stabilization
and accumulation of c-Myc.61 Furthermore, various cellular path-
ways, such as Ras and its downstream ERK/PI3K/AKT kinase
cascade are associated with the post-translational modifications of
c-Myc, leading to its phosphorylation and stabilization during
ADI-PEG20-mediated arginine deprivation conditions. Involve-
ment of Ras/PI3K/ERK signaling pathway in the development of
resistance toward ADI treatment suggests that combination of ADI
with Ras/ERK, PI3K/AKT inhibitors is a potential therapeutic
strategy to improve the anti-cancer response.62,63

Development of anti-drug neutralizing antibodies is another
possible mechanism of resistance toward ADI-PEG20 treatment.64

Arginine concentrations were recovered upto pre-treatment levels
in a patient with malignant pleural mesothelioma and in Asian

patients with advanced hepatocellular carcinoma following the
ADI-PEG20 treatment. This recovery in arginine concentration was
found concomitant with an increase in anti–ADI-PEG20 antibody
titer.65 These studies suggest the involvement of drug-associated
resistance i.e. anti-drug neutralizing antibodies, rather than tumor-
related factors as another possible mechanism of resistance of
some tumor cell types toward ADI-PEG20 treatment.62,63

Anti-tumor mechanisms of ADI treatment
Role of autophagy and apoptosis in ADI-mediated arginine depri-
vation therapy. Due to the involvement of arginine in numerous
cellular pathways (Figure 2), the exact anti-proliferative mechan-
isms of ADI treatment, besides that of arginine depletion, are still
elusive. One of the potential pathways involved in the cytostatic
and cytotoxic potential of ADI is TRAIL (tumor necrosis factor-
related apoptosis-inducing ligand).66–68 TRAIL has an important
role in the cleavage of Beclin-1 (Atg6) and Atg5 in arginine-
deprived melanoma cells.69 Beclin-1 and Atg5 are essential for the
formation of autophagosomes and thus crucial for autophagy.
Since autophagy serves as a mean to evade apoptosis in arginine-
depleted cells, TRAIL induced cleavage of Beclin-1 and Atg5 leads
to decreased autophagy, thereby increasing apoptosis.69 In

Table 1. (Continued )

Enzyme used for
deprivation

Cell line Source and Cell type Studies carried out Reference

rh-Arginase I IPEC-1 Pig intestinal porcine epithelial cells –I LPS- induced cell damage involving mTOR and TLR4
pathways

206

PC-3
DU-145
LNCap

Human prostate Expression levels of ASS and OCT, rhArginase
I-mediated modulations in mTOR signaling pathway 156

A375*
SK-MEL-2
SK-MEL-28

Human melanoma Proliferation and cell cycle progression of melanoma
cells, modulations in the cell cycle and apoptosis-
related genes

139

B16-F0 Mouse melanoma
L1210 Murine lymphocytic leukemia Rescue of the arginase treated cells by norvaline

(arginase inhibitor)HeLa Human cervical adenocarcinoma 207

rhArginase
I-PEG5000mw

HEP-3B*
Huh7
PLC/PRF/5

Human HCC Gene expression profiling of ASS and OTC,
Synergistic effect of PEGylated rhArginase I with 5-
Fluorouracil on cell growth inhibition

SK-HEP-1 Human liver adenocarcinoma 131

SK-MEL-28 Human melanoma
CCRF-CEM*
Jurkat
Molt-3

Human T-ALL Combination effect of PEGylated rhArginase I with
Cytarabine (Ara-C) on expression of cyclins

172

HepG2*
Hep3B*

Human HCC Effect of PEGylated rhArginase I on its anti-tumor
efficacy, immunogenicity and circulation half-life

133

HepG2*
PLC/PRF/5*
Hep3B

Human HCC Cell cycle progression and transcriptional
modulations of cyclins and/or CDKs

140

CCRF-CEM*
Molt-4
H9
Lousy
Jurkat
HPB-ALL
KOPTK1

Human T-ALL Global arrest in protein synthesis; Central role of
phosphor-eIF2a signaling and the kinases (GCN2
andvPERK) in the induction of T-ALL cell apoptosis
by rhArginase I-PEG5000mw

173

Bioengineered
human arginase I

HepG2* Human HCC Effect of Co2+ substitution of the Mn2+ on catalytic
activity and stability of human arginase I

135

Panc-1* Human pancreatic carcinoma

Hep3b Human HCC Effect of Co2+ substitution of the Mn2+ on
cytotoxicity

134

A375 Human melanoma

Abbreviations: ADT, arginine deprivation therapy; ADI, arginine deiminase; ASS, argininosuccinate synthetase; NO, nitric oxide; T-ALL, T-cell lymphoblastic
lymphoma. *Indicates tumor xenograft experiments.
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addition, these two drugs (ADI and TRAIL) complement each other
by activating the intrinsic apoptosis pathways. ADI-PEG20
increases cell surface receptors DR4/5 for TRAIL thereby binding
TRAIL to these death receptors. As a result, caspase-8 or 10 are
activated.66 ADI-PEG20 treatment also modulates different autop-
hagic pathways involved in the cell survival. Adenosine 5′-
monophosphate-activated protein kinase and ERK pathways are
activated in ADI-treated prostate cancer cells; while AKT, mTOR
and S6K pathways are attenuated. ADI-PEG20 treatment to
CWR22Rv1 prostate cancer cells induced autophagy, as revealed
by the appearance of LC-II only after 30 min exposure continues
its persistence after 24 h following ADI-PEG20 treatment.70,71

Additionally, inhibition of autophagy by chloroquine, a clinically
approved anti-malarial agent which inactivates lysosomal func-
tions, accelerates the ADI-induced apoptotic cell death of prostate
cancer70,71 and small-cell lung cancers.39 Thus autophagy has
been proposed as a pro-survival mechanism of tumor cells during
arginine deprivation.71

ADI-mediated arginine deprivation is also known to induce
caspase-dependent apoptotic pathways in many of the tumor cells
types. ADI-PEG20 treatment activates caspase-3 in ASS-methylated
malignant lymphoma cells, whereas ASS-positive normal lympho-
blastoid cells are resistant to it.26 Similarly, cell death has been
attributed to caspases activation in glioblastoma,54 melanoma,38,72

leukemia73 and pancreatic cancer cells.74 Moreover, all these studies
indicate that inhibition of autophagy leads to further advancement in
the ADI-PEG20-mediated demise of tumor cells, suggesting the
induction of autophagy as a mechanism of tumor resistance to ADI-
PEG20 treatment.
Cumulative pieces of evidence suggest that the activation of

caspases is not a sole decisive phenomenon in programmed cell
death pathways. Caspase-dependent apoptosis is a major mode of
cell death, but in its absence or failure, there are other pathways
which can also execute cell death.75–77 ADI-PEG20 treatment to
small-cell lung cancer, leukemia, retinoblastoma and prostate
cancer cells induces apoptotic cell death pathways; however,
without activation of caspases, suggesting the role of caspase-
independent apoptosis as a cell death pathway.33,39,69,70,78 The
inter-membrane space of mitochondrion contains proteins such as
apoptosis-inducing factor (AIF) and endonuclease G (EndoG),

which can induce apoptotic cell death in a caspase-independent
fashion.79 EndoG is one of the predominant endonucleases that
are involved in the regulation of cellular functions such as
mitochondrial biogenesis, DNA synthesis and repair. AIF is an
FAD-containing flavoprotein which plays an important role in the
stability of an electron transport chain.80 Nutrient deficiency-
mediated stress signals induce mitochondrial outer membrane
permeabilization, which consequently releases inter-membrane
space proteins such as AIF, EndoG and cytochrome c. AIF has a
role of central mediator in caspase-independent cell death
pathway.81 AIF, once released into the cytosol, interacts with
EndoG and cyclophilin A before its translocation into the
nucleus.82 Subsequently after translocation into the nucleus, it
triggers cell death either directly, through interaction with DNA, or
indirectly, through the production of reactive oxygen
species.73,74,79,80 Mitochondrial outer membrane permeabilization
promotes both, caspase-dependent and caspase-independent
apoptotic pathways, but with different kinetics.83 Although, the
upstream signaling stimulus for both, a caspase-dependent and
caspase-independent pathway is the same, that is, via induction
of mitochondrial outer membrane permeabilization, their down-
stream pathways are different. Moreover, nuclear alterations and
the changes occurring in mitochondrial trans-membrane potential
during caspase-independent pathways are different than those
observed in a caspase-dependent apoptotic pathway.84

To summarize, growing evidence suggests that autophagy is a
prevailing cell survival mechanism in tumor cells undergoing
ADI-mediated arginine deprivation. The overall cellular response
to ADI-mediated arginine deprivation in different tumor cells
operates through a complex cascade, initiating with induction of
autophagy and followed by the activation of either caspase-
dependent or caspase-independent cell death pathways. It is
worth emphasizing that the discrepancy of cellular responses of
tumor cells to ADI-mediated arginine depletion in activation of
either caspases-dependent or caspases-independent cell death
pathways can vary depending on tumor cell type.38,39,70,71,74 As a
result, the precise mechanisms of tumor cell death—consequen-
tial of cellular response to ADI-mediated arginine depletion—
appear to be complex and variable, and need to be further
elucidated.
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Elevated
requirement of
arginine by tumor
cells revealed

Use of Ox liver
arginase for
regression of
carcinoma [Ref. 214]

Role of arginase in
macrophage-
mediated tumor cell
cytotoxicity [Ref. 215]

Growth inhibition of
Mycoplasma
infected human tumor
cells  was observed

Growth inhibitory
activity of ADI in
human melanoma
cells 

Mycoplasma arginini
ADI was successfully
pegylated

US FDA granted
orphan drug status
to pegylated
recombinant
Mycoplasmal ADI for
the treatment of HCC
and malignant
melanomas

EMEA granted
orphan drug status to
ADI-PEG20 for the
treatment of HCC

Pegylation of
Bioengineered Co2+-
arginase to enhance
circulation persistence 

Phase I clinical trials of
pegylated recombinant
human arginase I
completed in patients
with advanced HCC

A bio-engineered form of
human arginase I was
developed by the
co-factor replacement

ADI-PEG20 is
currently undergoing
Phase III trial in
patients with
advanced HCC

Phase II study of ADI-
PEG20 for
nonresectable and
metastatic HCC

Figure 4. Timeline of important advancement in arginine deprivation therapy of cancer.
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Inhibition of de novo protein synthesis by ADI-mediated arginine
deprivation. Inhibition of de novo protein synthesis is another
mechanism, which can be attributed to the anti-tumor potential of
ADI. As extracellular arginine pool is responsible for 40% of
de novo protein synthesis, ADI treatment to human lung
carcinoma cells results in an anti-proliferative effect, mediated
by inhibition of protein synthesis.85 Arginine is present in various
compartments such as extracellular, intracellular and citrulline-
arginine regeneration, that is, cytosolic compartment and it is
known to regulate various cellular pathways differently. Protein
synthesis mainly utilizes arginine either from the intracellular
pool or the citrulline-arginine regeneration mechanism, while
polyamines synthesis largely utilizes arginine pool from the
intracellular origin.86,87 Polyamines are synthesized through the
methionine salvage pathway via decarboxylation of S-adenosyl-
methionine. S-adenosylmethionine is a donor metabolite neces-
sary for the transfer of methyl group to DNA and proteins. Human
colon cancer (HCT116) cells treated with short hairpin CD44 RNA
interference showed a decrease in the total amount of
methionine-pool metabolites including polyamines, suggesting
the role of polyamines in cancer proliferation.88

ADI treatment toward human mammary adenocarcinoma and
lung carcinoma cells differently modulates polyamine synthesis
and the global protein synthesis. Interestingly, inhibition of
protein synthesis has been correlated with the ASS-mediated
regeneration of arginine. Cells expressing low levels of ASS (A549)
result in decreased protein synthesis (without affecting polyamine
synthesis) and those expressing higher ASS levels (MCF-7) are
resistant to ADI treatment, as the decreased arginine levels can be
replaced by citrulline-arginine regeneration pathway.85

Anti-angiogenic effects of ADI-mediated arginine deprivation. As a
tumor grows beyond a certain size (2 mm in diameter for most
solid tumors), available vasculature within the tumor becomes
inadequate to supply sufficient quantities of essential nutrients for
their growth.89 This results in the generation of hypoxic tumor
microenvironment and leads to the development of new blood
vessels (angiogenesis) as a colossal requisite of the developing
tumors.90 Accordingly, neovascularization can be stated as one of
the decisive phenomena during tumor growth and metastasis.91

Emerging studies now indicate that not only molecular signals
but also metabolic mechanisms regulate angiogenesis.92 Under
stress conditions such as hypoxia, tumor cells secrete angiogenic
factors such as vascular endothelial growth factor (VEGF).93

Increased levels of VEGF activate VEGF receptor 2 (VEGFR2)
signaling in the quiescent endothelial cells which in turn initiate
angiogenesis.94–96 Endothelial cells produce 85% of their total
amount of ATP via glycolysis. Addiction of endothelial cells on
anaerobic rather than aerobic pathway enables them for the
formation of vascular sprouts in hypoxic areas.97,98 Metabolism of
tumor endothelial cells resembles that of highly activated
endothelial cells because of the tumor induced switch from
quiescence to proliferation due to metabolically regulated
migration during sprouting.99,100

Besides ADI’s role in modulation of apoptotic pathways, it has
an anti-angiogenic activity that contributes to its anti-tumor
potential. The growth, migration and differentiation of human
umbilical vein endothelial cells are strongly impaired in a medium
containing recombinant ADI.101 As a consequence; it results in
decreased tube formation with intermittent and incomplete
microvascular network. Similarly, Park et al.102 found that
E. coli ADI inhibits angiogenesis by inhibiting tube formation of
endothelial cells and neovascularization in Chick Chorioallantoic
membrane and Matrigel plug assay.
Suppression of nitric oxide (NO) generation is also another

possible mechanism for anti-angiogenic activity of ADI. Since L-
arginine is required for nitric oxide synthases (NOSs) to generate
NO, the depletion of arginine by ADI suppresses NO synthesis.102Ta
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Potential role of ADI-mediated arginine depletion in inhibition of
NO synthesis has been reported.103,104 We and others have
previously reported that NO promotes tumor growth through
the stimulation of angiogenesis105–107 and regulates cellular
interaction by controlling adhesion molecule expression and
ultimately cell adhesion.108,109 NO directly, or indirectly through
NO-mediated reactive nitrogen species, induces the activation of
certain angiogenic signaling pathways in the endothelial cells.110

NO acts as an autocrine mediator in endothelial cell functioning
and as a final modulator in VEGF-stimulated angiogenesis.109,111

NO not only mediates angiogenesis but also subsequent vessel
maturation112,113 Moreover, NO is known to inhibit angiostatin
and thrombospondin-1, two main inhibitors of angiogenesis.114

Owing to the important role of NO in angiogenesis, ADI inhibits
tumor growth not only by draining the supply of arginine but also
by its anti-angiogenic activity via suppression of NO generation.
To summarize, certain tumor cell types such as, HCCs and

metastatic melanomas are invariably deficient in ASS expression
and can be specifically targeted by ADI-mediated ADT. It is worth
noting that more than one pathway may be attributed to the
cytotoxic potential of ADI-mediated ADT (Figure 5). The anti-tumor
potential of ADI may not only be simply accredited to its action as
arginine degrading enzyme but also to several other mechanisms
important in the cellular functioning of tumor cells. Induction of
apoptotic pathways, inhibition of angiogenesis and inhibition of
de novo protein synthesis are the important mechanisms
attributed to the cytotoxic potential of ADI. Moreover, studies
have revealed the ADI-mediated modulations in tumor cell cycle.
The fundamental difference of cell cycle modulations in normal
and malignant cells should be exploitable as a means of selective
demise of tumor cells and ADI, in combination with other
anti-cancer chemotherapeutic agents, which can be a potential
strategy to improve chemo-sensitization against tumor
cells.115–118

ARGINASE
Arginase (E.C.3.5.3.1) is a mammalian enzyme which catalyzes the
conversion of arginine to ornithine and urea. Arginase is
considered as an enzyme responsible for the cyclic nature of
urea cycle, since only the organisms containing arginase are able
to carry out the complete urea cycle.119 Two distinct isoforms of
mammalian arginase have been identified that are encoded by
two separate genes.120 Type I arginase (arginase I) is located in the
cytosol and is mainly expressed in liver. Type II arginase is located
in the mitochondrial matrix and is expressed in extra-hepatic
tissues.121,122 Intracellular regulation of arginase expression is of
immense importance as it has crucial implications for the
synthesis of essential cellular metabolites,123 For example,
cytosolic co-localization of arginase I with ornithine decarboxylase
(ODC) preferentially utilizes ornithine for the biosynthesis of
polyamine. On the other hand, due to its co-localization with
ornithine aminotransferase in the mitochondria, arginase II directs
ornithine for the production of proline and glutamine.124,125

PEGylated recombinant human arginase I
Elevated requirements of arginine by tumor cells were first
identified in 1947 and preferential utilization of arginine by tumor
bearing animals was revealed in 1953.126,127 The use of bovine and
murine arginase in ADT was prevailing until the advent of
recombinant DNA technology,128–130 followed by the pervasive
use of recombinant human arginase in subsequent decades.131,132

Arginase from bovine and murine sources has been extensively
used for the ADT in vitro. However, limited success was achieved
in vivo because of its alkaline optimum pH and very low affinity for
the substrate. Human arginase I also has a serious limitation of
very short circulatory half-life (~30 min).
To extend plasma half-life of arginase, PEGylation has

been applied successfully. PEGylated recombinant human
arginase I (rhArg-Peg5000mw) had efficient catalytic activity at
physiological pH with improved in vivo half-life of 3 days.

Figure 5. Schematic representation of cytostatic and cytotoxic pathways involved in arginine deprivation therapy. ADT can potentially
modulate numerous cellular and signaling pathways rendering their cytotoxic and cytostatic pathways. Induction of apoptotic pathways,
inhibition of angiogenesis and inhibition of de novo protein synthesis are the important mechanisms attributed to the cytotoxic potential of
ADT. Moreover, ADT-mediated modulations in tumor cell cycle can be exploited as a means of tumor growth arrest.
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Furthermore, rhArg-Peg5000mw was found to have significant
tumor inhibitory activity in BALB/c nude mice bearing HCC
xenografts.131 Notably, these results were consistent with those
demonstrated by Tsui et al.133 Recently, a bioengineered form of
human arginase I was developed by the co-factor replacement,
the replacement of two Mn2+ ions by Co2+ ions. The modified Co2+

-arginase I resulted in 10-fold increase in the catalytic activity and
five-fold greater stability at the physiological pH. Nevertheless,
IC50 values for killing human HCC and melanoma cell lines were
lowered by 12-15 folds.134 More recently, modifications in
bioengineered Co2+-arginase I were performed by conjugating
5-kDa PEG to enhance plasma half-life. This modified version of
bioengineered arginase I (Co-hArgI–PEG) was proven to be
cytotoxic by significantly increasing the expression of caspases-3
in HCC and pancreatic carcinoma tumor xenografts.135 Lately, the
cytotoxic potential of Co-hArgI–PEG was identified in acute
myeloid leukemia and glioblastoma cells. Acute myeloid leukemia
cell lines were found sensitive toward Co-hArgI–PEG-mediated
arginine deprivation with very low (58-722 PM) IC50 values,
suggesting a very high potential of Co-hArgI–PEG-mediated
arginine depletion in acute myeloid leukemia cells.136 Moreover,
Co-hArgI–PEG-mediated arginine deprivation has been demon-
strated to induce caspase-independent, non-apoptotic cell death
in human glioblastoma cells.137 Alternative method to extend the
plasma half-life of recombinant human arginase also has been
established. Plasma half-life of a fusion protein form of a
recombinant human arginase (rhArg-Fc, constructed by linking
rhArg to the Fc region of human immunoglobulin IgG1), was
evidenced to significantly extend upto ~ 4 days.138 In addition,
rhArg-Fc was confirmed to conspicuously inhibit the cell growth of
human HCC cells in vitro and in vivo.138

Past decade has evidenced a prevalent use of recombinant
human arginase-mediated ADT in numerous cancer cell types,
mainly metastatic HCC and melanomas.131,139,140 Currently,
PEGylated derivative of recombinant human arginase I is under-
going clinical trials for the treatment of human HCC.141,142

Moreover, initiatives are now being taken to overcome the
possible problem of accumulation of PEGylated products in the
liver by impending approaches such as fusion proteins.138

Anti-tumor mechanisms of arginase-mediated arginine
deprivation
Selective starvation of L-arginine in tumor cells, which are
auxotrophic for L-arginine, is one of the most important
anti-tumor mechanisms of ADT. Arginase can render its cytostatic
effect as a result of modulations in the cell cycle proteins, whereas,
cytotoxic effects rendered by arginase I-mediated arginine
deprivation have been proposed as a result of induction of
potential cell death pathways namely apoptosis and probably by
‘autophagic cell death’. Summarized below are the current
understandings of the molecular mechanisms of cytostatic and
cytotoxic effects rendered by arginase-mediated ADT.

Role of autophagy in arginase-mediated arginine deprivation.
Autophagy is a key sensing and regulatory mechanism of
cells in nutrient deprived conditions. Under stress conditions,
autophagy functions as a bio-energy management system by
recycling cell organelles and damaged and/or long-lived
proteins.143 Although autophagy seems to be a survival mechan-
ism of the cells, there is a growing evidence of accumulation of
autophagosomes and other autophagic markers in dying cells
unable to process apoptosis, raising the term ‘autophagic cell
death’.144–147 However, the term ‘autophagic cell death’ is based
on morphological features rather than the causative role of
autophagy in cell death. New definition of ‘autophagic cell death’
has been proposed, implying that cell death must occur without

the involvement of apoptotic machinery, (caspase activation) but
with an increase in autophagic flux.148,149

Mammalian target of rapamycin (mTOR) is a key regulator of
coupling cell growth and nutritional status of the cell.150,151

Autophagy is induced by the inhibition of mTOR-signaling
pathway.152 During nutrient affluent conditions, mTOR is involved
in the negative regulation of Atg1 (autophagy-related gene 1)
which inhibits autophagy.153,154 Arginase-mediated arginine
deprivation leads to decreased levels of ATP, which in turn
activates the adenosine 5′-monophosphate-activated protein
kinase. Activated adenosine 5′-monophosphate-activated protein
kinase eventually inhibits the mTOR-signaling pathway, mani-
fested by the reduced phosphorylation of key downstream
molecules, such as 4E-BP1 (eukaryotic translation initiation factor
4E-binding protein-1). Dephosphorylation of 4E-BP1 is observed in
Chinese hamster ovary (CHO), human melanoma cells and human
prostate cancer cells following their exposure to recombinant
human arginase I.65,155,156 Phagosome/lysosome activity is also
significantly increased following an incubation of human tumor
cells in L-arginine-deficient medium.157 Additionally, studies
carried out by Hsueh et al.156 evidenced no significant induction
of apoptotic mechanisms in prostate cells after their exposure to
rhArgI, suggesting the role of autophagic cell death, rather than
apoptosis, as an alternative cell death mechanism. In addition,
autophagy has often accompanied damaged mitochondria and
higher levels of reactive oxygen species.158,159 Acute generation of
reactive oxygen species has been attributed to causing severe
damages to the cellular macromolecules, which in consequence,
leads to necrosis of the tumor cells.160,161 Overall, arginase leads to
deprivation of arginine, in consequence, it inhibits mTOR pathway
during the deprivation and thus forcing tumor cells to undergo
‘autophagic cell death’ pathway.162

SLC38A9, a member 9 of the solute carrier family 38, has been
recently identified as an integral component of the lysosomal
machinery that controls amino acid-induced mTOR
activation.163,164 Amino acid starvation in human embryonic
kidney (HEK293T) cells with stable expression of SLC38A9 has
been shown to activate mTOR in a sustained manner. Moreover,
shRNA-mediated silencing of SLC38A9 results in a reduction of
arginine-induced mTOR activation. Also, depletion of SLC38A9
impaired mTOR activation induced by cycloheximide (a protein
synthesis inhibitor which induces accumulation of intracellular
amino acids), further suggests the role of SLC38A9 in mTOR
activation at the lysosomal rather than at the plasma membrane.
These studies have demonstrated that SLC38A9 acts as an
upstream positive regulator tor mTOR functioning and thereby
modulating autophagy in arginine-deprived tumor cells.
Although some studies have advocated autophagy as a cell

death mechanism of arginase-mediated ADT,156,157 many groups
have explained it as a pro-survival mechanism; mainly by
postponing the activation of apoptosis.38,161 Thus, understanding
the exact role of autophagy in arginase-mediated cell death
pathways is a complicated episode.162,165 Therefore, much need to
be elucidated about these new findings related to ‘autophagic cell
death’ and caution must be taken to assign autophagy as a cell
death pathway in arginase-mediated ADT.

Role of apoptosis in arginase-mediated arginine deprivation. The
role of autophagy, either in cell survival or in cell death, depends
on many factors such as cell type, nature and severity of the
stimuli and so on.166 If the attempt of the cells to survive through
autophagy fails, apoptotic pathways take over and ultimately
cause cell death.143 Inhibition of autophagy in amino acid
deficient conditions induces tumor cell death, mainly because of
further exacerbation of energy dearth.167,168 Also, longer persis-
tence of autophagy is proposed to eventually lead the activation
of caspase-dependent cell death pathways, as autophagy and
apoptotic cell death pathways are interconnected and also share
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some common pathways through the induction of the membrane
permeability transitions.169–171 Induction of apoptotic pathways is
another consequence of arginine depletion and anti-tumor
mechanism of arginase I-mediated arginine deprivation.
Involvement of apoptosis as a cell death mechanism in

arginase-mediated ADT has been illustrated in various literature
reports. Annexin V is known to selectively stain the cells, which are
destined for apoptosis or in the process of apoptosis. 33% of
human melanoma cell population was destined for apoptotic cell
death following rhArg treatment.139 Arginase I-mediated arginine
deprivation led to the transcriptional upregulation of caspase 3,
the intrinsic mitochondrial pathway of apoptosis, which is marked
by the change in mitochondrial membrane potential.172 Recently,
an anti-leukemic potential of PEGylated-arginase has been
attributed to kinases general control nonderepressible 2 (GCN2)-
mediated induction of apoptosis in T-ALL cells.173

Cell cycle arrest by arginase-mediated arginine deprivation and
combination approaches. rhArg-Peg5000mw-mediated arginine
deprivation in various HCC cells results in their cell cycle arrest
at G2/M phase, by decreased expression levels of cyclin B1 and
cdc2, or in S phase, by a transcriptional upregulation of
cyclin A1.140 rhArg-Peg5000mw-mediated arginine depletion was
witnessed to impair the expression of cyclin D3 in T-ALL cells,
which was followed by an arrest of the cells in the G0-G1 phase of
the cell cycle and induction of apoptosis.172 Recent investigations
of rhArg-Fc-mediated arginine deprivation in human HCC cells
exhibited cell cycle arrest at S phase.138 The exact mechanisms of
these findings are still elusive, but the possible reasons seem to be
the increased expression of cyclin A and declined transcription
levels of p27 and p21 (the key cyclin kinase inhibitors).
Owing to the evidence of cell cycle arrest, a combination

of arginase and other cell-cycle specific anti-cancer chemother-
apeutics as potential anti-tumor approaches have been estab-
lished. Synergistic effects of rhArg-Peg5000mw with 5-fluorouracil

(5-FU, uracil analog which interferes with RNA and DNA synthesis)
and cytarabine (Ara-C, anti-metabolic chemotherapeutic agent)
have been investigated on the inhibition of proliferation of
HCC and T-ALL cells, respectively.131,172 Treatment of either rhArg-
Peg5000mw or Ara-C alone induces a heterogeneous anti-tumor
effect in vivo, whereas, combined treatment of rhArg-Peg5000mw

and Ara-C induces a homogenous prevention of spleen growth,
leading to the prolonged survival in all of the T-ALL bearing
mice.172 Moreover, combined treatment of PEGylated recombi-
nant human arginase I and oxaliplatin has been demonstrated to
synergize the inhibiting effect on tumor growth and enhanced
overall survival probability as compared with PEGylated recombi-
nant human arginase I or oxaliplatin treatment alone.174

Altogether, arginase has an advantage over ADI that it is
efficacious in both ASS-negative and ornithine transcarbamoylase
(OTC) negative tumors,59 whereas ADI is efficacious only in
ASS-negative tumors. The tumor cell types expressing ASS are
resistant to arginine deprivation treatment by ADI.25,26,54,61,131 Even
though arginase has been considered as a potential drug candidate
over a period of six decades, low substrate specificity (high km of 2–
4 mM), short plasma life and optimum alkaline pH (pH 9.3) limit
in vivo applications of arginase.131,140 In addition, robust homeostatic
mechanisms in the body allow faster restoration of plasma-free
arginine, making in vivo arginine deprivation by arginase more
difficult. Most of the scientific efforts nowadays pay attention to
these limiting characteristics of arginase.134,175,176

ARGININE DECARBOXYLASE
ADC (E.C. 4.1.1.19) metabolizes arginine to agmatine, one of the
minor metabolic products of arginine. ADC is mainly found in
plants, bacteria and mammalian liver and brain membranes.177,178

The mammalian ADC is different from other sources and distinct
but related to ODC.179 Although, arginine decarboxylation by
ADC is a minor metabolic route, its product i.e. agmatine has a

Table 3. Properties of arginine depriving enzymes

Arginine deiminase (E.C. 3.5.3.6) Arginase (E.C.3.5.3.1) Arginine decarboxylase (E.C.4.1.1.19)

Main products are citrulline and NH3 Main products are ornithine and urea Main products are agmatine and CO2

At physiological pH, Mycoplasmal ADI is 300x
more effective than arginase at depleting
arginine

Very high alkaline pH optimum (pH 9.3) and has
little enzymic activity at physiological pH

Mammalian ADC has a basic pH optimum
(pH 8.23)

Circulatory half-life of ~ 4 h Very short circulatory half-life (Approx. 30 min) Not reported

Very high affinity for arginine (Km of 0.1-1 mM) Low affinity for arginine (Km of 2–4 mM) High affinity for arginine (Km of~ 1 mM)

Most normal cells and tissues are able to take
up citrulline from the circulation

Ornithine can only be reconverted back into
arginine in the liver and can cause toxicity to
extra-hepatic tissues by inhibiting protein
synthesis

Agmatine is not converted back to arginine
under normal physiological conditions, may
lead to its accumulation and toxicity to
normal cells

Only found in microorganisms and is strongly
antigenic in mammals

Human enzyme, non-immunogenic Found in plants, microbes and human brain

Tumor sensitivity to ADI is dependent on ASS
expression

The sensitivity of tumors to rhArg is independent
of ASS expression

Studied only in human cervical cancer
(HeLa) cell lines

Efficacious only in ASS-negative tumors Efficacious in both ASS-negative and OTC-
negative tumors

No cofactor requirement Mn2+ is essential for catalytic activity Pyridoxal phosphate is a cofactor

Pegylation improves catalytic activity at
physiological pH

Pegylation improves catalytic activity at
physiological pH

PEGylation results in the total loss of
catalytic activity

Abbreviations: ADT, arginine deprivation therapy; ADI, arginine deiminase; ASS, argininosuccinate synthetase; OTC, ornithine transcarbamoylase.
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significant role in numerous cellular pathways.180 Agmatine
modulates the polyamine metabolism through its negative
interaction with ODC.181 Agmatine also confers an inhibitory
effect on intracellular polyamine content by inhibiting polyamine
uptake182 and probably by increased polyamine catabolism.183

Mayeur et al.,184 has reported the effect of agmatine accumulation
on polyamine metabolism, cell proliferation and cell cycle
distribution in human colon adenocarcinoma epithelial cell lines.
Because of the agmatine-mediated reduction in polyamine
synthetic capacity of the cells, agmatine markedly inhibits the
cell proliferation of HT-29 and Caco-2 cells in a dose dependent
manner, without affecting cell membrane integrity. Moreover,
agmatine modulates the cell cycle progression by decreasing
ODC activity and expression.181,185 As ODC plays an important role
in the G1/S progression of the cells, agmatine-mediated modula-
tions in ODC expression lead to modifications in the cell cycle
progression.186 Additionally, agmatine also has been shown to
delay the expression of cyclins in tumor cells, leading to the
modifications in the cell cycle progression.184

ADC has been investigated for the enzymatic degradation of
arginine in normal and malignant cell cultures.187 Arginine
deprivation in human diploid fibroblasts (normal cells), achieved
using human recombinant ADC, resulted in the cell cycle arrest at
G1/G0. While treatment of 0.1 unit ml− 1 ADC to HeLa (Human
cervical cancer) cells resulted in cell cycle arrest with an initiation
of cell death after 2 days.187 Similar results were evidenced in the
studies by Wheatley et al.,188 where 5 units per ml ADC was found
as effective as arginase in the inhibition of HeLa cells and cell cycle
arrest at G1 (quiescence) in fibroblasts.
Although some research groups have exhibited ADC as a

potential anti-tumor enzyme, only a few reports are available to
support this fact (Table 1).187,188 Even though ADC possesses low
Km and can degrade arginine very rapidly, the serious problem is
related to its product, that is, agmatine. Agmatine is toxic to
normal cells when its concentration reaches to millimolar level,
particularly when free arginine levels are low. Additionally,
agmatine is not converted back to arginine under normal
physiological conditions, which may lead to its accumulation
and toxicity to normal cells.189 Though recombinant human
ADC expressed in E. coli has been evidenced more active than
Sigma enzymes prepared from other sources, its PEGylation has
been shown to result in the loss of its entire activity.187,189 To
consider the further rational use of this prospective enzyme
as potential anti-cancer modality, it clearly warrants further
evaluation (Table 3).

CONCLUDING REMARKS
Sufficient evidence has been accumulated indicating that arginine
catabolic enzymes-based approaches may be an effective way to
target malignant cells. These enzymes control tumor cell prolifera-
tion as well as make them highly vulnerable to cell-cycle-specific
chemotherapeutic agents. This combinatorial approach is one of
the potential strategies to maximize the efficacy to obliterate the
tumor cells. Extensive research of the arginine metabolic pathways
led to the establishment of arginine-depriving enzymes as a
potential anti-cancer strategy against arginine auxotrophic tumors.
However, many of these enzymes can be co-expressed in the cells,
which results in complex interactions. For example, arginine is a
common substrate for arginase as well as NOS. The specific role of
NO, either in inhibition or induction of cell proliferation is
dependent on numerous factors like its interaction with other free
radicals, cellular makeup, tumor milieu, proteins present the
cellular microenvironment and also upon the chemical and
biological heterogeneity of NO. NO has been known to demon-
strate bipolar cellular effects and often termed as ‘double-edged
sword’. Although, NOS remains a viable candidate for cancer
treatment, the precise role of NO in the tumor microenvironment is

extremely complex and conflicting. Also, the preferential utilization
of arginine by arginase and/or NOS pathway is not fully
understood. Thus, many of these pathways warrant further
research to understand the arginine metabolism at cellular and
molecular levels involving upstream and downstream pathways of
the enzymes involved.
It should be noted that modulation of the immunological

responses is one of the major roles of arginine availability.
Arginine metabolism in myeloid-derived suppressor cells via
arginase and/or NOS markedly impairs the T-cell responses that
would eradicate and remove tumor cells.190 Many excellent
articles are available which focus on the role of arginine in
immunological aspects of the tumors.191–194 It would suffice to say
here that the ADT may have further anti-tumor effect through
restoration of anti-tumor immunity.
Arginine dependence of the tumor cells has been considered as

the ‘Achilles heel’ of tumor cells.195 Inability of tumor cells to
proliferate in the absence of arginine can be targeted for their
selective destruction by arginine-depriving enzymes. Large
numbers of enzyme-based anti-cancer therapies are currently
undergoing clinical evaluation. It is encouraging that arginase and
ADI already have achieved considerable success, without causing
detrimental side effects and with high tolerability.51,63,141 The
knowledge acquired about the PEGylation has helped in
the generation of adducts of potential value, overcoming the
serious limitations of the anti-cancer enzymes of the non-human
origin. The approach of enzyme-mediated ADT is highly challen-
ging, however rewarding upon success because of the provision
of overturning the cancer dogma.
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