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Cytosolic PKM2 stabilizes mutant EGFR protein expression
through regulating HSP90–EGFR association
Y-C Yang1, T-Y Cheng2, S-M Huang3, C-Y Su4, P-W Yang5, J-M Lee5, C-K Chen3,4, M Hsiao4, K-T Hua3 and M-L Kuo3,6

Secondary mutation of epidermal growth factor receptor (EGFR) resulting in drug resistance is one of the most critical issues in lung
cancer therapy. Several drugs are being developed to overcome EGFR tyrosine kinase inhibitor (TKI) resistance. Here, we report that
pyruvate kinase M2 (PKM2) stabilized mutant EGFR protein by direct interaction and sustained cell survival signaling in lung cancer
cells. PKM2 silencing resulted in markedly reduced mutant EGFR expression in TKI-sensitive or -resistant human lung cancer cells,
and in inhibition of tumor growth in their xenografts, concomitant with downregulation of EGFR-related signaling. Mechanistically,
PKM2 directly interacted with mutant EGFR and heat-shock protein 90 (HSP90), and thus stabilized EGFR by maintaining its binding
with HSP90 and co-chaperones. Stabilization of EGFR relied on dimeric PKM2, and the protein half-life of mutant EGFR decreased
when PKM2 was forced into its tetramer form. Clinical levels of PKM2 positively correlated with mutant EGFR expression and with
patient outcome. These results reveal a previously undescribed non-glycolysis function of PKM2 in the cytoplasm, which contribute
to EGFR-dependent tumorigenesis and provide a novel strategy to overcome drug resistance to EGFR TKIs.
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INTRODUCTION
Epidermal growth factor receptor (EGFR) mutations have been
shown to occur at high frequencies in patients with non-small cell
lung cancer (NSCLC).1–3 Most of EGFR mutations are either exon
19 deletions (codons 746–750) or substitution of leucine with
arginine on codon 858 (L858R). These activating mutations in
EGFR drive lung carcinogenesis, and are believed to be
responsible for the therapeutic success of the EGFR tyrosine
kinase inhibitors (TKIs).4 Although administering EGFR TKIs was
shown to lead to stabilization of lung cancer in a median of
10–14 months, acquired resistance eventually limits the effective-
ness of the currently available TKIs.5,6 Subsequent studies have
found that a secondary mutation in the EGFR gene (T790M) and
amplification of the MET proto-oncogene are the main resistance
mechanisms involved. T790M, which is thought to cause steric
hindrance and impair the binding of TKIs, accounts for about half
of the cases of acquired resistance.7–9 Up to the present, many
second- and third-generation inhibitors designed to improve
effectiveness and interfere with TKI resistance continued to be
developed and tested, but have yet to be proven clinically
effective and need further evaluation.
Pyruvate kinase M2 (PKM2), which is usually alternatively spliced

from a common mRNA precursor with M1 type pyruvate kinase
(PKM1) during tumorigenesis, has been recognized as a key
regulator of aerobic glycolysis.10,11 PKM2 protein alternates
between a high-activity tetramer form and a low-activity dimer
form in normal tissue, while exhibiting a distinctive tendency to
exist as a dimer in cancer cells.12 Dimeric PKM2 has low enzymatic
activity, which results in an increase in anabolic glycolysis for
marcromolecular biosynthesis, and thus promotes cancer cell

proliferation. Highly enzymatic PKM2 can be formed by the
binding of allosteric regulators like fructose-1,6-biphosphate and
serine.12 This has led to the development of several enzyme
activators that induce tetramer formation of PKM2 and suppress
tumor formation in vivo and in vitro.13,14

In addition to the metabolic advantages that cytosolic PKM2
provides for cancer cells, non-metabolic functions of PKM2 in the
nucleus have also been identified. PKM2 acts as a protein kinase
and phosphorylates STAT3, resulting in increased cell
proliferation.15,16 Recently, Yang et al.17–19 demonstrated that
the activation of EGFR signaling leads to nuclear translocation of
PKM2, resulting in transcriptional activation of cyclin D1 and Myc.
Therefore, PKM2 is thought to be a downstream regulator of EGFR
signaling and thus of the EGFR-mediated oncogenic pathway.
In light of these findings, we hypothesized that PKM2 might be

functionally important in lung cancer cells with active EGFR.
Herein, we identify a critical function of PKM2 in regulating the
survivability of EGFR-mutated lung cancer cells, including lung
cancer cells that carry L858R/T790M mutated EGFR. Mechanistic
studies have shown that the protein level of PKM2 is directly
associated with EGFR expression and that PKM2 prolongs the
protein half-life of EGFR by stabilizing EGFR–HSP90 (heat-shock
protein 90) protein complex. We thus identified PKM2-targeting as
a novel therapeutic approach for combating EGFR-TKI resistance.

RESULTS
PKM2 is essential for tumor growth in EGFR-mutant NSCLC cells
To determine the requirement of PKM2 for tumor growth of
NSCLC cells, especially in those with EGFR mutations, we first
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silenced PKM2 in a panel of NSCLC cells with different EGFR
genetic backgrounds and assayed for cell proliferation rates.
Under a similar knockdown efficiency of PKM2 (Supplementary
Figure S1a), loss of PKM2 in EGFR-mutant cells resulted in an
almost 60% decrease of proliferation, while it only resulted in a
10% decrease of proliferation in wild-type cells (Figure 1a). This
result was recapitulated in colony formation assays and soft agar
assays (Figures 1b and c), suggesting that a critical role is played
by PKM2 in regulating cell growth of EGFR-mutated NSCLC cells.
Moreover, PKM2 depletion almost completely stopped the growth
of PC9 xenografts that carried a TKI-sensitive EGFR mutation (exon
19 deletion), whereas H1355 xenografts still managed to grow to
half the size of the control xenografts under PKM2 depletion
(Figures 1d and f). PKM2 depletion also dramatically suppressed

the growth of TKI-resistant xenografts (H1975) that carried L858R/
T790M mutations (Figure 1e and Supplementary Figure S1b).
Taken together, these results strongly suggest the essential role of
PKM2 in EGFR-driven tumor growth of NSCLC cells.

Cytosolic PKM2 modulates EGFR-driven cell proliferation
The EGF/EGFR signaling axis has been reported to induce nuclear
translocation of PKM2 in glioma cells.17 We therefore sought to
determine the functional importance of nuclear PKM2 in NSCLC
cells carrying EGFR mutations. PKM2 nuclear translocation
increased when EGFR activation was induced by EGF stimulation
in EGFR wild-type NSCLC cells, but did not increase after EGF
stimulation in EGFR-mutant cells (Figure 2a). This may be due to
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Figure 1. Depletion of PKM2 in EGFR-mutant cells diminished tumor growth. (a) EGFR wild-type and mutant cells were infected with control
sh-RNA or sh-PKM2 lentiviruses. After 72 h, cell viability was measured by the Trypan blue exclusion method. *Po0.05, **Po0.01 versus
control. (b) Cells were infected with control sh-RNA or sh-PKM2 and grown on the plates for long-term colony formation assays. Cells were
fixed and stained after 10 days. Colony number was counted by ImageJ. (c) Cells infected with control sh-RNA or sh-PKM2 were grown on soft
agar for 14 days. Scale bars: 100 μm. (d–f) NSG immunocompromised mice were subcutaneously injected with EGFR-mutant cells and wild-
type cells. Before being implanted into mice, the cells were infected by control sh-RNA or sh-PKM2 for 48 h. When the tumor volume reached
50mm3, gefitinib (10mg/kg) or vehicle control was intraperitoneally injected three times per week into the mice. Tumor volume was
measured every 2–3 days. Values are plotted as mean± s.e.m. A total of 8–10 mice were analyzed in each group. Data presented in (a–c) are
representative of at least three independent experiments.

Cytosolic PKM2 directly stabilizes mutant EGFR
Y-C Yang et al

3388

Oncogene (2016) 3387 – 3398 © 2016 Macmillan Publishers Limited



the highly active EGFR signaling already present in EGFR-mutant
cells before EGF stimulation (Supplementary Figure S2a and b).
Furthermore, PKM2 carrying N-terminal nuclear export signal
peptide (NES-PKM2), which guarantees a cytosolic distribution of
PKM2, restored cell proliferation and colony formation in PKM2
knockdown PC9 cells and in H1975 cells, as did the wild-type
PKM2 (Figures 2b and c and Supplementary Figure S2c). In

addition to these in vitro findings, our immunohistochemistry
analysis revealed that only 17% of lung cancer patients possessed
nuclear PKM2 (Supplementary Table S1), unlike the high distribu-
tion of nuclear PKM2 reported in glioma cell specimens.17 Even in
the EGFR-mutant population, a small percentage of patients
exhibited positive nuclear PKM2 staining (Supplementary Figure
S2d). These results suggest that in NSCLC cells PKM2 does not
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Figure 2. Cytosolic PKM2 regulates EGFR-dependent cell proliferation, colony formation and signal transduction. (a) Nuclear fractions were
prepared from EGFR wild-type (H1355 and H157) and mutant (PC9 and H1975) cells treated with EGF (100 ng/ml) for 6 h after 18 h of serum
starvation. Glioma (U87) cells were used as a positive control. Nuclear lamin A/C was used as loading controls. (b) After seeding samples with
the same number of cells for 72 h, the viability of indicated cells was measured by the Trypan blue exclusion method. (c) Colony formation
assays for the cells expressing either 3’-UTR targeting sh-PKM2 or control shRNA alone or together with wild-type PKM2, NES-PKM2 or K367M-
PKM2. Cells were fixed and stained after 10 days. Colony number was counted by ImageJ. (d) Lysates from the cells depleted of PKM2 by
lentivirus infection within 48 h. Protein expression levels were analyzed by immunoblotting. (e) Restored expression of EGFR for 48 h in
mutant cells after PKM2 depletion. Same cells were seeded on the first day and the viability of cells was measured by the Trypan blue
exclusion method after 72 h. *Po0.05, **Po0.01 and ***Po0.001 versus sh-PKM2. Data presented in (a–e) are representative of at least three
independent experiments; values in graphs represent means± s.d. Statistical analysis is performed by two-tailed paired Student’s t-test.
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regulate cell proliferation through other mechanism besides its
known nuclear function.

Depletion of PKM2 inhibits the expression of mutant EGFR protein
and suppresses EGFR signaling
Since the EGF/EGFR signaling axis has been shown to drive NSCLC
tumorigenesis,20 we next set out to determine the effect of PKM2
on EGFR signal transduction. In EGFR-mutant cells, activation of
EGFR downstream signaling was inhibited by depletion of PKM2
(Figure 2d). Surprisingly, depletion of PKM2 substantially reduced
EGFR expression and re-expression of PKM2 restored EGFR protein
levels (Figure 2d and Supplementary Figure S2e). In EGFR wild-
type cells, the decline was moderate and can only be observed
72 h after PKM2 depletion (Supplementary Figure S2f). Moreover,
depletion of PKM1 did not result in reduction of EGFR protein
(Supplementary Figure S2g), suggesting a highly specific role of
PKM2 in EGFR regulation. To confirm the phenotype of PKM2
knockdown cells was due to reduction of EGFR expression, we
carried out rescue experiments of mutant EGFR in the PKM2-
depleted cells. Re-expressed EGFR protein abrogated the inhibi-
tion of cell proliferation (Figure 2e). These results indicate that
cytosolic PKM2 sustains EGFR protein expression and thus
promotes EGFR-dependent signaling and cell survival in
NSCLC cells.

Depletion of PKM2 induces proteasome-dependent protein
degradation of EGFR
To further confirm the involvment of PKM2 in modulating EGFR
expression, we detected the mRNA level and protein half-life of
mutant EGFR. The mRNA level of EGFR did not change in the
absence of PKM2 (Figure 3a), whereas the protein half-life of EGFR
was shortened in EGFR-mutant cells (Figure 3b), suggesting that
PKM2 modulates EGFR by post-transcriptional regulation. In
contrast to the EGFR-mutant cells, the protein half-life of wild-
type EGFR was not altered by depletion of PKM2 (Supplementary
Figure S3a). To verify whether PKM2 enhances EGFR protein
stability and to assess whether PKM2 enzymatic activity is required
for EGFR protein stability, we measured EGFR expression by co-
transfecting with EGFR and wild-type PKM2 or kinase-dead mutant
PKM2 (K367M).21,22 Increasing either wild-type or kinase-dead
PKM2 raised EGFR protein levels in a dose-dependent manner
(Figure 3c). Even after glucose deprivation, the upregulation of
EGFR protein by PKM2 was still observed (Supplementary Figures
S3b and c), suggesting that PKM2-regulated EGFR expression may
be a glycolysis-independent event. Moreover, the kinase-dead
PKM2 mutant (K367M) also reversed the effect of PKM2 depletion,
including EGFR expression levels (Figures 2b and c and
Supplementary Figure S2e), suggesting that enzymatic activity of
PKM2 may not be involved in EGFR regulation. Ectopically
expressed PKM1 did not increase EGFR protein levels, confirming
that the observed increase in EGFR stability was PKM2 specific
(Supplementary Figure S3d). Furthermore, treatment of MG-132
rescued the reduction of EGFR after PKM2 depletion (Figure 3d
and Supplementary Figure S3e), suggesting that PKM2 may
prevent EGFR degradation resulting from proteasomal degrada-
tion. Also consistent with this interpretation, ubiquitination of
EGFR increased after PKM2 depletion (Figure 3e). Collectively,
these observations suggest that PKM2 contributes to EGFR protein
stability by preventing proteasomal degradation.

Cytosolic PKM2 stabilizes EGFR through direct physical interaction
To investigate whether PKM2-mediated stabilization of EGFR
involves the physical interaction of PKM2 and EGFR, we first
examined the endogenous interaction between them. We
observed that both mutant and wild-type EGFR proteins were
co-immunoprecipitated with PKM2 in NSCLC cells (Figure 4a and

Supplementary Figure S4a). Colocalization of EGFR and PKM2 in
cells was distributed at both the cell surface and in the cytoplasm
(Supplementary Figure S4b). To evaluate whether there is a
difference between the binding of PKM2 to wild-type or to mutant
EGFR, we ectopically expressed HA-tagged PKM2 and wild-type or
mutant EGFR in 293 T cell. Our results show that there was a
stronger interaction between PKM2 and active EGFR mutants than
between PKM2 and wild-type EGFR (Figure 4b). Furthermore,
recombinant PKM2 was pulled down by GST-tagged intracellular
domains of EGFR, suggesting a direct interaction between them.
Also consistent with this interpretation was the finding that PKM2
interacted more strongly with the intracellular domain of EGFR-
L858R than with wild-type EGFR (Figure 4c). We also observed
similar bindings between kinase-dead (K367M-PKM2) and wild-
type PKM2 to EGFR (Supplementary Figures S4c). Moreover, the
similar pattern of association occurred between PKM1 and EGFR,
although in a relatively weaker manner compared with PKM2
(Supplementary Figures S4d).
As PKM2 has been reported to directly bind to phosphotyrosine

peptides,11 we next investigated whether the stronger PKM2
association of EGFR mutants resulted from their higher phosphor-
ylation status. As anticipated, EGF treatment increased the level of
wild-type EGFR in the PKM2 immunoprecipitate (Figure 4d). In
reverse, the direct binding of phosphorylated EGFR protein to
PKM2 was decreased after de-phosphorylation by phosphatase
(Figure 4e). In accordance with this result, a phospho-tyrosine-
binding PKM2 mutant,11 K433E-PKM2, exhibited diminished
association with EGFR (Supplementary Figure S4e), suggesting
that phosphorylation of EGFR increases PKM2 association.
Since there are several phosphorylation sites on EGFR protein,

we have first confirmed that the PKM2-interaction site of EGFR is
located in the intracellular domain (ICM). Furthermore, the
interaction of EGFR with PKM2 is limited to the kinase activity
(ICM-KA) region (Supplementary Figures S4f and g). We have next
mutated the tyrosine sites of 703, 845, 891 and 920 in the ICM-KA
region into phenylalanine, which is a non-phosphorylatable
mutation, and examined whether the interaction of PKM2 and
EGFR-ICM would be modulated. As shown in Figure 4f, while PKM2
association seems to decline as tyrosine phosphorylation level of
EGFR-ICM decreased, mutants containing Y845F lost majority of
their PKM2-binding capacity. These data suggested that the Y845
phosphorylation, which is important for constitutive activation of
mutant EGFR,23 is the most critical phosphorylation site that
mediates PKM2 and EGFR interaction. However, since the Y845F
mutant did not completely abolish the interaction of PKM2 and
EGFR, we hypothesized that other tyrosine sites may also help to
further increase or stabilize PKM2 association. Collectively, these
results were also consistent with our observation that PKM2 could
preferably bind to phosphorylated EGFR.
Previous studies have shown that tetrameric PKM2 participates

in glycolysis in the cytosol, while dimeric PKM2 acts as a protein
kinase in the nucleus.15,16 We, therefore, set out to examine which
form of PKM2 interacts with EGFR proteins. After treating 293
T cells with the PKM2 tetrameric inducer, F-1,6-BP, the interaction
of PKM2 and EGFR obviously decreased (Figure 4g and
Supplementary Figures S4h and i). In contrast, the dimeric
mutation of PKM2, PKM2-R399E,15 co-immunoprecipitated more
EGFR protein than wild-type PKM2. On the other hand, the
association of EGFR to K305Q mutant of PKM2, which tended to
form a monomer but to form dimer in the presence of F-1,6-BP,24

was increased when PKM2-K305Q was induced to form dimer
(Supplementary Figures S4j–l). We further examined whether the
protein half-life of EGFR would decrease in response to tetramer
inducer treatment. As expected, EGFR protein half-life was
decreased after treatment with TEPP-4614 and F-1,6-BP in EGFR-
mutant cells (Figure 4h and Supplementary Figure S4l). These
findings suggest that PKM2 associates with EGFR and stabilizes
EGFR protein expression mainly in its dimeric form.

Cytosolic PKM2 directly stabilizes mutant EGFR
Y-C Yang et al

3390

Oncogene (2016) 3387 – 3398 © 2016 Macmillan Publishers Limited



PKM2 associates with HSP90 and co-chaperones to modulate
EGFR stability
Cells harboring mutated EGFR have been reported to be more
sensitive than wild-type cells to HSP90 inhibitors.25,26 To
determine whether PKM2 is involved in HSP90-mediated EGFR
protein stabilization, we first tested for the presence of HSP90
and co-chaperones in PKM2 immunoprecipitates.27 As shown in
Figure 5a, HSP90, HSP90-organizing protein and p23 were all
associated with endogenous PKM2, suggesting that PKM2 may
exist in the EGFR–chaperone protein complexes found in NSCLC

cells. When we abrogated PKM2-induced EGFR degradation with
MG-132 and examined the association of EGFR and chaperones,
we found that PKM2 depletion decreased levels of EGFR-
associated HSP90 and co-chaperones (Figure 5b). However,
PKM2 depletion did not abrogate the formation of HSP90/co-
chaperone complex (Figure 5c). Furthermore, the HSP90 inhibitor,
17-AAG, did not change the binding of PKM2 to EGFR (Figure 5e).
These observations suggest that PKM2 may be required for
EGFR–HSP90 interaction. Our observations that recombinant
PKM2 also directly interacted with His-tagged HSP90 also support
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this hypothesis (Figure 5d and Supplementary Figure S5a). Of
note, PKM2-induced EGFR protein stability was reduced after
silencing of HSP90α or treating with HSP90 inhibitor (Figure 5e,
Supplementary Figures S5b and c). Moreover, the reduction of
EGFR protein half-life was similar in HSP90α-knockdown cells with
or without PKM2 silencing, which further confirms that PKM2-
mediated EGFR stabilization was HSP90 dependent (Figure 5f).

We also observed the endogenous interaction of PKM2, HSP90
and EGFR in EGFR wild-type cells. However, the downregulation of
wild-type EGFR upon silencing of PKM2 was much slower than
mutant EGFR in NSCLC cells (Supplementary Figures S2f and d),
which was consistent with previous reports that protein stability of
mutant EGFRs is more dependent on HSP90 than wild-type
EGFR.25,26 Although the protein expression levels of other HSP90
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clients, MET and Her2, were not altered after PKM2 silencing
(Supplementary Figure S5e), it is worth to investigate whether there
are other proteins require PKM2 for maintaining their protein stability.

Depletion of PKM2 induces apoptosis in EGFR-mutant lung cancer
cells
The above results demonstrate that EGFR protein stability and cell
viability were reduced due to depletion of PKM2 in EGFR-mutant
cancer cells. Given that active mutations of EGFR have been
shown to lead to aberrant EGFR-related oncogenic cassettes,
which contribute to cell proliferation and survival,28 we next
investigated whether PKM2 contributes to the survival benefit of

EGFR signaling. After PKM2 depletion was induced, apoptotic cells
were significantly increased in PC9 and H1975 cells, but that no
conspicuous apoptotic cell death in EGFR wild-type cells occurred
(Figure 6a and Supplementary Figure S6a). In addition, cleaved
caspase 3 also obviously increased after PKM2 depletion in EGFR-
mutant cells but not in wild-type cells (Figure 6b). Similar
phenomena were also observed in EGFR knockdown cells,
implying that PKM2 might mediate the EGF/EGFR regulation of
cell survival. Moreover, the pro-apoptotic gene, Bim, and the anti-
apoptotic gene, Bcl-xl, were upregulated and downregulated,
respectively, after PKM2 inhibition (Figures 6c and d). Both Bim
and Bcl-xl were reported to be key regulators of cell survival after
EGFR depletion,29 as we also confirmed in EGFR knockdown cells
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(Figures 6c and d). In addition, since the EGFR signaling axis is also
thought to propagate cell-cycle progression, we also tested for and
found a reduction in cyclin D1 and Myc expression in both PC9 and
H1975 cells (Figures 6c and d), which are critical downstream
regulators of mutant EGFR signaling.30,31 These results show that
EGFR-related signaling pathways were downregulated, resulting in
reduction of cell viability, after PKM2 silencing.

PKM2 levels highly correlate with the expression of mutant EGFR
and patient survival in NSCLC patients
Having established in our in vitro studies that PKM2 expression
highly correlated with the expression and function of mutated

EGFR protein in NSCLC cells, we sought to assess whether such a
correlation exists among PKM2 and mutated EGFR protein
expression levels in lung cancer specimens in vivo. We collected
67 NSCLC specimens with EGFR mutations and 74 NSCLC
specimens with wild-type EGFR and carried out an immunohis-
tochemistry analysis of EGFR and PKM2 expression. Our result
shows that PKM2 expression was significantly correlated with
EGFR levels in the EGFR-mutant cohort, but not in the EGFR wild-
type cohort (Figure 7a, Supplementary Tables S2 and S3). Since
PKM2 expression has been found to be a prognostic marker for
different kinds of cancer,32,33 we then examined the correlation
between PKM2 protein levels and disease-free survival within this
141 patient cohort. Of note, protein expression levels of PKM2
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significantly correlated with shorter survival in the EGFR-mutant
cohort but not in the EGFR wild-type cohort (Figures 7b and c).
Similar observations were also obtained from analysis of a publicly
available microarray data set, which included 226 patients with
primary lung adenocarcinoma (GSE31210). The correlation of
PKM2 mRNA expression levels and patient disease-free survival
was more significant in the EGFR-mutant cohort (P= 0.0005) than
in the EGFR wild-type cohort (P= 0.0084) (Supplementary Figures
S7a and b). Collectively, these findings strengthen the linkage

between PKM2 and EGFR protein expression and also suggest that
PKM2 has prognostic value in treating patients with EGFR-
mutated NSCLC.

DISCUSSION
PKM2 is a key regulator of aerobic glycolysis, also known as the
Warburg effect, in tumor cells.34 Overexpression of PKM2 has been
found in different cancers and has been associated with
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aggressive tumor progression and poor prognosis.32,33 There is
accumulating evidence suggesting that diverse PKM2-related
mechanisms exist in cancer cells, all of which contribute to cancer
initiation and progression.10,35 In addition to its well-known
metabolic activity, PKM2 has also been found to act as a protein
kinase in the nucleus upon EGFR activation, hypoxia or glucose
depletion and to be required for the proliferation and survival of
some cancer cells.10,35,36 However, although PKM2 is generally
considered to be oncogenic, a contradictory role of PKM2 in
tumorigenesis has also been observed.37,38 In the absence of
functional PKM2, the tumorigenesis process of a Brca1-loss-driven
breast cancer model has even been accelerated.37 Furthermore,
since the structure and activity of PKM2 is regulated by a variety of
signals,12,16,39 the oncogenic function of PKM2 may be different
among cancer types and dependent on the genetic background
of cancer cells. In this study, we identified a specific role of PKM2
in promoting cell proliferation of EGFR-mutant NSCLC cells. PKM2
stabilized the association of protein chaperones with EGFR
expression by direct interaction with both EGFR and HSP90
proteins, resulting in the maintenance of EGFR expression.
Reduction of the association of dimeric PKM2 and EGFR will
resulted in the degradation of EGFR, which was followed by
apoptosis and reduction of tumor growth in vivo and in vitro
(Figure 7d). Importantly, EGFR protein stability and cell viability of
gefitinib-resistant EGFR-T790M mutant cells were also highly
dependent on PKM2 expression. Our data reveal a unique role of
PKM2 in the regulation of EGFR protein stability and highlight the
potential therapeutic benefit of targeting PKM2 in NSCLC,
especially in those carrying EGFR mutations.
In addition to the metabolic function of PKM2 in the cytoplasm,

recent studies have reported the non-metabolic function of PKM2
in the nucleus, where it works as a protein kinase and
transcriptionally regulates gene expression to promote cell-cycle
progression and metabolic reprogramming in response to
mitogen activation or hypoxia stress.18,35,40 For instance, under
hypoxia PKM2 interacts with p300 and HIF-1α and stimulates the
expression of metabolic genes that contain hypoxia response
element.40 The nuclear translocation of PKM2 is also believed to
rely on its conversion between tetramer and dimer forms by
different post-translational modifications of PKM2.15,16 Although
the importance of PKM2 to metabolic function in the cytosol and
non-metabolic function in the nucleus have been well studied in
the past few years, whether or not PKM2 has an important non-
metabolic function in the cytosol remains unclear. Here, we
identify a novel function of PKM2 in the cytosol, which is not
related to its known metabolic activity. Dimerized PKM2 acts like a
co-chaperone to stabilize HSP90–EGFR interaction in the cytosol,
and thus maintains EGFR expression in EGFR-mutant NSCLC cells.
Recent studies have also discovered in the cytosol several putative
phosphorylated protein substrates acted on by PKM2,36 strength-
ening evidence of the importance of PKM2 in non-metabolic
functions in the cytosol. Furthermore, our data demonstrated that
EGFR regulation of PKM2 did not require its enzymatic activity,
suggesting that the PKM2 protein may regulate cellular functions
through more diverse ways.
Previous studies indicated that PKM2 is one of the downstream

transcriptional coactivators of the EGF/EGFR signaling pathway
that promotes tumor progression in glioma cells17–19,41 and that
PKM2 might even be transcriptionally upregulated through the
EGFR-dependent NF-κB activating pathway.41 Here, we point
out a critical and exclusive role of PKM2 in maintaining protein
stability of mutant EGFR in the cytosol. This challenges the view
that PKM2 is only a downstream regulator of EGFR signaling. In
fact, recent evidence has shown that PKM2 directly phosphor-
ylates Erk1/2 and forms a positive feedback loop to promote
EGF/MAPK signaling.36 Our finding further suggests that a positive
feedback loop between EGFR and PKM2 may exist in EGFR-mutant
NSCLC cells. The role of PKM2 in the EGFR-dependent signaling

pathway may be more active than previously thought. Although
we have demonstrated the critical role of cytosolic PKM2 in
maintaining the growth of EGFR-mutant cells, the possible
importance of nuclear PKM2 in these cells was not eliminated.
Whether the accumulation of nuclear PKM2 stimulates the genes
involved in lung tumor formation of EGFR-mutant NSCLC needs
further investigation.
One novel finding of our study is to identify PKM2 in the HSP90

chaperone complex. In our opinions, PKM2 may persistently
associate with HSP90, active or inactive state. The binding of PKM2
to active HSP90 may be stronger than inactive HSP90, since our
results suggest that the interaction between PKM2 and HSP90 was
slightly decreased in the presence of HSP90 inhibitor (Figure 5e).
On the other hand, PKM2 may still associate with inactive HSP90
because in our directly binding experiment with bacterial purified
HSP90, which mostly inactive due to the lack of post-translational
modifications, PKM2–HSP90 interaction was also observed
(Figure 5d). However, the detail mechanism by which PKM2 act
in the HSP90 complex remains unclear and needs further
investigation.
Disease stabilization of patients with EGFR-mutated lung cancer

is typically achieved when they are initially given EGFR TKIs, but
acquired resistance eventually results in disease recurrence.
Currently, many drugs are being developed to target the altered
structure of EGFR with T790M mutation,42 and some are already
under clinical trials to compare their effects to standard first-line
chemotherapy in metastatic lung adenocarcinoma patients with
EGFR mutations.43,44 Nevertheless, increased side effects, such as
diarrhea, rash and nail disorders, are still of great concern and may
dampen clinical demand.45 In addition, even though most tumors
are responsive to a number of different TKIs, when newly
administered, they almost inevitably become increasingly resistant
to TKIs in general, even newly administered ones, as TKI treatment
continues.46 Therefore, evaluation of the therapeutic strategy to
combat tumor growth with second-generation TKIs is worth
further investigation. Since mutated EGFR is highly dependent on
HSP90-mediated protein stabilization,25 HSP90 inhibitors are
being tested for their therapeutic effect on EGFR-TKI-resistant
cells.47 Unfortunately, since HSP90 is an abundant protein in both
tumor and normal cells and regulates stabilization and maturation
of many proteins,27 the comprehensive side effects of HSP90
inhibitor therapy may limit further clinical applications.48,49 Our
results have shown that tumor-specific PKM2 stabilizes EGFR
through coordination with HSP90 without affecting other HSP90
clients. Theoretically, this implies that fewer side effects should be
expected from targeting the interaction of PKM2/EGFR or
PKM2/HSP90 in tumor cells. Developing strategies to disrupt
these direct interactions might provide therapeutic benefits to
patients exhibiting EGFR-T790M mutation.
Here, we have identified an HSP90-dependent non-metabolic

function of PKM2 that stabilizes mutant EGFR and facilitates lung
cancer proliferation. Depletion of PKM2 reduced EGFR stability and
diminished tumor formation in vivo and in vitro. Once PKM2 was
stimulated to tetrameric form, binding of EGFR and PKM2
decreased, leading to a shortening of EGFR protein half-life. We
have thus provided a novel application for targeting PKM2 to
overcome resistance to EGFR TKIs in NSCLC cells.

MATERIALS AND METHODS
Cell culture
Lung cancer cell lines A549, H157, H1355, H1975 and HCC827 were
purchased from American Type Culture Collection, and PC9 NSCLC cell line
was kindly provided by Dr James Chih-Hsin Yang. All cells were routinely
authenticated on the basis of morphologic and growth characteristics as
well as by STR analysis and confirmed to be free of mycoplasma.
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Xenograft studies
Cancer cells with/without PKM2 knockdown were injected subcutaneously
into the right flank of the NSG (NOD scid gamma; NOD.Cg-Prkdcscid

Il2rgtm1Wjl/SzJ) mice at the age of 5–6 weeks. After transplantation, the
tumor volume was calculated as 1/2 × length×width2 in mm3. In the
gefitinib treatment experiments, mice were injected intraperitoneally with
gefitinib (10mg/kg) three times per week. In all, 30–70 days after
implantation, animals were killed by cervical dislocation and dissected to
obtain tumor samples.

Immunoprecipitation
Cells were lysed in NETN buffer (20mM Tris, at pH 8.0, 100mM NaCl, 1 mM
EDTA and 0.5% NP-40). In all, 1500 μg lysates were incubated with
indicated antibody (5–10 μg) for 16 h at 4 °C followed by 1 h incubation
with Protein A Sepharose beads. After washing the beads five times with
NETN buffer, Immunoprecipitates were resolved by immunoblotting with
indicated antibodies.

EGFR mutation status identification
Nucleotide mass spectrometry was used to determine EGFR mutation
status.50 Matrix-assisted laser desorption ionization time-of-flight mass
spectrometry was performed using the MassARRAY system (SEQUENOM).
Analyses of the clinical material have been approved by the NTUH ethics
committee (201304088RINB).

Statistical analysis
Comparison of the treatment group(s) versus the control group was
performed using a Student's t test for studies with only two groups. Data
were obtained from n43 experiments for every figure. Data are presented
as mean± s.e.m. or s.d. *Po0.05 and **Po0.01 were considered as
statistically significant. Kaplan–Meier analysis was used for survival curves.
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