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IGFBP2 potentiates nuclear EGFR–STAT3 signaling
CY Chua1,2, Y Liu1,3, KJ Granberg1,4,5, L Hu1, H Haapasalo6, MJ Annala1,4,5, DE Cogdell1, M Verploegen1,7, LM Moore1, GN Fuller1,2,3,
M Nykter5, WK Cavenee8 and W Zhang1,2,3

Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular
functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood.
The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that
both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of epidermal growth factor
receptor (EGFR), which subsequently activates signal transducer and activator of transcription factor 3 (STAT3) signaling.
Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation
activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 directly influences the invasive and migratory
capacities of human glioblastoma cells, providing a direct link between intracellular (and particularly nuclear) IGFBP2 and cancer
hallmarks. These activities are also consistent with the strong association between IGFBP2 and STAT3-activated genes derived from
The Cancer Genome Atlas database for human glioma. A high level of all three proteins (IGFBP2, EGFR and STAT3) was strongly
correlated with poorer survival in an independent patient data set. These results identify a novel tumor-promoting function for
IGFBP2 of activating EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating EGFR signaling
by two distinct mechanisms. As targeting EGFR in glioma has been relatively unsuccessful, this study suggests that IGFBP2 may be
a novel therapeutic target.
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INTRODUCTION
Secreted proteins such as growth factors and hormones exert
their function by binding to the extracellular domain of
membrane receptors. Secreted factors can also enter the cell
through receptor-mediated endocytosis.1–4 Once internalized,
these proteins can regulate intracellular cytoplasmic signal
transduction and transcriptional activity in the nucleus.5–11

Insulin-like growth factor (IGF) binding protein 2 (IGFBP2) is
a secreted protein that was initially characterized as binding and
modulating the activity of IGF-I and -II.12–14 IGFBP2 can also
function independently of IGF binding, and its versatility as
a secreted or cytoplasmic signaling effector has been widely
characterized. IGFBP2 can bind integrins15–17 and activate
phosphatidylinositol 3′-kinase/AKT,18 nuclear factor-κB15 and
extracellular signal–regulated kinase.19 Recently, a classic nuclear
localization signal sequence that is responsible for nuclear entry
has been identified in IGFBP2.20 However, the functional and
clinical significance of nuclear IGFBP2 has not been clearly
elucidated.21–24

In mammals, IGFBP2 is expressed at high levels in embryonic
tissues, but the expression is drastically decreased after birth.
However, IGFBP2 expression has been observed postnatally in
hematopoietic stem cells and in the liver and spleen progenitor
cell populations.25–30 IGFBP2 is reactivated during progression of
a wide spectrum of cancer types, including glioma and prostate,
breast and lung cancers.18,30–32 IGFBP2 has an oncogenic role in
tumor initiation and progression to high-grade glioma33 and is

reported as one of the nine genes in a signature associated with
poor clinical outcome in high-grade glioma.34 IGFBP2 mediates
cell expansion and survival of glioma stem cells.35,36 Despite the
clear role for IGFBP2 in tumorigenesis, the mechanisms underlying
nuclear IGFBP2’s contribution to the tumorigenic program remain
unknown.
EGFR/IGFBP2 and EGFR/STAT337,38 are concurrently co-

expressed in glioma. EGFR, a cell surface tyrosine kinase receptor,
is activated in 30–50% of high-grade gliomas through amplifica-
tion, overexpression or mutation.39–41 EGFR signal transduction
can be mediated by STAT3. STAT3 interacts with EGFR at two
autophosphorylation sites in the cytoplasmic domain, tyrosine
1068 or tyrosine 108642 and is activated by phosphorylation at
tyrosine 705 (Y705).43 In addition to this cytoplasmic interaction,
EGFR and STAT3, after translocation into the nucleus, can form
a complex to activate transcription of genes such as cycloox-
ygenase 2 (COX2),44 iNOS45 and c-MYC.46 Nuclear EGFR expression
in glioma and other cancers, such as breast carcinoma,47

esophageal squamous cell carcinoma 48 and ovarian cancer,49 is
associated with poor survival and linked to an aggressive tumor
phenotype.50 Furthermore, IGFBP2 regulates the expression of
VEGF, MMP2, TIMP1, TWIST, BCL2 and HIF1A genes,20,51 which are
known transcriptional targets of STAT3. Recent research impli-
cated nuclear IGFPB2 in angiogenesis through activation of VEGF,
a STAT3 target gene.20 These observations suggest that there is
a functional connection between IGFBP2, EGFR and STAT3 in
glioma. Here we tested this hypothesis and provide evidence that
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IGFBP2 mediates the tumorigenic program through a tightly
linked IGFBP2–EGFR–STAT3 regulatory signaling network.

RESULTS
IGFBP2 activates the STAT3 signaling pathway via an EGFR-
dependent mechanism
To explore the functional interaction between IGFBP2, EGFR and
STAT3, we stimulated SNB19 parental (SNB19.par) glioma cells,
which had been serum-starved overnight, with increasing
amounts of exogenous IGFBP2 protein. Immunoblotting analysis
demonstrated increased expression of both total EGFR and EGFR
activated via phosphorylation at tyrosine Y1068, or pEGFR(Y1068),
in parallel with IGFBP2 uptake into the cell (Figure 1a). STAT3
activation via phosphorylation at tyrosine 705, designated pSTAT3
(Y705), and the expression of STAT3 transcriptional targets Bcl-xL,
cyclin D1 and c-MYC also increased in response to IGFBP2
stimulation.
Next, we performed a time-course experiment in which U87

glioma cells, which lack endogenous IGFBP2 expression, were
stimulated with exogenous IGFBP2 after overnight serum starva-
tion. Immunoblotting analysis revealed induction of EGFR, STAT3
and Bcl-xL expression as early as 5 min following addition of
exogenous IGFBP2 (Figure 1b). In comparison with EGF (EGFR
ligand) stimulation, IGFBP2 stimulation of EGFR activation was
substantially less than that produced by EGF (data not shown).
Furthermore, immunoblotting analysis of SNB19 cells stably
overexpressing IGFBP2 (SNB19.BP2) demonstrated that, compared
with SNB19 cells stably transfected with empty vector (SNB19.EV),
IGFBP2 overexpression resulted in the increased expression of

EGFR and phosphorylated STAT3, along with Bcl-xL, cyclin D1 and
c-MYC (Figure 1c).
To examine the involvement of EGFR in IGFBP2-mediated STAT3

activation, we depleted EGFR by using two different pools of small
interfering RNA (siRNA) in SNB19.BP2 cells and observed decreases
in STAT3 activation (Figure 1d), supporting the hypothesis that
IGFBP2 mediates STAT3 activation through EGFR. To rule out the
possibility of off-target effects of EGFR siRNA-mediated knock-
down, we knocked down EGFR in SNB19.BP2 cells and stimulated
the cells with recombinant interleukin-6. We observed STAT3
phosphorylation in these cells, confirming that EGFR knockdown
impairs STAT3 activation by IGFBP2 without compromising
alternate STAT3 activation pathways (Supplementary Figure S1).
EGFR can be indirectly activated through transactivation, which

involves a disintegrin and metalloproteinases (ADAMs).52 To
determine whether ADAMs are involved in IGFBP2-mediated
EGFR activation, we inhibited ADAMs by treatment with two
different ADAM inhibitors, TAPI2 and marimastat.53,54 U87 cells
serum-starved overnight were pretreated with 20 μM TAPI-2 or
marimastat and then stimulated with exogenous IGFBP2 for 5 min
(Supplementary Figure S2A). Immunoblotting analysis demon-
strated that exogenous IGFBP2 stimulated EGFR and STAT3
activation despite ADAM inhibition. Furthermore, because
ADAM17 is essential to regulation of EGFR transactivation,52 we
knocked down ADAM17 using two different pools of siRNA to
evaluate whether IGFBP2-mediated EGFR activation involves
ADAM17 (Supplementary Figure S2B). Immunoblotting analysis
showed that ADAM17 knockdown did not affect EGFR and STAT3
activation in SNB19.BP2 cells. These data demonstrate that ADAMs
are not involved in IGFBP2-mediated EGFR/STAT3 activation.

Figure 1. IGFBP2 activates STAT3 through EGFR. (a) Immunoblot analysis of SNB19 cells starved of serum overnight and then stimulated with
exogenous IGFBP2 protein at the indicated dosages (0, 50, 100, 250 ng/ml) for 60min. Densitometric analysis shown below the immunoblot
indicates fold-change relative to unstimulated control cells (normalized to beta-actin loading control or total protein for phosphorylated
proteins). (b) Immunoblot analysis of U87 cells starved of serum overnight and then stimulated with exogenous IGFBP2 (100 ng/ml) for the
indicated time points (0, 5, 10, 15, 30, 60min). Densitometric analysis shown below the immunoblot indicates fold-change relative to
unstimulated control cells (normalized to loading control or total protein for phosphorylated proteins). (c) Immunoblot analysis comparing
stable SNB19 empty vector cells (SNB19.EV) to SNB19 cells stably overexpressing IGFBP2 (SNB19.BP2). Densitometric analysis shown below the
immunoblot indicates fold-change relative to SNB19.EV after normalization to beta-tubulin loading control (or total protein for
phosphorylated proteins). (d) Immunoblot analysis comparing SNB19.EV and SNB19.BP2 cells depleted of EGFR via two independent pools
of EGFR siRNA (EGFR sir#1, EGFR sir#2) to cells transfected with scrambled negative control siRNA (ctrl siR). The intensity of pSTAT3(Y705),
quantified by densitometry, is shown below the immunoblot as fold-change relative to control siRNA, normalized to total STAT3.
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IGFBP2 is significantly correlated with STAT3 pathway activation in
glioma
Previous studies showed that IGFBP2 regulates the expression of
many STAT3 target genes,20,51 and our results demonstrate that
IGFBP2 can stimulate STAT3 activation through EGFR. To gain a
comprehensive view of the relationship between IGFBP2 and
STAT3 signaling, we analyzed the whole-genome gene expression
profiling data from The Cancer Genome Atlas (TCGA) low-grade
glioma (LGG) database. Gene set enrichment analysis (GSEA)
revealed that STAT3-activated genes were significantly and
positively correlated with IGFBP2 (Figure 2a), suggesting that
IGFBP2 expression is associated with STAT3 activation. To further
substantiate the IGFBP2–STAT3 link, we performed hierarchical
clustering on the 157 experimentally validated STAT3 target genes
across all samples in the REpository for Molecular BRAin Neoplasia
DaTa (REMBRANDT) data set. Two distinct clusters were formed,
associated with tumor grade and IGFBP2 and STAT3 expression but
not with other transcription factors, such as beta-catenin (CTNNB1)
or Forkhead box protein M1 (FOXM1) (Supplementary Figure S3).
This finding further validates that the expression of IGFBP2 and
STAT3 are tightly linked.

Next we postulated that the most functionally important of the
correlated genes would likely be associated with STAT3 activity (as
measured by phosphorylation) in the reverse-phase protein array
(RPPA) data of the same TCGA cohort. In this proteomic analysis,
we identified the seven proteins (Figures 2b and c) that were most
significantly and strongly correlated with both IGFBP2 and pSTAT3
(Y705) (correlation coefficients 40.2). Of these seven strongly
correlated proteins, five are closely related to the STAT3 signaling
pathway, namely plasminogen activator inhibitor-1, fibronectin,
cyclin B1, pHER2(Y1248) and, notably, pEGFR(Y1068). HER2 is
a member of the EGFR family and an upstream regulator of STAT3;
however, it has not been shown to have clinical significance in
glioma.55–59 Thus these results from patient samples are
consistent with the results of our in vitro cell line–based studies,
and together these results illustrate the potential importance of
the IGFBP2–EGFR–STAT3 signaling axis in glioma.

IGFBP2 co-precipitates and co-localizes with EGFR
To further evaluate the functional relationship between IGFBP2 and
EGFR, we performed reciprocal immunoprecipitation (IP) studies
followed by immunoblotting comparing IGFBP2-overexpressing

Figure 2. IGFBP2 is strongly and significantly correlated with STAT3 pathway genes. (a) GSEA demonstrated enrichment for STAT3 target genes
based on correlation with IGFBP2 expression in the TCGA low-grade glioma database. The top of the panel shows the enrichment score (ES) for
genes associated with STAT3 signaling pathway targets. The blue lines indicate where the STAT3 target genes appear in the ranked gene list,
and the black lines represent the top 45 highly correlated targets. The bottom of the panel shows the ranking scores (correlation of all genes
associated with the STAT3 signaling pathway targets with IGFBP2). (b) Correlation of expression of proteins in the TCGA RPPA data with IGFBP2
(x axis) and pSTAT3(Y705) (y axis). Each dot represents a protein. Proteins with correlation coefficients 40.2 are highlighted in orange.
(c) Correlation of the seven proteins with the highest correlation coefficients with both IGFBP2 and STAT3. Also shown is the relationship of
each protein with STAT3 (‘target’= STAT3 transcriptional target; ‘regulator’= STAT3 upstream regulator). Y= yes, a known target or upstream
regulator of STAT3; N= not a known target or upstream regulator of STAT3.
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SNB19 cells and empty vector control cells. Co-IP experiments
revealed co-precipitation of IGFBP2 and EGFR (Figure 3a). We next
treated U87 cells, which had been serum-starved overnight, with
two different doses of exogenous IGFBP2 followed by IP analysis
and immunoblotting. The results showed a dose-dependent
increase of IGFBP2 co-precipitated with EGFR (Figure 3b). Confocal
imaging analysis of SNB19.BP2 cells demonstrated clear co-
localization of IGFBP2 and EGFR proteins on the cell membrane
and in the cytoplasm and nucleus (Figure 3c). Co-localization of
IGFBP2 and EGFR provides further evidence of a complex
containing IGFBP2 and EGFR.

IGFBP2 facilitates EGFR nuclear accumulation
Because we observed IGFBP2 and EGFR co-localization in the
cytoplasm and nucleus, we investigated whether nuclear IGFBP2 is
closely linked to nuclear EGFR and whether this complex
augments STAT3 transcriptional activation. We first fractionated
SNB19.BP2 and SNB19.EV cells into cytoplasmic and nuclear
fractions and performed immunoblotting to detect IGFBP2, EGFR
and STAT3. Our results revealed that a substantial proportion of
IGFBP2 and EGFR localized to the nucleus in SNB19.BP2 cells
(Figure 4a). We then determined the ratio of nuclear to
cytoplasmic EGFR via densitometric analysis and found that
SNB19.BP2 cells had more than twice as much nuclear EGFR as
SNB19.EV cells.
To investigate whether IGFBP2 facilitates EGFR nuclear accu-

mulation, we stimulated SNB19.par cells, which had been serum-
starved overnight with exogenous IGFBP2 protein and then
visualized EGFR protein localization by confocal imaging. IGFBP2
stimulation of SNB19.par cells resulted in EGFR accumulation in
the nucleus (Figure 4b). A time-course study with the same cells
demonstrated that IGFBP2 nuclear accumulation paralleled EGFR
nuclear accumulation in a time-dependent manner (Figure 4c). To
validate that EGFR nuclear accumulation is mediated through
IGFBP2, we knocked down IGFBP2 using two different pools of

siRNA in SNB19.BP2 cells and performed immunoblotting analysis
on the fractionated cells. IGFBP2 depletion led to impaired EGFR
nuclear localization with coordinate cytoplasmic accumulation of
EGFR, whereas control knockdown did not affect EGFR nuclear
accumulation (Figure 4d). These results suggest that IGFBP2 has a
role in promoting EGFR nuclear accumulation.

Nuclear translocation of IGFBP2 is required for IGFBP2-mediated
EGFR nuclear accumulation
To better understand the mechanism of nuclear IGFBP2–mediated
EGFR nuclear accumulation, we generated an IGFBP2 construct
with a mutant nuclear localization signal60 (BP2ΔNLS;
Supplementary Figure S4A). Transient transfection of BP2ΔNLS
plasmid into SNB19.par cells resulted in the expected compromise
of IGFBP2 nuclear entry and also impaired EGFR nuclear
accumulation (Figure 4e). Next, we created a stable BP2ΔNLS-
overexpressing cell line (SNB19.BP2ΔNLS). Impaired EGFR nuclear
accumulation in fractionated stable SNB19.BP2ΔNLS cells, com-
pared with SNB19.BP2 WT (wild-type IGFBP2), resulted in
decreased nuclear expression of COX2 and c-MYC, which are
known downstream targets of nuclear EGFR/STAT3 complex
(Figure 4f). These results were replicated in another glioma cell
line, T98G (Supplementary Figures S5A and B). To determine
whether BP2ΔNLS can bind to EGFR, we transiently transfected
U87 cells with BP2 WT or BP2ΔNLS plasmid and performed IP
followed by immunoblotting (Supplementary Figure S6). The
results showed that mutation of IGFBP2 NLS does not affect
binding to EGFR, demonstrating that nuclear translocation of
IGFBP2 is important for mediating EGFR nuclear accumulation.
Because IGFBP2 is involved in glioma cell migration and
invasion,15,51 we then performed migration and invasion assays
using the SNB19.EV, SNB19.BP2 WT and SNB19.BP2ΔNLS cell lines.
Migration and invasion potential were significantly impaired
in the SNB19.BP2ΔNLS cells compared with SNB19.BP2 WT
(Supplementary Figures S4B and C), indicating that nuclear IGFBP2

Figure 3. IGFBP2 co-precipitates and co-localizes with EGFR. (a) Co-IP of IGFBP2 and EGFR in SNB19.EV control cells versus SNB19.BP2 cells
analyzed by immunoblotting (IB). (b) IP of IGFBP2 in U87 cells starved of serum overnight and then stimulated with two different doses of
IGFBP2 for 30min, analyzed by IB. (c) Confocal microscopic images of immunofluorescence staining for IGFBP2 (green), EGFR (red) and DAPI
(blue) in SNB19.BP2 cells show IGFBP2 and EGFR co-localization; blue arrow= cell membrane; purple arrow= cytoplasm; white
arrow=nucleus.
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is important for the invasive phenotype of glioma cells, plausibly
through regulation of nuclear EGFR–STAT3 activity.

Levels of nuclear EGFR, nuclear IGFBP2 and pSTAT3 are
significantly correlated in glioma
The RPPA LGG data from TCGA revealed a close relationship
between IGFBP2, activated EGFR and activated STAT3 but did not
provide spatial information. To further investigate localization of
these proteins, we performed immunohistochemical analysis to
determine the association between IGFBP2, EGFR and pSTAT3
(Y705) in a clinical glioma tissue microarray (TMA) comprising 222
samples of grade 2–4 gliomas. We observed both cytosolic and

nuclear localization of IGFBP2, both of which were strongly
associated with STAT3 phosphorylation in these gliomas (Figures
5a and b, Supplementary Table S1). Both cytosolic and nuclear
IGFBP2 expression positively correlated with increased fraction
and degree of phosphorylation of STAT3 (P= 0.023 and P= 0.018,
respectively), suggesting a functional link between IGFBP2
expression and STAT3 phosphorylation.
We observed nuclear co-localization of IGFBP2 and EGFR in the

clinical samples (Figures 5c and d, and Supplementary Table S1).
Cytosolic IGFBP2 did not correlate with nuclear EGFR, and nuclear
IGFBP2 did not correlate with cytosolic EGFR. However, nuclear
IGFBP2 positively associated with nuclear EGFR localization

Figure 4. IGFBP2 drives EGFR nuclear accumulation. (a) Immunoblot analysis of cytoplasmic (cyt) and nuclear (nuc) fractions of SNB19.EV and
SNB19.BP2 cells. Beta-tubulin represents a loading control for the cytoplasmic fraction, and PARP represents a loading control for the nuclear
fraction. Densitometric analysis represented by the bar graph demonstrates the percentage of cytoplasmic or nuclear EGFR. (b) Confocal
images of SNB19 parental cells and SNB19 parental cells stimulated with exogenous IGFBP2 protein (250 ng/ml for 30min). Cells were stained
for EGFR (red) and the nuclei were stained with DAPI (blue). (c) Immunoblot analysis of cytoplasmic and nuclear fractions of SNB19 parental
cells stimulated with exogenous IGFBP2 (250 ng/ml for the indicated times). The graph represents fold-change of cytoplasmic or nuclear
IGFBP2 and EGFR calculated from densitometric analysis of the immunoblot bands. (d) Immunoblot analysis comparing cytoplasmic and
nuclear fractions of SNB19.BP2 cells depleted of IGFBP2 via two independent pools of IGFBP2 siRNA (BP2 siR #1, #2) to cells transfected with
scrambled negative control siRNA (ctrl siR). Densitometric analysis represented by the bar graph demonstrates the percentage of cytoplasmic
or nuclear EGFR. (e) Immunoblot analysis of cytoplasmic and nuclear fractions of transiently transfected SNB19.EV, SNB19.BP2 wild type (BP2
WT) and SNB19 with a mutated IGFBP2 nuclear localization signal (BP2ΔNLS). Densitometric analysis represented by the bar graph
demonstrates the percentage of cytoplasmic or nuclear EGFR. (f) Immunoblot analysis of cytoplasmic and nuclear proteins in stable SNB19.EV,
SNB19.BP2 WT and SNB19.BP2ΔNLS cells.

Figure 5. IGFBP2 correlates with STAT3 activation and nuclear EGFR localization in clinical samples. Expression and localization of IGFBP2,
pSTAT3(Y705) and EGFR were detected with immunohistochemistry from a TMA that included 222 human grade 2–4 gliomas. (a) TMA
immunostaining images (magnification × 40) representing weak and strong staining of IGFBP2 and pSTAT3(Y705). (b) Cytosolic and nuclear
IGFBP2 expression associated with the percentage of cells positive for pSTAT3 and with pSTAT3 staining intensity. Bar graphs illustrate the
increasing fractions of pSTAT3-positive cells and pSTAT3 intensity upon increasing IGFBP2 intensity or nuclear accumulation. (c) TMA
immunostaining images (magnification × 40) representing low and high nuclear localization of IGFBP2 and EGFR. (d) Nuclear IGFBP2
associated with nuclear EGFR. The bar graph illustrates the fraction of samples with increasing nuclear EGFR localization upon increasing
nuclear accumulation of IGFBP2. (e) Nuclear co-localization of IGFBP2, EGFR and phosphorylated STAT3 predicted poor survival among
patients with human grade 2–4 gliomas. Patients were stratified into two cohorts based on the nuclear staining of all three proteins: triple
positives (⩾1% of cells with nuclear expression, n= 51, red line) and all other cases (n= 83, blue line). Survival rates were visualized by using
a Kaplan–Meier survival plot (P= 0.0086).
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(P= 0.011). Furthermore, clinical samples that were triply positive
for nuclear accumulation of IGFBP2, phosphorylated STAT3 and
EGFR were strongly associated with poor survival (Figure 5e).

DISCUSSION
Conventionally, proteins are categorized as secreted, membrane-
bound or intracellular. However, accumulating evidence
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demonstrates that signaling molecules are spatiotemporally
dynamic;61–66

in addition to cell surface–initiated signaling, upon internalization,
EGFR can mediate signaling in the endosome,67–70 nucleus71 or
mitochondria.72,73 EGFR crosstalks with STAT3 through two levels:
tyrosine kinase–mediated activation of STAT342,43,74 and nuclear
cooperation as transcriptional cofactors.44–46 Our results signifi-
cantly expand our understanding of this network by demonstrat-
ing that IGFBP2 stimulation or overexpression contributes to
activation of EGFR–STAT3 and downstream pathways. IGFBP2
forms a complex containing EGFR and facilitates the nuclear
accumulation of EGFR to potentiate nuclear EGFR–STAT3 activity.
Thus IGFBP2 controls two fundamental functions of EGFR,
cytoplasmic signal transduction and nuclear accumulation.
These results also elucidate newly identified oncogenic func-

tions for nuclear IGFBP2. By facilitating nuclear EGFR accumula-
tion, nuclear IGFBP2 activates an EGFR–STAT3-mediated
transcriptional program, which promotes transcription of iNOS,
c-MYC and COX2.44–46 The resulting aberrant activation of these
genes leads to uncontrolled cell proliferation, survival and
metastasis and hence poor prognosis. COX2 is upregulated and
correlated with poor survival in glioma,75–77 iNOS is critical for
glioma stem cell survival and tumorigenesis78–81 and c-MYC is
correlated with high-grade glioma and important for glioma stem
cell maintenance.82–84 We also demonstrated a role for nuclear
IGFBP2 in promoting cancer cell migration and invasion, a key
hallmark of cancer and a major aspect of glioma aggressiveness
and treatment response.
The dynamic nature of these oncogenic signaling molecules

may contribute to the ineffectiveness of EGFR-targeted therapy in
glioma, perhaps because EGFR is being actively translocated into
the nucleus by IGFBP2, rendering the cells resistant to therapies
targeting membrane EGFR. Thus IGFBP2 may serve as an escape
mechanism for glioma cells from EGFR-targeted therapy. EGFR can
be activated by eight different ligands,85,86 including EGF,
transforming growth factor α and heparin-binding EGF. EGF,
transforming growth factor α and heparin-binding EGF are
constitutively expressed in the developing and normal adult
brain.87–90 Therefore, therapeutic targeting of these ligands is not
feasible. Conversely, IGFBP2 is highly expressed in the fetal brain
and glioma but not in the normal adult brain,26,27,30,91,92 making it
a better therapeutic target than the known EGF ligands. EGFR
amplification and activation are among the most common
oncogenic events in human cancer,93,94 and IGFBP2 overexpres-
sion is also a frequent event in glioma and other cancers. Our
analysis of three independent clinical data sets revealed strong
correlation between IGFBP2 and EGFR in terms of both gene
expression and protein localization in the cell. The development of
therapeutic strategies that target both molecules may represent
a rational approach for cancer therapeutics.

MATERIALS AND METHODS
Cell culture, treatments, plasmids and transfections
SNB19, U87 and T98G cells were obtained from ATCC (Manassas, VA, USA).
Cells were cultured in Dulbecco modified essential/F12 50:50 medium
supplemented with 10% fetal bovine serum and 5% penicillin/streptomy-
cin in an incubator with 5% CO2 at 37 °C. SNB19.EV (empty vector) and
SNB19.BP2 WT (IGFBP2 wild type) cells were created as previously
described.51 To generate BP2ΔNLS (IGFBP2 mutation at the nuclear
localization signal), amino-acid residues 179PKKLRPP185 of the IGFBP2
nuclear localization signal were mutated to 179PNNLAPP185 using the
Quikchange Lightning site-directed mutagenesis kit (Agilent Technologies,
Santa Clara, CA, USA) according to the manufacturer’s protocol. A stable
SNB19.BP2ΔNLS cell line was created by transfection of pcDNA3.1.
IGFBP2ΔNLS plasmid via FuGENE HD (Promega, Fitchburg, WI, USA)
according to the manufacturer’s protocol, followed by G418 selection for
3 weeks.

IGFBP2 stimulation experiments were performed by using recombinant
IGFBP2 (ab63223; Abcam, Cambridge, MA, USA) with cells starved of serum
overnight. Depletion of IGFBP2 and EGFR was achieved via transfection of
Lipofectamine RNAiMAX (Life Technologies, Grand Island, NY, USA)
according to the manufacturer’s protocol with two different pools of
siRNA from Mission siRNA (Sigma, St Louis, MO, USA) for 48 h. Some cells
were treated with a broad-spectrum ADAM inhibitor, TAPI-2 (no. 14695;
Cayman Chemical, Ann Arbor, MI, USA) or marimatstat (no. M2699; Sigma)
at 20 μM for 2 h. Depletion of ADAM17 siRNA was achieved via transfection
of Lipofectamine RNAiMAX according to the manufacturer’s protocol with
two different pools of siRNA from Life Technologies (nos. s13718 and
s13719).

Gene set enrichment analysis
A total of 268 LGG samples obtained from the TCGA data portal (https://
tcga-data.nci.nih.gov/tcga/) were subjected to RNA sequencing. The gene
expression data were median-centered and then transformed to log2
space. We calculated the correlation of IGFBP2 gene expression with all
other genes in the genome and ranked the genes in descending order
based on the correlation coefficients. Using the gene expression
correlation as the ranking metric, GSEA was then used to calculate the
score for the degree of enrichment of the genes with higher correlation
coefficients among genes involved in the STAT3 signaling pathway.95

In a similar manner, the correlation of IGFBP2 or STAT3 protein
expression with proteins in the TCGA TMA was calculated for 257 LGG
samples for which RPPA data were available. Proteins that had higher
correlation coefficients with both IGFBP2 and STAT3 proteins were
considered the most likely candidates to represent molecular mechanisms
underlying the association of IGFBP2 and the STAT3 signaling pathway.

Ingenuity Pathway Analysis
The interaction network feature of Ingenuity Pathway Analysis was used to
determine direct downstream targets of STAT3. Interactions were filtered
on the basis of their confidence level so that only interactions
experimentally observed in humans were included in the table of results.
Interactions were also filtered by relationship type so that only interactions
of type ‘expression’ or ‘transcription’ were included.

IP, immunoblotting and cellular fractionation
For IP, cells were subjected to lysis in NP-40 buffer with 0.1% phosphatase
inhibitor cocktail (Pierce Biotechnology, Thermo Fisher Scientific, Waltham,
MA, USA). After preclearing for 1 h at 4 °C with Protein G agarose beads (SC
no. 2002; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and appropriate
species normal immnuoglobulin G (IgG), lysates were immunoprecipitated
overnight at 4 °C with Protein G agarose beads using antibodies to IGFBP2
(no. SC-6001; Santa Cruz Biotechnology; 1:100) and EGFR (no. 2256; Cell
Signaling Technology, Beverly, MA, USA; 1:100). Beads were washed with
NP-40 buffer three times and boiled in Laemmli buffer. Proteins from the IP
experiment or extracted from cell lysates were separated by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (10%) in running buffer
and transferred onto an Immobilon TM-PVDF membrane (Millipore,
Billerica, MA, USA) for 1 h at 100 V in transfer buffer (24 mM Tris base,
191mM glycine and 20% (v/v) methanol). Membranes were blocked for 1 h
at room temperature with 5% (w/v) non-fat milk powder in phosphate-
buffered saline solution (PBS) with 0.1% Tween-20 (PBST) and incubated
overnight at 4 °C with primary antibody: IGFBP2 (no. SC-6001; 1:500); EGFR
(no. 4267; Cell Signaling Technology; 1:1000), EGFR-Y1068 (no. 3777; Cell
Signaling Technology; 1:1000), beta-tubulin (no. 2128; Cell Signaling
Technology; 1:1000), PARP (poly ADP-ribose polymerase; no. 9542; Cell
Signaling Technology; 1:1000), STAT3 (no. 9139; Cell Signaling Technology;
1:1000), STAT3-Y705 (no. 9145; Cell Signaling Technology; 1:1000), Bcl-xL
(no. 2764; Cell Signaling Technology; 1:1000), cyclin D1 (no. 2978; Cell
Signaling Technology; 1:1000), c-MYC (no. SC-40; Santa Cruz Biotechnol-
ogy; 1:1000), COX-2 (no. 160112; Cayman Chemical; 1:250), or ADAM17 (no.
T5442; Sigma; 1:500) in blocking solution. After washing in PBST, blots were
incubated for 1 h at room temperature in PBST with secondary antibodies
(anti-goat IgG, anti-rabbit IgG, or anti-mouse IgG; Santa Cruz Biotechnology;
1:5000) coupled to horseradish peroxidase (HRP). Immunoblots were
incubated with enhanced chemiluminescence SuperSignal West Pico
or Femto solution (Pierce Biotechnology). Cellular fractionation was
performed by using the NE-PER Nuclear and Cytoplasmic Kit (Pierce
Biotechnology) according to the manufacturer’s protocol. Densitometric
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analysis of immunoblot bands were quantified using the ImageJ software
(US National Institutes of Health, Bethesda, MD, USA).

Confocal imaging
Cell on chamber slides were fixed in 4% paraformaldehyde, permeabilized
with 0.5% Triton X-100 and incubated with primary antibody to EGFR (no.
4267; 1:100) and IGFBP2 (no. SC-6001; 1:100) at 4 °C overnight. They were
then incubated with secondary antibody (Life Technologies (Alexa Fluor);
1:500) for 1 h at room temperature in 1% bovine serum albumin/PBS
buffer. They were mounted in Vectashield (Vector Laboratories, Burlin-
game, CA, USA), and nuclei were counterstained with DAPI (4′,6-diamidino-
2-phenylindole, dihydrochloride). Immunofluorescence images were
acquired by using an Olympus FV1000 Laser Confocal Microscope at
× 40/NA 1.3 objective (stacking from basement membrane to apical site at
1-μM intervals).

TMA construction and immunohistochemical analysis
Tumor samples were collected, and the TMA comprising formalin-fixed,
paraffin-embedded astrocytoma tissues was processed at Tampere
University Hospital as described previously.96 Briefly, histologically
representative tumor regions were selected by a neuropathologist (HH),
and samples from these areas were placed in TMA blocks using a custom-
built instrument (Beecher Instruments, Sun Prairie, WI, USA). The diameter
of the tissue cores in the microarray block was 1mm. Altogether, 222
diffusely infiltrating astrocytomas (167 glioblastomas, 17 grade 3 astro-
cytomas and 38 grade 2 astrocytomas) were included in the immuno-
histochemical analysis. For staining, 5-μm sections from TMA blocks were
deparaffinized in xylene or hexane and rehydrated through an ethanol
dilution series. Immunohistochemical staining was performed with goat
antibodies against human IGFBP2 (no. SC-6001; 1:300), phosphorylated
STAT3 (no. 9145; 1:100) and EGFR (GR-01, Calbiochem, San Diego, CA, USA;
1:50), together with the HRP-diaminobenzidine (DAB)–based Cell and
Tissue Staining Kit (R&D Systems, Minneapolis, MN, USA) or the Envision
+System HRP-DAB kit (Dako, Carpenteria, CA, USA).
Intensity of cytosolic expression levels of the proteins in tumor cells was

manually quantified by using a scoring system from 0 to 3 (0 = no signal,
1 =weak signal, 2 =moderate signal and 3= strong signal). The proportion
of the cells with nuclear protein localization was manually classified into
four categories: 0, o10, 10–30 and ⩾ 30%. Intensity of nuclear expression
levels in tumor cells was manually quantified by using a scoring system
from 0 to 2 (0 = no signal, 1 =weak signal, 2 = strong signal). The TMA
samples were examined and scored by two neuropathologists who were
blinded to the clinical data. A survival association analysis of the patients
from whom these samples were taken compared survival in patients with
nuclear co-localization of all three proteins—IGFBP2, EGFR and phos-
phorylated STAT3 (⩾1% cells with nuclear staining)—with survival of all the
other patients. The survival data were analyzed by the log-rank test and
visualized with a Kaplan–Meier plot. Statistical analyses were run with
the SPSS 20.0 software for Windows (SPSS Inc., Chicago, IL, USA). The
statistical significance of associations was evaluated by using the Pearson
chi-square test.

Invasion and migration assays
The cell invasion assay was performed in triplicate in Matrigel-coated
transwell chambers (8-μm pore size; (BD Biosciences, San Jose, CA, USA).
The cells were plated in 500 μl of serum-free medium (4 × 104 cells per
transwell) and allowed to invade toward a medium containing 10% fetal
bovine serum for 16 h. Cells that invaded into the underside of the filter
were fixed and stained with HEMA-DIFF solution (Thermo Fisher Scientific).
The numbers of invaded cells from five randomly chosen fields from each
membrane were counted. The cell migration assay was performed the
same way as the invasion assay, using transwell chambers (8-μm pore size,
BD Biosciences), and the cells were allowed to migrate for 4 h. The data
were expressed as means± s.e.m. and analyzed by Student's t-test for
difference between the two groups.

Statistical analysis
Experiments were performed at least three times. GraphPrism 6 (GraphPad,
La Jolla, CA, USA) and SPSS 20.0 software for Windows (SPSS Inc.) were
used for statistical analysis and graphing. The Spearman correlation test
was used to examine correlation between protein or phosphoprotein
expression in the TCGA RPPA data set. The survival data were analyzed by

the log-rank test and visualized with a Kaplan–Meier plot. The statistical
significance of protein associations in the TMA data set was evaluated by
using the Pearson chi-square test. Statistical test on GSEA was estimated as
previously described.95 Student's t-tests were used for paired comparisons
where variances were estimated to be similar. Except for one-side test for
the GSEA analysis,95 all other tests were two-sided, with Po0.05 as the
threshold for statistical significance in all the tests. Indicated annotations
correspond to the following P-values: *Po0.05, **Po0.01, ***Po0.001,
and ****Po0.0001.
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