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Extracellular vesicles swarm the cancer microenvironment:
from tumor–stroma communication to drug intervention
F Wendler1,4, R Favicchio2,4, T Simon1,4, C Alifrangis3, J Stebbing2 and G Giamas1

Intercellular communication sets the pace for transformed cells to survive and to thrive. Extracellular vesicles (EVs), such as
exosomes, microvesicles and large oncosomes, are involved in this process shuttling reciprocal signals and other molecules
between transformed and stromal cells, including fibroblasts, endothelial and immune cells. As a result, these cells are adapted or
recruited to a constantly evolving cancer microenvironment. Moreover, EVs take part in the response to anticancer therapeutics not
least by promoting drug resistance throughout the targeted tumor. Finally, circulating EVs can also transport important molecules
to remote destinations in order to prime metastatic niches in an otherwise healthy tissue. Although the understanding of EV
biology remains a major challenge in the field, their characteristics create new opportunities for advances in cancer diagnostics and
therapeutics.
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EVS AT THE INTERFACE OF STROMAL COMMUNICATION
Instigated by malignant cells the surrounding stroma undergoes a
shake-up in its organization that supports cancerous growth.
Crucial parts of this self-organization process include induction of
metabolic changes, modifications of cell identities, initiation of
neo-vascularization and reprogramming of inert immune cells. In
order to achieve these defining properties of the tumor
microenvironment, cancer and non-cancer cells continuously
exchange information brought together through cell–cell traver-
sing gap junctions, tunneling nanotubes and the secretion of
effector molecules. One way to guarantee coordinated release of
multiple ‘game’-changing molecules relies on their packaging into
membrane-enclosed vesicles widely known as extracellular
vesicles (EVs). ‘EVs’ is a general term coined to denominate vesicle
carriers that in fact hugely differ in their subcellular origin
(Figure 1). They contain cargo such as lipids, proteins, various
RNAs and DNA fragments and metabolic products. EVs may
shuttle these molecules between neighboring cells or via systemic
transport to distant anatomic sites where they may induce
signaling pathways or directly alter the phenotype of specified
recipient cells.
One kind of EVs finds its origin in secretory multi-vesicular

bodies that fuse with the plasma membrane-releasing intraluminal
vesicles, thereafter called exosomes (50–150nm in diameter).
Another kind of EVs derive from vesicle budding at the plasma
membrane. These are commonly called microvesicles and are
more heterogeneous in size (4100nm–1μm in diameter). Finally,
large oncosomes (41μm) have been described that differ in their
buoyant density from the aforementioned vesicle types, which are
produced by plasma membrane blebbing (reviewed in Abels and
Breakefield1 and Colombo et al.2). All of those nanovesicles can be
found in and isolated from conditioned tissue culture medium of

cancer and stromal cells but also from diverse body fluids such as
cerebrospinal liquid, breast milk, urine or blood plasma.
Owing to their cargo specificity and their easy sourcing,

circulating EVs are being evaluated for the early diagnosis of
various cancers. Indeed, EV cargo such as survivin may serve as a
marker for the early diagnosis of prostate cancer,3 caveolin-1 for
melanoma,3 Glypican-1 for early pancreatic cancers,4 and various
miRNA profiles in colorectal5 and lung cancer.6

EVs have recently also been implicated as direct mediators of
the response of solid tumors to cytotoxic chemotherapy, and as
putative ‘real-time’ biomarkers to assess individual drug
responses. The evidence demonstrating modulation of drug
sensitivity has centered on the EV-mediated transfer of proteins,
mRNAs and miRNAs with the capacity to influence key anti-
apoptotic or proliferative pathways between tumor cells or from
the endothelium to tumor cells (see below).
Navigating across these different aspects, this review will focus

on the latest functional insights that EVs bear in intercellular
communication during cancer progression.

MODULATION OF EV COMPOSITION
Both exogenous as well as endogenous factors can modulate type,
content and the number of released EVs. As discussed in more
detail further below, hypoxia appears to be a strong driving force
in the enhancement of EV shedding, resulting in pro-angiogenic
effects. Furthermore, intratumoral hypoxic conditions augment
microvesicle release leading to increased risks of metastasis and
mortality in patients with advanced breast cancer.7 PH changes in
the tumor microenvironment can also contribute to changes of
the lipid composition of EVs.8 In addition, the cellular stress-
regulated protein TSAP6 that is under the control of the p53
tumor suppressor was shown to enhance exosome production
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with possible effects on adjacent cells and the immune system.9

Although our understanding of changes observed in EV composi-
tion under different physiological conditions is still minimal, they
nevertheless may pave the way to novel, exciting avenues in
diagnosis and treatment of cancers.
In breast cancer for instance, the overexpression of oncogenes

such as ERBB2/HER2 in the mammary luminal epithelial cell line
(HB4a) can shift the bias of EV content towards a malignant
phenotype, as defined by the detection of oncodriver signaling
components, including HER2, cell adhesion and cytoskeleton-
remodeling components and sphingosine-1-phosphate.10 Simi-
larly, oncogenic Ras-transformed NIH3T3 cells showed an increase
of over 34 proteins in EVs, including milk fat globule EGF factor
8 (lactadherin), collagen alpha-1 (VI), 14-3-3 isoforms, guanine
nucleotide-binding proteins (G proteins), the eukaryotic transla-
tion initiation factors elF-3gamma and elF-5A accumulated
(42-fold).11 Mutated KRAS in colon cancer cells has also been
reported to effect EV cargo composition towards tumor-
promoting factors including mutated KRAS itself as well as EGFR,
SRC family kinases and integrins, when compared to its
isogenically matched wild-type KRAS cells.12 Importantly, mutant
cell-line-derived EVs positively enhanced cell growth of wild-type
cells.12 Another oncogene, the melanoma cells-secreted Wnt5A,
was also reported to induce the release of EVs.13 Finally,
tumorigenic viruses such as EBV can manipulate the secretion of
EV-bound cellular components, namely integrins, actin, IFN and
nuclear factor κB that subsequently activate cellular signaling in
the surrounding stroma.14

Although we now have evidence that oncogenes can directly
modify cargo load, the knowledge of its consequences is still stuck
in its infancy.

EVS REPROGRAM CANCER CELL METABOLISM
The development of cancers as a multi-stage process is often
ignored in in vitro studies. As a result, we obtain a picture of
cancer signaling and oncodriver activity that is blind to the
spatiotemporal context of our observations, leaving us with
the egg-chicken problem. EV composition presumably reflects the
cellular physiology of their parent cells and can transport ‘seeding’

information to recipient cells. This implies that EVs carry the
capacity to reprogram the cellular metabolism and re-wire cellular
interactions (Figure 2). Therefore, EVs provide the rare opportunity
to analyze the direct and causal effect that fractionated
information has on oncogenic transformation.
In this context, it is useful to understand that during the lifetime

of a solid tumor its cells are subjected to enormous microenviron-
mental shifts, some of which are large enough to induce
permanent transformations, may these be post-transcriptional
and/or epigenetic or indeed metabolic, such as the Warburg
effect. Additionally, during cancer development cell populations
become increasingly heterogeneous. The extent to which an initial
population is clonally diverse is still under debate; however, a
hostile environment prompts malignant cells to adapt, primarily,
by changes to their metabolic profiles, thus reprogramming the
energetics of biosynthesis. For instance, the effect of hypoxia on
hypoxia-inducible factor 1α, carbonic anhydrases (such as CAIX),
the sodium/proton exchanger NHE1 and the glucose transporter
Glut1 have been portrayed exquisitely in most solid tumors and
paved the way for the discovery of metabolite import/export
pumps demonstrating cancer cell plasticity by recycling their
‘waste material’. The best understood of such systems is provided
by the proton-lactate symporters belonging to the family of
monocarboxylate transporters15,16 and their co-chaperone, the
glycoprotein CD147.17 Under regimes of high glycolytic flux, lactic
acid is initially exported in response to intracellular pH regulators.
These alter cellular acid export providing the cell with an alkaline
pH that in turn favors glycolysis and the import of glucose.
However, the acidic burden resulting from glycolysis can
eventually result in toxicity prompting the emergence of invasive
cells.18 Lactate can then be re-imported through the mono-
carboxylate transporters, a process known as lactate shuttling, and
used as a source of energy in OXPHOS active cells via the lactate
dehydrogenases (LDHA/LDHB) that convert lactate to pyruvate.19

Therefore, it is of great interest that exosomes have been shown
to contain high levels of Glut1, MCT4 and CD147 as well as
reduced phosphoglycerate kinase levels20 because this finding
appears consistent with the key elements characterizing the
‘reverse Warburg effect’ shown to occur in stromal cells. In this
scenario, metabolic EV content could ‘highjack’ the existing

Figure 1. EV biogenesis. EVs can form from the endomembrane system or through budding/blebbing from the plasma membrane. The best-
described pathway for the production of exosomes starts at the plasma membrane through endocytosis at cholesterol-enriched lipid raft
domains. The subsequently generated early endosomes (EE) fuse in a number of fusion events and concomitantly mature to late endosomes
(LE) that can then form intraluminal vesicles (ILVs) by invaginations and pinching of the limiting membrane. The product is referred to as a
multi-vesicular body (MVB). MVBs are then either destined for the fusion with the lysosomal compartment leading to cargo degradation or
tagged for fusion with the plasma membrane, thereby releasing ILVs, thereafter called exosomes. The orchestrated redistribution of
membrane lipids, sphingosine metabolites84,85 and/or the endosomal sorting complex required for transport machinery86 have been
reported to have crucial functions in exosomes and microvesicle biogenesis. Large oncosomes derived by membrane blebbing can be
artificially induced through knockdown of the cytoskeletal protein DIAPH3.26 CCV, clathrin coated vesicles; PM, plasma membrane.
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cellular program and re-wire it, presumably mimicking the cell of
origin. The uptake and release of EVs is considered an
energetically unfavorable event; cancer cells notoriously show
reduced or lack of OXPHOS-derived ATP, elicit increased reliance
on glycolysis, the pentose phosphate pathway and alternative
energy sources such as lactate and acetate. However, recent
evidence has shown that EVs originating from prostate cancer
cells can actually produce ATP from glycolysis and show reduced
ATPase activity, when compared with EV populations released by
normal prostate tissue (or prostasomes),20 making their reception,
rather than their release, the energetically favorable event. In
many ways, EV formation by cancer cells appears more similar to
an energetic investment made towards future re-homing by
outsourcing their energy requirements. It would be of significant
interest, and presumably possible, to re-engineer this machinery
in the opposite direction and deliver tumor suppressor informa-
tion from the microenvironment (such as fibroblasts, T-lympho-
cytes or neutrophils) to the cancer cells. Instead, cancer-associated
fibroblasts (CAFs)-derived EVs shuttle a range of metabolites to
prostate and pancreatic cells, including lactate, glutamine, lipids,
tricarboxylic acid cycle intermediates, resulting in reduced
OXPHOS and increased reliance on glutamine and glycolysis.21

This is at odds with the current understanding of metabolic
reprogramming being an autonomous event occurring in cancer
cells in response to nutrient deprivation. In this light, it appears
that metabolic re-wiring is enhanced and could even be initiated
by the tumor microenvironment, questioning much of the
theoretical framework elaborated to explain malignant transfor-
mation and progression.
KRAS activating mutations have been associated with onco-

driver activity along the MAPK signaling pathway and have
recently been shown to drive a glycolytic switch in NSCLC cells.22

During PanIN de-differentiation, KRAS mutations in acinar cells

have been shown to drive PKD1-dependent mitochondrial ROS
increase and that this event is the leading factor responsible for
EGFR-mediated ADAM17 shedding.23 Similarly, in KRAS mutant
colorectal cancer, inhibition of the PI3K/mTOR pathway sensitizes
cells to EGFR inhibitors.24 Indeed, it has been reported that some
EV populations form through diacylglycerol-controlled fission and
the secretion of which is dependent on the combined action of
DGKα, which releases phosphatidic acid from diacylglycerol, and
PKD1/2.25 Furthermore, pancreatic cancer patient-derived EVs
contain oncogenic KRAS and subsequent analysis showed that the
KRAS mutation status of EVs matched the primary tumor.4 It is
reasonable to hypothesize that EVs shuffle a diverse pool of
signaling elements belonging to the KRAS pathway, as well as
metabolites such as diacylglycerol, lactate and glutamine satisfy-
ing sufficient requirements to drive malignant transformation in
healthy recipient cells. Proteomic profiling of EVs using stable
isotope labeled amino acids in cell culture (SILAC) has further
shown that exosomal cargo content is dependent on vesicle
size.26 Large oncosomes preferentially contain protein cargo
targeted to mitochondrial metabolic processes including VDAC1/2,
the solute carriers SLC25A6 and SLC25A5 that are mitochondrial
ADP/ATP translocators as well as the ATP synthase subunit ATP5B.
Nano-sized EV cargo on the other hand contained higher amounts
of proteins clustered towards glucose and glutamine metabolism
and gluconeogenesis.26 Because EV content seems size-depen-
dent, it is plausible that release and uptake of small EVs are
coordinated separately from large oncosomes. Cholesterol flux
and functional lipid rafts affect the uptake of EVs in A375
melanoma cells.27 We speculate that these and other mechanisms
may in part help explain why certain cargo is tailored in an
organotropic manner, thus favoring a tissue-specific metastatic
phenotype. Metabolic reprogramming under stress appears to be
one of the primary functions of EVs and hypoxia-inducible factor

Figure 2. Schematic representation of the flow of information regulated by EVs and large oncosomes (LOs) during metabolic reprogramming.
EVs from glycolytic cancer cells can contain information that is fed to malignant or non-transformed cells (of cancer or stromal origin) and
cause metabolic changes. For instance, significant alterations can be induced in CAFs that in turn respond by the release of EVs containing
sufficient material to sustain the cancer cell metabolism. This intercellular reprogramming evidences the dependency between the tumor and
its adapted microenvironment, whereby EVs can be seen as outsourced ‘investments’ undertaken to deliver metabolites and other material
that promote tumor growth.
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1α has been detected in nasopharyngeal carcinoma exosomes
where LMP1-induced transmission of transcriptionally active
hypoxia-inducible factor 1α drives oncogenic processes.28

Our current understanding of metabolic reprogramming events
during cancer development is still widely elusive; in particular, the
spatiotemporal order with which cells undergo metabolic
reprogramming has not been fully evaluated. Further character-
ization of the feedback loops initiated by EVs on tumor cells and
the stromal environment might provide critical missing pieces in
this picture.

STROMAL EFFECTS OF EVS

EVs mediate fibroblasts and cancer cell changes
Fibroblasts make up the bulk of stromal cells. Although hugely
variable, even within the same kind of tumor, fibroblasts are in
most cases the main contributor to the stroma. For instance, in
invasive ductal carcinoma the average number of fibroblasts/
myofibroblasts may reach up to 50–70% of the total stroma cell
number. Transforming growth factor-β (TGFβ), platelet derived
growth factor and fibroblast growth factor 2 signaling ligands in
conjunction with other molecules including miRNAs can induce a
cancer-activated or associated fibroblasts (CAFs)/myofibroblast
phenotype characterized by increased proliferation rate, migratory
properties and heightened deposition of extracellular matrix. CAFs
originate from resident fibroblasts, through induction of epithelial-
to-mesenchymal transition or via recruited and reprogrammed
mesenchymal stem cells and produce several growth factors such
as hepatocyte growth factor, vascular endothelial growth factor
and TGF.29 Breast cancer cells-derived TGFβ-EVs show the ability
to differentiate adipose tissue-derived mesenchymal stem cells
into α-smooth muscle actin positive CAFs utilizing the TGFβ/Smad
pathway.30 Furthermore, prostate cancer-derived EVs may induce
CAFs from bone-marrow mesenchymal stem cells with pro-
angiogenic and invasive functions.31 This could be in part
explained by the abundance of miR-1227 in large oncosomes
from the prostate cancer cell line RWPE-2 that enhances CAF
migration properties.32 EVs appear to induce CAFs, as recently
substantiated by the findings that bladder cancer-derived EVs
induce epithelial-to-mesenchymal transition in urothelial cells.33

However, EVs from non-solid cancer chronic lymphocytic leukemia
can also turn stromal endothelial cells and mesenchymal stem
cells into CAFs.34 On the other hand, stromal cells themselves are
known to secrete EVs. In a human/mouse tissue culture system,
Wnt11-EVs activated the Wnt-planar cell-polarity signaling path-
way at the leading edge of breast cancer cells eliciting cell
migration. In that case, cancer cells and fibroblasts work together
to assemble fibroblast EVs that are internalized by breast cancer
cells, loaded with Wnt11 protein and then re-released for
paracrine signaling.35

In a different context, CAF EVs with increased levels of
miRNA-21 profoundly impact ovarian cancer growth by suppres-
sing apoptosis through binding to its novel target, APAF1.36

Finally, as discussed above CAF-derived EVs directly participate in
metabolic reprogramming. In aggregate, these few examples add
to an increasing number of described EV functions in bidirectional
cell interactions between fibroblasts and cancer cells.

EVs set the place and time for neo-angiogenesis
Neo-angiogenesis allows tumors to get their own constant
vascular supply of nutrients and oxygen, enabling them to grow
above 2 mm3 and become much more aggressive. One of the
most recent advances in this field is the involvement of EVs in
tumor-associated neo-angiogenesis.37,38 Indeed, several groups
reported the pro-angiogenic effect of tumor cell-derived EVs on
endothelial cells in different types of cancer such as
glioblastoma,39 leukemia,40 melanoma41 and ovarian cancer.42

Since EVs can be taken up by endocytic-like processes, they
may evade the ligand-receptor system on the cell surface
influencing intracellular signaling and protein expression in
endothelial cells.43 As mentioned above, EVs can exert functions
over short and long distances. In this way, pro-angiogenic EVs
influence the neo-angiogenic program in the proximal tumor
microenvironment but can also prime metastatic niches for
angiogenetic events.41,44

Pro-angiogenic factors such as VEGF, fibroblast growth factor 2,
platelet derived growth factor, interleukins, matrix metalloprotei-
nase (MMPs), EGFR or signaling proteins including Rac1 and
Cdc42/Pak2 can be found among other proteins in tumor cell-
derived EVs.39,43,45,46 The presence of these proteins in EVs
brought novel aspects of tumor-associated neo-angiogenesis into
the limelight. For instance, Al Nedawi et al.47 reported that upon
uptake of tumor cell-derived EVs that contained oncogenic EGFR,
endothelial cells establish a VEGF-dependent autocrine loop, a
main mechanism in tumor neo-angiogenesis. Such a process re-
programs endothelial cells and consequently strongly enhances
neo-angiogenesis. More recently, Gopal et al.43 showed that tumor
cell-derived EVs are able to deliver signaling factors, such as Rac1
or Pak2, or receptor proteins such as neuropilin 1, a co-receptor for
VEGF, directly to endothelial cells promoting neo-angiogenesis. In
comparison with the classical ‘ligand/receptor’ process, the
authors called this phenomenon a ‘more direct avenue to induce
angiogenesis’ and suggest that it could be involved in metastatic
spread43 (Figure 3).
Some mRNAs and miRNAs found in EVs are thought to be

specifically involved in neo-angiogenesis.46 For example in color-
ectal cancer, tumor-derived EVs can promote proliferation of
endothelial cells and enhance their cell-cycle activities through
M-phase-related mRNAs, such as those coding for the centromere
protein E (CENPE), PDZ binding kinase (PBK) or cyclin-dependent
kinase 8 (CDK8).48 Additionally, the involvement of vesicular
miRNAs in neo-angiogenesis has been studied such as miRNA-210
that exhibited strong pro-angiogenic activity.49–51 Furthermore,
miRNA-210 has been observed to suppress the expression of
specific genes such as EFNA3 (coding for Ephrin-A3) in endothelial
cells, resulting in enhanced neo-angiogenesis.52–54 Colorectal
carcinoma cell-derived vesicular miRNA-9 shows pro-angiogenic
effects through inhibiting the expression of suppressor of cytokine
signaling 5 (SOCS 5), promoting the activation of the janus kinase/
signal transducers and activators of transcription signaling,
a driver of endothelial cell migration.55 Leukemia cell-derived
exosomal miRNA-92a has also been shown to stimulate tumor-
associated neo-angiogenesis, through the inhibition of integrin α5
expression.56

Despite the direct pro-angiogenic effect of cancer cell-derived
EVs on endothelial cells, such vesicles also promote neo-
angiogenesis through indirect effects on other stromal resident
cells. For example, leukemia-derived EVs can induce a CAF
phenotype in stromal cells in the surrounding microenvironment,
hence leading to increased expression of pro-angiogenic factors in
such cells.34,50 Finally, EV-mediated crosstalk occurs also between
endothelial cells themselves.57

On the other hand, EVs may act on tumor cells during neo-
angiogenic processes since endothelial cells themselves have
been shown to release EVs that can target tumor cells. Indeed,
endothelial human umbilical vein endothelial cells were shown to
secrete EVs containing miRNA such as miRNA-503 that were taken
up by co-cultured tumor cells in vitro. MiRNA-503 was subse-
quently linked to response to neo-adjuvant chemotherapy in
breast cancer.58

Several reports suggested that the increased number of
tumor cells-derived EVs during neo-angiogenesis could be a
reaction to a hypoxic condition, a key event in promoting neo-
angiogenesis.8,52,59 In addition, recent data showed that the
composition of EVs may also depend on the hypoxic status of
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glioma cells.45 Using glioma cell lines and patient-derived cells EV
signature composition was positively correlated to hypoxia. This
led to the observation that hypoxic tumor cell-derived EVs are
more potent neo-angiogenesis inducers than EVs derived from
normoxic populations. Interestingly, hypoxic tumor cell-derived
EVs execute this function by PI3K/Akt signaling modulation.45

Furthermore, vesicular miRNA-135b from hypoxic multiple mye-
loma cells can directly contribute to enhanced neo-angiogenesis
under chronic hypoxia through the inhibition of the factor
inhibiting hypoxia-inducible factor 1 expression, promoting the
activity of hypoxia-inducible factor 1.56 Other groups also reported
on special selection processes for proteins and RNA content of
tumor cell-derived EVs in response to hypoxia, providing them
with specific pro-angiogenic functions.54,60–62 Finally, WNT5A
signaling protein induces mechanisms that lead to the release
of EVs from tumor cells containing pro-angiogenic factors such as
VEGF.13

These data also suggest that different tumor types can
release different EVs with variable outcome for neo-angio-
genesis. For instance, tumor cells undergoing complete epithe-
lial–mesenchymal transition release EVs that are more effective
at enhancing neo-angiogenesis than those undergoing inter-
mediate epithelial-to-mesenchymal transition.43 Similarly, for
renal cancer, EVs with the most powerful pro-angiogenic acti-
vity were those derived from cancer stem cells and con-
tained different angiogenic factors, compared with non-cancer
stem cells.42

EVs tune the immune response
EVs, as mediators of intercellular communication, can modulate
the activity and therefore the nature and vigor of diverse cellular
immune response systems. Early data demonstrated the ability of
dendritic cell-derived EVs to stimulate an antitumor immune
response as well as documented the presence of key MHC1 and
MHCII proteins in EVs.63 More rigid functional evidence of
intercellular shuttling of miRNAs with the ability to epigenetically
affect target genes in a variety of dendritic cells was first obtained
from EVs from different dendritic cell populations that showed
varying miRNA signatures depending on their maturation state;64

miRNA transfer has been demonstrated in both in vitro and in vivo
settings and can effect a range of diverse processes. Transmission
occurs sometimes in a unidirectional fashion for instance at the
immune synapse from T-cell to antigen-presenting cell, in an
antigen-driven fashion.65 T-cell-derived exosomes containing
specific miRNA signatures have been recently shown to suppress
T-H1-mediated immune responses in systemic diseases.66 There is
now a growing body of evidence that suggests that cancer cells
use EV transmitted nucleic acids and proteins as a way of enacting
an immune escape.
Colorectal cancer cell-derived microvesicle content such as TNF-

related apoptosis-inducing ligand and fas cell surface death
receptor ligand has been demonstrated to induce T-cell death
through the activation of the FAS ligand.48 This has also been
demonstrated for other tumor types.67 In the context of
hepatocellular carcinoma the release of heat-shock protein
chaperones from EVs was shown to act as a decoy enabling an

Figure 3. EV-mediated transfer versus the secretion of soluble molecules bound for ligand/receptor interactions. Local diffusion of proteins
such as cytokines, chemokines or growth factors (exemplified for tumor to endothelial cells delivery) allows the engagement with their
respective receptors on proximal located cells. In contrast, tumor cell-derived EVs allow the transfer of diffusible factors but also that of
receptors, intracellular signaling mediators and RNAs all protected from degrading enzymes in the microenvironment allowing systemic
transport via bodily fluids such as blood or the lymph for their distribution. Thus, EVs can transfer their content not only to neighboring
stromal cells but also to potentially remote locations of future metastatic sites. The delivery of EV cargo to target cells may circumvent the
necessity of specific ligand/receptor interactions.
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NK cell response to be directed away from tumor cells. In contrast,
in resistant cell lines these HSP-bearing EVs were upregulated.68

Circulating EVs in breast cancer similarly enable tumor growth
by downregulating NK cell activity.69 Tumor-derived EVs in
nasopharyngeal cancer were found to induce T-reg activity and
inhibit T-cell proliferation in vitro.
While the above examples demonstrate that tumor-derived

EVs can downregulate the immune response, it appears that
EVs from activated immune cells can also influence the tumor
phenotype. For example, EVs from activated CD8+ T-cells can
increase tumor immunogenicity by activating ERK and nuclear
factor κB signaling through TNF-related signaling, leading
ultimately to the upregulation of matrix metalloproteinase-9. This
chain of events increases the metastatic potential in melanoma
and lung cancer.70 In another chain of events, pancreatic ductal
adenocarcinomas cell-derived EVs can lead to pre-metastatic
niche formation in sequential steps of induction of TGFβ signaling
in Kupffer cells leading to extracellular matrix modification and
subsequently an influx of bone-marrow-derived macrophages to
the liver, providing a favorable niche for liver metastasis.71

EVs as ‘real-time’ biomarkers during cancer therapies
Some of the most promising studies involving EV cargo
modulation during drug treatment have been performed in
glioblastoma multiforme. Levels of the DNA repair enzymes APNG
and MGMT are inversely correlated to response to the gold
standard chemotherapeutic temozolomide.72 EVs containing
MGMT mRNA have been demonstrated to accurately reflect the
levels of these enzymes in parental cells and in patients
throughout treatment and therefore could serve as a potential
‘real-time’ biomarker of chemotherapy response during drug
treatment.73 Similarly, circulating EVs containing the EGFRvIII
splice variant that is thought to be predictive of response to EGFR
inhibition were detectable in the serum of glioblastoma multi-
forme patients but not in the 30 matched controls.39

In the context of the neo-adjuvant treatment of breast
carcinoma, elevated levels of the EV-bound MDR-glycoprotein
BCRP were detected in non-responders compared with respon-
ders or treatment naïve patients.74 In addition, the receptor
channel protein TRCP5, a known regulator of multidrug resistance
glycoprotein-P, was required for EV formation in anthracycline-
resistant breast carcinoma cell lines. Moreover, EVs containing
TRCP5 protein from the same chemoresistant cells can enter
chemosensitive cells and transmit resistance to cytotoxic che-
motherapy. The same group also demonstrated elevated levels of
TRCP5 mRNA in circulating EVs from patients who did not respond
to chemotherapy.75

Horizontal transfer of nucleic acids has been postulated as one
mechanism that can alter apoptotic and proliferative cell
responses during cancer treatment. Indeed, EVs from triple
negative breast cancer cells in vitro can evoke proliferative and
angiogenic properties in recipient cells that are similar to those
seen in the parental cell line.76 A recent study elaborating on this
work additionally demonstrated transfer of miRNAs including mir-
100, miR-222, miR -17 and miR-30a through exosomes in breast
cancer cell lines with the effect of modulating target genes that
can be critical to drug response. For instance, the transfer of
miR-222 specifically caused PTEN mRNA downregulation in
recipient cells. The subsequent apoptotic response to doxorubicin
was also reduced.77 In addition to miRNAs, proteins transported by
EVs have also been shown to modify the apoptotic response. The
key negative regulator of AKT/PI3 kinase signaling PTEN for
instance has been identified as EV cargo eliciting active
phosphatase function in the recipient cell.78

Only a few studies have been published on the role of EVs in
modulating a response to more specific targeted treatments. One
such study explored the role of EV transfer between cetuximab

resistant and sensitive colorectal cancer cell lines in vitro. Although
an effect on cell viability was observed, this effect turned out to be
rather modest.79 Recently, IncARSR (Inc RNA Activated in renal cell
carcinoma with Sunitinib Resistance) has been shown to promote
sunitinib resistance via its EV-bound transfer to sensitive renal cell
carcinoma cells where it competitively binds miR-34/miR-449.
Decreasing the levels of those miRNAs facilitates AXL and c-MET
expression in renal cell carcinoma cells, rendering IncARSR as a
hopeful predictor for sunitinib resistance. Although these few
examples seem quite promising it remains widely unexplored and
elusive whether EVs are indeed significant contributors to either
intrinsic or acquired resistance to the plethora of Food and Drug
Administration-approved small-molecule inhibitors currently in
clinical use.
For antiangiogenic therapies more data are available overall

concluding on positive effects of EVs in modulating drug
response. Raimondo et al.61 analyzed the occurring changes in
EV composition and evaluated their effects on drug treatment
responses. Interestingly, angiogenic factors present in EVs
correlated with patients who were likely to benefit from a
particular antiangiogenic therapy. In addition, EV-dependent
mechanisms could be implicated in the refractoriness of some
tumor cells to current antiangiogenic therapies, as observed for
glioblastomas in response to bevacizumab. Finally, antiangiogenic
therapies could alter the pro-angiogenic properties of EVs,
suggesting this as a new strategy to decrease tumor-associated
vasculature and tumor resistance.80 Taken together the inter-
ference with EV communication could potentially have a strong
antiangiogenic effect.47,50

Studying EV-based therapies, some groups have explored the
utilization of EVs as therapeutic delivery systems. Taking
advantage of EVs in delivering specific RNAs designed to alter
the phenotype of malignant cells could prove an attractive
prospect. Such a prospect was successfully executed by engineer-
ing let-7a miRNA containing EVs to modify EGFR expression in
breast cancer cell lines leading to dramatic effects on tumor
growth.81 Similarly, delivery of extrinsically administered siRNA
using exosomes in a murine setting has been demonstrated
recently82 to be effective in knocking down a central nervous
system specific protein. These promising sets of data suggest that
this technology is now emerging allowing targeted use of
extrinsically generated EVs in order to counteract tumors.

CONCLUSION AND OUTLOOK
Cumulatively, the studies briefly described make a resounding
case for the involvement of EVs in all stages during cancer
development. However, most of the aforementioned results are
gathered from tissue culture experiments generating non-
physiological vesicle concentration levels. Therefore, it would be
vital to substantiate these findings in more rigorous in vivo
settings. These undertakings are currently hampered by consider-
able gaps in our knowledge of EV biogenesis and a lack of
available in vivo tools.83 It is interesting to note that, although EV
formation occurs in all cells, most of our knowledge about their
function stems from cells that have adapted to malignant
transformation, while our knowledge about their roles in healthy
tissue homeostasis lags behind. We have discussed the release
and reception of cargo containing signaling molecules, as well as
metabolic and growth regulators, shuttled between tumor cells
and their surrounding microenvironment. In this regard, it is the
abundance or rather the delicate mixture of these molecules that
charge EVs with cell transforming ‘superpowers’. Like Trojan
horses they may cross the cell barrier and reprogram cellular
functions in favor of the malignant cells. However, these proper-
ties also make them formidable candidates for cancer diagnostics
as well as for novel therapeutic approaches. Firstly, their
composition may hold important clues about the type and stage
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of various types of cancers and also reveal possible new targets.
Secondly, they could potentially be designed for the purpose of
targeted intervention, including the stimulation of local auto-
immune responses or for the ‘trapping’ of disseminating cancer
cells. Thirdly, during cancer treatment, EVs may switch their
composition and may therefore exhibit traits for ‘real-time’
monitoring of therapeutic efficiency. However, while we make
incremental progress in exploring all those possibilities many
questions remain still unresolved. In particular, those concerning
their biogenesis, cargo selection and loading, as well as the
mechanisms involved in their uptake, cargo liberation and
incorporation into the context of the recipient cells. The incentives
to investigate the functional connotations of EVs promise to
change our understanding of cancer biology and potentially of
how to tackle this complex set of diseases.
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