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Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1):
a master regulator of mRNA translation involved in
tumorigenesis
J Musa1, MF Orth1, M Dallmayer1, M Baldauf1, C Pardo2, B Rotblat2, T Kirchner3,4,5, G Leprivier2,6 and TGP Grünewald1

Protein synthesis activity is abnormally enhanced in cancer cells to support their uncontrolled growth. However, this process needs
to be tightly restricted under metabolic stress - a condition often found within the tumor microenvironment - to preserve cell
viability. mTORC1 is critical to link protein synthesis activity to nutrient and oxygen levels, in part by controlling the
4E-BP1-eIF4E axis. Whereas mTORC1 and eIF4E are known pro-tumorigenic factors, whose expression or activity is increased in
numerous cancers, the role of 4E-BP1 in cancer is not yet definitive. On the one hand, 4E-BP1 has tumor suppressor activity by
inhibiting eIF4E and, thus, blocking mRNA translation and proliferation. This is corroborated by elevated levels of phosphorylated
and hence inactive 4E-BP1, which are detected in various cancers. On the other hand, 4E-BP1 has pro-tumorigenic functions as it
promotes tumor adaptation to metabolic and genotoxic stress by selectively enhancing or preventing the translation of specific
transcripts. Here we describe the molecular and cellular functions of 4E-BP1 and highlight the distinct roles of 4E-BP1 in cancer
depending on the microenvironmental context of the tumor.
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INTRODUCTION
Cancer cells reprogram their proteome in order to proliferate and
adapt to the stressful tumor microenvironment. It is therefore not
surprising that deregulations in expression and activity of
translational regulators are often found in tumors. Frequently,
overexpression of translation factors has been described in
cancers to uncouple protein synthesis from inhibition by tumor
cell stresses,1 which is consistent with the findings that elevated
protein synthesis is a common feature in the vast majority of
malignancies.2 In addition to these quantitative changes in overall
protein synthesis, qualitative changes by selective translation of a
subset of mRNAs modifies the proteome and favors neoplastic
growth.2

Mammalian target of rapamycin (mTOR), functionally assem-
bling to mTOR complex 1 (mTORC1) and mTOR complex 2
(mTORC2) with a number of other proteins, is a central mediator of
translational control, whose activation is influenced by several
intra- and extracellular stimuli (see 4E-BP1 in cellular signaling
pathways). mTORC1 essentially adapts mRNA translation rates by
regulating the activity of its main downstream effectors:
eukaryotic initiation factor 4E-binding protein 1 (EIF4EBP1, better
known as 4E-BP1) and ribosomal protein S6 kinase 1 (S6K1).3 In
addition, ribosomal protein S6 kinase 2 (S6K2), IGF2 mRNA-
binding protein 2 (IMP2) and La-related protein 1 (LARP1) were
also shown to be direct mTORC1 targets and to be synergistically
implicated in the regulation of mRNA translation.4–6 In cancer,
oncogenic activation of mTORC1 signaling because of alterations
in signaling pathways upstream of mTORC1 leads to an increase of
overall and selective mRNA translation.3 However, tumors often

grow in hostile environments due to defective tumor vasculature
or genotoxic or oxidative stress induced by rapid cell division or
therapy.7 As mRNA translation is one of the most energy
consuming cellular processes, mTORC1 activity has to be blocked
to preserve energy and generate an adaptive response, which
combines to maintain cell survival.8 Two of the most important
cancer-promoting translational regulators, mTORC1 and eukaryo-
tic initiation factor 4E (eIF4E), have been thoroughly investigated.
However, the role of 4E-BP1 that is directly regulated by mTORC1
and directly regulates eIF4E in cancer is not well understood and is
therefore the focus of this review.
4E-BP1 belongs to a family of eIF4E-binding proteins (4E-BP1,

− 2 and − 3), each of which is encoded by a distinct gene.4

Nonetheless, they show a high degree of homology to each
other.4,9,10 Among these family members, however, deregulations
in 4E-BP1 expression or activation are reported far more
frequently in a wide range of cancer entities compared with
deregulations of 4E-BP2/3 (Table 1). The 4E-BP1 protein structure
is given in Figure 1.9,10 Non-phosphorylated and thus active
4E-BP1 inhibits cap-dependent translation initiation by binding
eukaryotic translation initiation factor 4E (eIF4E) and prohibiting
the formation of the 48S pre-initiation complex.11,12

At least nine initiation factors are required in this process.
Among them is eIF4F, which itself is composed of three initiation
factors: eIF4G, eIF4A and eIF4E. eIF4E is the cap-binding protein,
associating with 5´cap, while eIF4A functions as an RNA-helicase.13

eIF4G has the role of a scaffold protein and associates with eIF4A,
eIF4E, poly-A-binding protein (PABP) and eIF3, thereby linking
mRNA, eIF4F and the ribosomal 40S subunit to each other.13
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As 4E-BP1 shares a common eIF4E-binding motif with eIF4G, the
eIF4E-binding motifs of either protein compete for the same
phylogenetically invariant dorsal surface of eIF4E.11,12,14 By
competing with each other, 4E-BP1 can sterically block the
binding of eIF4G to eIF4E and thereby prevent the assembly of the
48S pre-initiation complex and restrict translational activity.11,12,14

As tumor cells must adapt to different metabolic conditions in
their microenvironment, the association rate of the eIF4F complex
is tightly regulated. This is essentially mediated by mTORC1, which
thus couples the rate of mRNA translation initiation to various
extracellular stimuli.3,8,15–17

Although mTORC1-dependent phosphorylation sites are con-
served in all three proteins, 4E-BP1 and 4E-BP2 are mostly
regulated in a similar manner by mTORC1, whereas considerably
less is known about the regulation of 4E-BP3.4 4E-BP2 additionally
undergoes post-translational modification. For instance, aspara-
gine deamidation leads to enhanced 4E-BP2 phosphorylation and
inactivation by mTORC1.4,18,19 As every 4E-BP contains the eIF4E-
binding motif, their physiological roles largely overlap, which
further underlines their importance in translational control.10

As 4E-BP1 inhibits the pro-oncogenic eIF4E and thereby
influences overall and selective mRNA translation (see 4E-BP1:
regulation of overall and selective mRNA translation), it is mainly
described as a tumor suppressor.20,21 This is consistent with many

studies reporting inactivation by hyperphosphorylation of 4E-BP1
in numerous tumor entities (Table 1). However, because tumor
cells must adapt to different metabolic conditions in their
microenvironment, mRNA translation must also be adapted.
In this context 4E-BP1 can support tumor adaptation to stress
and therefore may facilitate tumor progression by selectively
modulating the translation of specific key transcripts, apart from
overall translation rates. This complex dual role of 4E-BP1 in tumor
progression, as well as its molecular and cellular functions will be
the topic of this review.

4E-BP1 IN CELLULAR SIGNALING PATHWAYS
The activity of 4E-BP1 is directly dependent on upstream signals
controlling mTORC1 activity. This implies that 4E-BP1 activity is
modulated by various stimuli and stress conditions, such as
growth factors, nutrients and oxygen levels.8,15,17,22 By responding
to these signals, 4E-BP1 contributes to adaption of the rate of
mRNA translation initiation to the intracellular metabolic status
and extracellular stimuli.3,8,15–17 Here, we only briefly summarize
the main signaling pathways influencing mTORC1 activity and
4E-BP1 phosphorylation, as they were extensively reviewed
elsewhere.3,15–17 Figure 2 gives an overview on the mTORC1
signaling pathway and the main modulating stimuli.

Figure 1. Protein structure and mTORC1-dependent phosphorylation sites of 4E-BP1. 4E-BP1 contains three functional domains: the eIF4E-
binding domain,14 a C-terminal TOR signaling motif (TOS)173 and an N-terminal RAIP (Arg13, Ala14, Ile15 and Pro16) motif.174 The TOS and
RAIP motif both contribute to the binding of Raptor,175,176 a scaffold protein of mTOR building a ‘bridge’ between mTOR and 4E-BP1,
necessary for efficient phosphorylation of 4E-BP1.29,30 mTORC1-dependent phosphorylation of 4E-BP1 proceeds in a hierarchical way: initial
phosphorylation of Thr-37 and Thr-46 is followed by Thr-70 and Ser-65,177,178 whereby phosphorylation of Thr-37 and Thr-46 are thought to
be the priming event for subsequent phosphorylation of the C-terminal phosphorylation sites (Thr-70, Ser-65).177,178

Figure 2. mTORC1 signaling pathway and its upstream effectors regulating the activation status of 4E-BP1. 4E-BP1 activation is directly
dependent on mTORC1 kinase activity, which is adjusted by several upstream regulators, mostly important growth factors, amino acids,
energy and oxygen levels. Integrating these signals, mTORC1 is a key integrator of microenvironmental signals and regulates global and
specific translation rates, cellular proliferation and tumorigenesis via 4E-BP1.
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Growth factors
Growth factors are potent stimulators of cellular proliferation.
Consistently, signaling pathways associated with growth factor
receptors are frequently deregulated in cancer, such as the
phosphatidyl-inositol-3-kinase (PI3K) pathway and the MAPK/ERK
pathway.23–25 As both of these pathways signal upstream of
mTORC1, their oncogenic activation leads to an overactivation of
mTORC13,24 (Figure 2). Therefore, growth factor stimulation
increases phosphorylation of 4E-BP1 via mTORC1 and enhances
translational activity.11,12,14 As the role of these pathways in cancer
has been already reviewed extensively,23–25 we here refer to these
authors (Table 2).

Energy status
Depletion of nutrients or oxygen results in lower cellular energy
levels. In order to proliferate, tumor cells have to strictly regulate
their energy consumption, as protein synthesis is a highly energy
consuming process.2 An important regulating kinase of nutrient
signaling is 5´AMP-regulated kinase (AMPK), which acts as an
intracellular energy sensor in response to changes in the cellular
AMP:ATP and ADP:ATP ratio.26 During ATP-depletion, AMPK can
block mTORC1 activity by two mechanisms: AMPK is able to
activate TSC1/2, a tumor suppressing negative regulator of
mTORC1, leading to lower levels of phosphorylated 4E-BP1 and
a prohibition of protein synthesis under ATP-lacking conditions.27

AMPK can also reduce mTORC1 activity by phosphorylating
Raptor,28 a scaffold protein of mTOR building a ‘bridge’ between
mTOR and 4E-BP1, necessary for efficient phosphorylation of 4E-
BP1.29,30 Additionally, liver kinase B1 (LKB1) was shown to be an
upstream regulator of AMPK, required for the activation of AMPK
and thereby inhibiting mTORC1 pathway in response to nutrient
starvation.31–33 Conversely, increased mTORC1 activity mediates
enhanced mitochondrial activity and biogenesis by selectively
promoting translation of nucleus-encoded mitochondria-related
mRNAs by inactivation of 4E-BPs, which engenders an increase in
ATP production capacity.34 Thereby mTORC1 is able to couple the
increase of ATP consumption due to increased protein synthesis
to an increase in ATP production.34

Oxygen levels
mTORC1 activity is inhibited by hypoxia through multiple
independent mechanisms.35–40 Hypoxia decreases the ADP:ATP
ratio, in turn inducing AMPK to block mTORC1 signaling.
In addition, by enhancing regulated in development and DNA

damage response 1 (REDD1) transcription,35–37 hypoxia leads to
lower mTORC1 activity by releasing TSC2 from its growth factor
induced binding to 14-3-3 proteins.38 Finally, promyelocytic
leukemia (PML) tumor suppressor and BCL2/adenovirus E1B 19-
kDa protein-interacting protein 3 (BNIP3) were shown to inhibit
the association of Rheb and mTORC1 under low oxygen
conditions.39,40 All these mechanisms converge in decreasing
the level of phosphorylated (that is, inactive) 4E-BP1 in response
to hypoxia.

Amino acids
Amino acids are a prerequisite for protein synthesis during cellular
proliferation and therefore are strong stimuli of mTORC1 activity.
Amino acids accumulate in the lysosomal lumen and initiate
signaling in a vacuolar H+-adenosine triphosphate ATPase
(v-ATPase)-dependent mechanism41 by which mTORC1 is recruited
to the lysosomal membrane, where Rheb as a positive regulator of
mTORC1 is located.42–44 Therefore, the stimulation of nutrients,
especially of amino acids, can be seen as a prerequisite for mTORC1
activation by growth factors.

Other signals
Several other stimuli, such as genotoxic stress, Wnt stimulation,
inflammation, phosphatidic acid (PA) and glucose have an
influence on mTORC1 activity as well.45–51 Genotoxic stress and
the resulting DNA damage increase p53 activity, which leads to an
inhibition of mTORC1 signaling via activation of AMPK and
enhanced expression of PTEN.45,46 Stimulation of the Wnt pathway
increases mTORC1 activity via inhibition of glycogen synthase
kinase 3 (GSK3).47 Inflammation can enhance mTORC1 signaling
via pro-inflammatory cytokines, such as TNFα or IκB kinase-β
(IKKβ). Both inactivate TSC2 by direct interaction.48 Finally, PA
increases the activity of mTOR by facilitating the assembly and
stabilizing the mTORC1 and mTORC2 complexes.49,50 Efeyan et al.
also showed that glucose can recruit mTORC1 to the lysosmal
membrane via Rag GTPases in order to activate mTORC1.51

4E-BP1: REGULATION OF OVERALL AND SELECTIVE MRNA
TRANSLATION
4E-BP1 was discovered as an interactor and inhibitor of the
translation initiation factor eIF4E and therefore characterized as a
repressor of overall mRNA translation.52 However, during past
years it became increasingly clear that 4E-BP1 exerts selectivity in
its ability to restrain translation through preferential blockage of
the translation of specific transcripts.53 More surprisingly, 4E-BP1
may induce the translation of few specific transcripts through
alternative mechanisms of translation initiation54 (Figure 3).

Control of overall mRNA translation by 4E-BP1
Upon activation 4E-BP1 interacts with eIF4E (see Introduction),
thereby inhibiting mRNA translation initiation and reducing
overall mRNA translation rates.52 Earlier studies reported that
recombinant 4E-BP1 induces inhibition of cap-dependent transla-
tion of capped luciferase or chloramphenicol acetyltransferase
reporter transcripts.9,55 Such effects are prevented by addition of
recombinant eIF4E or when a 4E-BP1 mutant protein lacking the
eIF4E-binding site is assayed.9,55

Selective inhibition of mRNA translation by 4E-BP1
Several studies revealed that, even though 4E-BP1-eIF4E impacts
on overall mRNA translation activity,52 the translation of a subset
of transcripts is preferentially regulated by 4E-BP1-eIF4E at the
initiation step.53 A model for eIF4E-mediated selective translation
emerged recently: because of its low expression rate, eIF4E is the
least abundant translation initiation factor in most types of cells,

Table 2. Proto-oncogenes and tumor suppressors affecting the
regulation of translation rates by 4E-BP1

References

Proto-oncogenes
PI3K Thorpe et al.,23 Shaw and Cantley,24 Samuels

et al.,141 Samuels et al.140 and Luo et al.142

Akt Altomare and Testa143

Ras Dhillon et al.25

Raf Dhillon et al.25

Rheb Jiang and Vogt144

eIF4E De Benedetti and Graff53 and Mamane et al.145

Tumor suppressors
PTEN Milella et al.146

LKB1 Hezel and Bardeesy147

TSC1/2 van Veelen et al.138

Not defined
AMPK Faubert et al.139
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resulting in a competitive situation for mRNAs to become
efficiently translated.53 As a consequence, mRNAs with short and
unstructured 5´UTR (as found in housekeeping genes), which are
less dependent on the unwinding activity of the eIF4F complex,
are efficiently translated but are largely unaffected by changes in
eIF4E activity.53 In contrast, the long, G/C rich and highly
structured 5´UTR-containing mRNAs, which are typically found in
mRNAs of proto-oncogenes, growth factors and angiogenesis
factors (that is, weak mRNAs), are inefficiently translated when the
active eIF4F complex is limiting.53,56–66 However, when eIF4E
levels, activity or availability are increased, the translation of such
‘weak’ transcripts is preferentially enhanced; these include mRNAs
of c-Myc, Cyclin D1, ODC, FGF2 and vascular endothelial growth
factor (VEGF).53,56,67–71 Thus, 4E-BP1 will preferentially inhibit the
translation of such pro-growth and pro-oncogenic transcripts by

restraining eIF4E availability, which underlies its ability to block
cell cycle progression72–74 (see Physiological role of 4E-BP1 in cell
cycle progression, cell growth and proliferation).
Recent studies employing a transcriptome-wide approach

revealed a broader picture of the mRNA landscape translationally
regulated by 4E-BP1-eIF4E. Using ribosome profiling, Thoreen
et al.75 highlighted that upon mTORC1 inhibition 4E-BP1 mediates
selective translational repression of ribosomal protein and
translation elongation factor mRNAs. Strikingly, these transcripts
are characterized by the presence of a 5' terminal oligopyrimidine
tract (5’TOP), a structural motif previously known to mediate
selective translational repression following growth arrest.76 The
authors proposed that active 4E-BP1, by interacting with eIF4E,
selectively prevents the binding of eIF4E to 5’TOP-containing
transcripts.75 Another study demonstrated that, in addition to
transcripts of the translational apparatus, 4E-BP1 also represses
translation of cell invasion and metastasis mRNAs.77 Such
regulation is critical for the impact of 4E-BP1 on tumor cell
invasion (see 4E-BP1 as an inhibitor of tumorigenesis). Finally,
very recent data indicate that the translation of transcripts
encoding antioxidant proteins is selectively enhanced by eIF4E
in transformed mouse embryonic fibroblasts (MEFs).78 While the
5’UTRs of this subset of transcripts do not exhibit higher G/C
content nor stronger secondary structure, they contain a cytosine-
rich 15-nucleotide motif which may mediate the selective activity
of eIF4E.78

Selective promotion of mRNA translation by 4E-BP1
Unexpectedly, it was reported that 4E-BP1 can positively regulate
the translation of a subset of mRNAs.54,79 In Drosophila,
d4E-BP (the Drosophila 4E-BP1 ortholog) was shown to stimulate
the translation of some transcripts encoding respiratory chain
complex proteins and mitochondrial ribosomal proteins in

Figure 3. Schematic illustration of 4E-BP1 regulating eIF4F assembly and its impact on global and selective translation rates.
(a) Phosphorylated 4E-BP1 is not able to bind eIF4E and to prohibit the eIF4F formation, resulting in an increase of overall translation rate
and specific translation of pro-oncogenic transcripts. (b) Non-phosphorylated 4E-BP1 binds eIF4E, prohibits eIF4F formation and thus leads to
a decrease in overall translation rate and a decrease in specific translation of pro-oncogenic transcripts. On the other hand, the eIF4E-binding
also has pro-oncogenic properties by leading to selective translation of mitochondrial proteins and a switch from cap-dependent to cap-
independent translation supporting selective mRNA translation of the pro-angiogenic factors HIF-1α and VEGF under hypoxia.

Figure 4. Overview on tumor suppressing and pro-oncogenic
functions of 4E-BP1.
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response to dietary restriction.79 Indeed, overexpression of an
active d4E-BP mutant leads to increased translation of reporter
constructs containing the 5’UTR of some of these mRNAs.79

The underlying mechanism has yet to be characterized, but
interestingly these 5’UTRs are characterized by their short size and
weak secondary structure.79 Such d4E-BP selective translational
control is critical to increase mitochondrial activity in response
to dietary restriction, which supports lifespan extension of
Drosophila.79 In addition, another study demonstrated that 4E-
BP1 may increase the translation of the pro-angiogenesis factors
HIF-1α and VEGF under hypoxia through a cap-independent
mechanism.54 Overexpression of 4E-BP1, while restraining cap-
dependent translational activity under hypoxia, promoted the
translation of reporters containing the HIF-1α and VEGF internal
ribosome entry sites (IRES), which are sequences known to
mediate cap-independent translation.54 Such translational regula-
tion has profound effects on tumor angiogenesis (see 4E-BP1 as a
promoter of tumorigenesis).

PHYSIOLOGICAL ROLE OF 4E-BP1 IN CELL CYCLE
PROGRESSION, CELL GROWTH AND PROLIFERATION
Cellular proliferation requires a proper coordination between
cell growth (that is, an increase in cell size and mass) and
cell cycle progression, even though these are both two separable
processes.72,74 This is critical to maintain the proper size of
individual cells and organs while cells divide.72–74 Consequently,
the relative rates of cell growth and cell cycle progression define
the size of the resulting cells.72

A large body of evidence supports that the mTORC1 pathway
regulates both cell growth and cell cycle progression. As mTORC1
senses growth factor and nutrient levels, it is critically involved in
coupling the rate of cell growth to cell cycle progression.72 Indeed
it was shown that rapamycin inhibits cell cycle progression in all
cell cycle phases, wherein cells in G1 phase are affected the
most.74,80 Braun-Dullaeus et al. report that hyperphosphorylated
4E-BP1 is associated with increased levels of cyclin B1, D1, E and
Cyclin dependent kinases 1, 2 (CDK1 and CDK2) among others and
that this overexpression can be blocked by rapamycin, whereas
mRNA levels stay unaltered.81 Consistently, Cyclin E levels, which
are critical for G1/S transition, are lower in dTOR null mutant
Drosophila leading to cell cycle arrest, which can be prevented by
ectopic expression of cyclin E.82 Enhancement of S6K1 activity
or eIF4E overexpression increases cell size and accelerates
S-phase entry,73,74 while overexpression of a phosphorylation
site-defective 4E-BP1 leads to a reduction of cell size74 and of
G1/S-phase transition rates.73,74,82 Similarly, ectopic expression of
overactive d4E-BP1 mutant in Drosophila causes smaller wing size
by reduction of cell size and cell number.83 Altogether these
results indicate that mTORC1 signaling and 4E-BP1 play a central
role in both cell growth and cell cycle progression.
However, this model proposing that both 4E-BP1 and S6Ks can

indistinctly control both cell size and cell cycle progression
downstream of mTORC1 has been challenged.84 Indeed, Dowling
et al. establish that cell cycle progression and cell size are
separately regulated in higher eukaryotes by 4E-BP1 and S6Ks,
respectively.84 This study showed that depletion of Raptor by
short-hairpin RNA (shRNA) impairs G1/S progression in wild-type
MEFs, whereas this effect was not seen in 4E-BP1/2 double-
knockout mouse embryonic fibroblasts (MEFs). In contrast,
depletion of Raptor, serum deprivation or addition of an active-
site TOR inhibitor (asTORi) decreases cell size to the same extent in
both wild-type and 4E-BP1/2 double-knockout cells, indicating a
role for 4E-BP1 in cell cycle regulation, but not in cell growth
regulation. However, S6Ks were shown to have an impact on cell
growth, but not on cell cycle progression.84 Additionally, Lynch
et al. reported that an overactive 4E-BP1 mutant can block cell
proliferation, without influencing cell size.85 Mechanistically, it was

proposed that 4E-BP1 selectively inhibits the translation of
transcripts required for cell proliferation such as those encoding
ODC, cyclin D3 and VEGF84 (see Selective inhibition of mRNA
translation by 4E-BP1). Based on these results it is tempting to
speculate that 4E-BPs regulate cell cycle progression but not
cell growth in higher eukaryotes, whereas S6Ks play a crucial role
in cell growth, but not in cell cycle progression.

THE ROLE OF 4E-BP1 IN PATHOPHYSIOLOGY OF CANCER
The mTORC1 pathway and its downstream effectors have a pivotal
role in cell growth and cell cycle progression.3,72–74 It is therefore
expected, that the mTORC1 pathway, including 4E-BP1, is highly
relevant in the pathophysiology of cancer, which is consistent with
its frequent deregulation observed in various malignancies86–137

(Table 1).

Role of eIF4E in cancer
Most oncogenic and tumor suppressing upstream effectors of
4E-BP1 were reviewed extensively23–25,53,138–147 (Table 2). Thus,
in order to understand the role of 4E-BP1 in cancer, it is necessary
to characterize its downstream target eIF4E here, especially as
eIF4E may act as an oncogene.53 Indeed, overexpression of eIF4E
stimulates cell proliferation and is sufficient to transform
embryonic fibroblasts.148–150 Conversely, genetic targeting of
eIF4E abolishes Ras-mediated transformation of embryonic
fibroblasts in vitro and in vivo,151,152 whereas the overexpression
of eIF4E in CREF fibroblasts induces the formation of both
spontaneous and experimental metastases and leads to quicker
metastatic spread when re-injecting eIF4E high expressing cells
into nude mice.65,66 Furthermore, eIF4E is able to enhance the
selective synthesis of known oncogenes and cancer-promoting
factors, such as c-Myc, Cyclin D1, ODC, FGF2 and VEGF, MMP9
and Heparanase.53,145 Finally, eIF4E can prevent abnormal
accumulation of reactive oxygen species by mediating the
selective synthesis of antioxidant proteins to support cellular
transformation.78 These results indicate a crucial role for eIF4E in
oncogenesis, angiogenesis and metastatic spread.
Consistently, eIF4E was shown to be overexpressed in many

solid tumors and cancer cell lines (Table 1), such as colorectal,
breast, bladder, lung, prostate, gastric, head and neck carcinomas,
lymphomas and neuroblastomas.53,153–162 A role for eIF4E as a
prognostic marker has been suggested for certain cancers.163

Increased expression of eIF4E is for example correlated
with poorer clinical outcome and decreased survival in breast,
head and neck, colorectal, lung, prostate, bladder, skin and
cervical carcinomas, as well as in lymphomas.1,53,164,165 Further-
more, eIF4E is associated with increased malignancy in meningio-
mas, glioblastomas, astrocytomas,1,166 as well as decreased
survival rates in advanced prostate cancer1,128 and locally
advanced esophageal cancer.1,106,128

4E-BP1: inhibitor or promoter of tumorigenesis?
In numerous cancer entities an overactivation of mTORC1 is
reported, leading to enhanced 4E-BP1 phosphorylation/
inactivation (Table 1). Such inactivation is expected to prevent
4E-BP1-mediated inhibition of the oncogenic eIF4E (see Role of
eIF4E in cancer). However, several authors also report a role for
non-phosphorylated and hence active 4E-BP1 in facilitating
tumorigenesis, especially under conditions of cellular stress in
the tumor's microenvironment (see 4E-BP1 as a promoter of
tumorigenesis). It is therefore tempting to speculate that high
levels of phosphorylated, inactive 4E-BP1 in a highly vascularized
tumor promote tumor progression due to less translational
inhibition of pro-oncogenic eIF4E-sensitive transcripts. In contrast,
in the poorly vascularized center of a fast growing tumor, the cells
adapt to starvation by not inactivating 4E-BP1, which may
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selectively promote the translation of mRNAs that support survival
of tumor cells under starvation (Figure 3). Figure 4 gives an
overview on the tumor suppressing and pro-oncogenic functions
of 4E-BP1.

4E-BP1 as an inhibitor of tumorigenesis. Overexpression of a
constitutively active 4E-BP1 mutant is able to decrease cell size,
to inhibit cell cycle progression (decrease of G1-progression rates),
to suppress tumorigenicity and to mimick rapamycin
treatment.73,74,85,167 Furthermore, 4E-BP1 was shown to inhibit
oncogene-mediated transformation of rat embryonic fibroblasts
in vitro and in vivo by inhibiting cell proliferation and inducing
apoptosis.21,69,85 In prostate cancer cells, overexpression of a
constitutively active 4E-BP1 mutant significantly decreases pros-
tate cancer cell invasion without affecting cell cycle progression.77

Conversely, silencing 4E-BP1 causes colon cancer epithelial cells to
undergo epithelial-mesenchymal transition (EMT) and promotes
cell migratory, invasive capabilities and metastasis.168 In addition,
Petroulakis et al.169 demonstrated that 4E-BP1/2 double-knockout
mice crossed with p53 knockout mice exhibit significantly
shorter tumor-free survival than p53 knockout mice, indicating a
tumor suppressor-like role for 4E-BP1. However, 4E-BP1 cannot be
considered a genuine tumor suppressor on its own, as it was
reported that 4E-BP1 knockout mice show no evidence of tumor
development.170

The activation status of 4E-BP1 has been analyzed in numerous
human tumor samples. In most cases, this was performed by
assessing the levels of phospho-4E-BP1 (p-4E-BP1), whereas total
4E-BP1 levels were mostly not assessed. However, the mere
anaylsis of p-4E-BP1 is not sufficient to determine whether 4E-BP1
is inactive. This requires determining the ratio between p-4E-BP1
and total 4E-BP1 levels. Given that data for total 4E-BP1 levels are
lacking in most tumor samples analyzed for p-4E-BP1 levels, we
argue that no definitive conclusion can be drawn on the activation
status of 4E-BP1 in these samples. In addition, the ratio between
eIF4E and 4E-BP1 levels is a determinant for 4E-BP1 activity as
previously reported.171 Therefore, further studies are warranted to
determine p-4E-BP1:4E-BP1 ratio and eIF4E:4E-BP1 ratio in human
tumor samples. It remains that overexpression of p-4E-BP1 is
reported in a number of tumor entities, such as colorectal,102

breast,96,97 lung115–117 and prostate carcinoma,128 as well as
leukemia86,87 (Table 1). The level of p-4E-BP1 positively correlates
with different outcome variables, such as poor prognosis, relapse,
poor differentiation, tumor size, metastasis and tumor progression
(Table 1). An increased eIF4E:4E-BP1 ratio is for example associated
with higher risk for relapse in head and neck squamous cell
carcinoma.113

4E-BP1 as a promoter of tumorigenesis. Paradoxically, Petroulakis
et al. showed that 4E-BP1/2 double-knockout embryonic fibro-
blasts expressing p53 are resistant to Ras-mediated transformation
and undergo cellular senescence instead. The authors propose
a mechanism by which loss of 4E-BP1/2 enhances translation of
Gas2 mRNA, encoding a p53 stabilizing protein, thereby leading to
p53 accumulation and induction of cellular senescence.169 In
glioblastoma cells, the absence of 4E-BP1 renders tumors more
sensitive to metabolic and genotoxic stresses. Indeed, 4E-BP1
knocked down tumors exhibit increased sensitivity to hypoxia-
induced cell death in vitro and to radiation in vivo due to a
decrease in the viable fraction of radioresistant hypoxic cells.172

4E-BP1 can further contribute to development of aggressive
breast carcinoma by supporting tumor angiogenesis.54 Advanced
breast carcinomas were shown to overexpress 4E-BP1, leading to a
hypoxia-induced switch from cap-dependent to cap-independent
translation supporting the selective mRNA translation of pro-
angiogenic factors HIF-1α and VEGF under hypoxia.54 Conse-
quently, knockdown of 4E-BP1 hampers growth of breast cancer
xenografts as a result of reduced tumor vascular density.54 Several

studies reporting on 4E-BP1 levels in cancer show a correlation
between 4E-BP1 levels and different variables indicating poor
outcome.93,103,107,109,131 High 4E-BP1 mRNA expression levels are
reported to be an independent prognostic factor for poor
outcome in breast cancer.99,98

CONCLUSION AND PERSPECTIVES
4E-BP1 is a central integration node of several signaling pathways
sensing growth factor stimulation, nutrients or oxygen level.
Thereby, 4E-BP1 mediates translational adaptation of tumor cells
growing in variable microenvironments by regulating overall and
selective mRNA translation. As an inhibitor of the pro-oncogenic
eIF4E, 4E-BP1 is mainly described as a tumor suppressor. In
contrast, 4E-BP1 may also promote tumor progression by selective
mRNA translation, in particular under conditions of cellular stress,
concluding that 4E-BP1 contains a dual role in tumor progression.
Consistently, dysregulations in 4E-BP1's phosphorylation status or
expression rate were described for many tumor entities and
contain a prognostic value, although in future studies the levels of
4E-BP1, p-4E-BP1 and eIF4E have to be determined altogether,
as the biological function of either protein depends on the
expression and activation of the others. Nevertheless, 4E-BP1 not
only has clinical relevance as a prognostic and/or predictive
biomarker but also as a potential pharmacological target for a
more specific and less toxic future anti-cancer therapy.

ABBREVIATIONS
(p-)4E-BP1, (Phosphorylated) Eukaryotic initiation factor 4E-
binding protein 1; AMP, Adenosine monophosphate; AMPK,
AMP-activated protein kinase; asTORi, Active-site TOR inhibitor;
ATM, Ataxia telangiectasia mutated; ADP, Adenosine dipho-
sphate; AMP, Adenosine monophosphate; ATP, Adenosine
triphosphate; BNIP, BCL2/adenovirus E1B 19-kDa protein-inter-
acting protein; BRAF, B-Raf proto-oncogene, serine/threonine
kinase; CDK1,2, Cyclin dependent kinases 1, 2; CREF, Cloned rat
embryo fibroblast; DNA, Desoxyribonucleic acid; EGFR, epidermal
growth factor receptor; eIF3, Eukaryotic initiation factor 3; eIF4E,A,G,
F, Eukaryotic initiation factor 4 E, A, G, F; EMT, Epithelial-
mesenchymal transition; ERK, Extracellular signal-regulated kinase;
FGF2, Fibroblast growth factor 2; Gas2, Growth arrest-specific
protein 2; GSK3, Glycogen synthase kinase 3; GTP, Guanosine
triphosphate; HIF-1α, Hypoxia-inducable factor 1-α; IKKβ, Inhibitor of
kappa light polypeptide gene enhancer in B-cells kinase beta; IRES,
Internal ribosome entry sites; LKB1, Liver kinase B 1; MAPK, Mitogen-
activated protein kinase; MEF, Mouse embryonic fibroblast; MMP9,
Matrix metalloproteinase 9; (m)RNA, (Messenger) ribonucleic acid;
mTOR, Mammalian target of rapamycin; mTORC1, 2, mTOR
complex 1, 2; ODC, Ornithine decarboxylase; PABP, Poly-A-binding
protein; PA, Phosphatidic acid; PDGFRB, platelet-derived growth
factor receptor, beta polypeptide; PI3K, Phosphatidyl-inositide-
3 kinase; PML, Promyelocytic leukemia; PTEN, Phosphatase and
tensin homolog; Raptor, Regulatory-associated protein of mTOR;
REDD1, Regulated in development and DNA damage response 1;
Rheb, Ras homolog enriched in brain; RSK1, Ribosomal S6 kinase 1;
S6K1,2, Ribosomal protein S6 kinase 1, 2; shRNA, Short-hairpin RNA;
TNFα, Tumor necrosis factor α; TNM, tumor-nodes-metastasis
classification; TOP, Terminal oligopyrimidine tract; TSC, Tuberous
sclerosis complex; UTR, Untranslated region; v-ATPase, Vacuolar H
+- ATPase; VEGF, Vascular endothelial growth factor.
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