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TIMP3 controls cell fate to confer hepatocellular carcinoma
resistance
V Defamie1, O Sanchez2, A Murthy1 and R Khokha1

Inflammation enables human cancers and is a critical promoter of hepatocellular carcinoma (HCC). TIMP3 (Tissue inhibitor of
metalloproteinase 3), a natural metalloproteinase inhibitor, controls cytokine and growth factor bioavailability to keep inflammation
in check and regulate cell survival in the liver. TIMP3 is also found silenced in human cancers. We therefore tested whether Timp3
affects HCC predisposition. Remarkably, genetic loss of Timp3 protected from carcinogen-induced HCC through the immediate
engagement of several tumor suppressor pathways, while tumor necrosis factor (TNF) signaling was dispensable for this protection.
All wild-type mice developed HCC by 12 months, whereas HCC incidence was reduced to 33% at 12 months and 57% at 15 months
in Timp3 null mice. Upon acute carcinogen treatment the deficient livers exhibited greater cytokine expression, but lower cell death
and higher hepatocyte senescence. We found that precocious activation of p53, p38 and Notch preceded senescence and hepatic
cell differentiation, and these events were conserved throughout tumorigenesis. Timp3-deficient mouse embryo fibroblasts also
responded to carcinogen by favoring senescence over apoptosis. We conclude that Timp3 status determines p53, p38 and Notch
coactivation to instruct hepatic cell fate and transformation and uncover mechanisms that are protective even within a pro-
inflammatory microenvironment.
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INTRODUCTION
Chronic liver damage during hepatitis and cirrhosis is a key
contributing factor to hepatocellular carcinoma (HCC) usually
associated with alcoholism, hepatitis B or C viral infection, and
aflatoxin B1 consumption.1–3 Diabetes and non-alcoholic
steatohepatitis are new etiological factors in liver cancer.4 The
increasing incidence of these diseases in developed countries is
exposing more populations to the risk of developing HCC.
Malignant transformation of hepatocyte involves the perpetuation
of a wound-healing response triggered by parenchymal cell death
and compensatory regeneration in the context of inflammation and
oxidative DNA damage. The tumor suppressor p53 is immediately
recruited upon DNA damage and dictates hepatocyte cell fate. In
addition, the mitogen-activated protein kinase (MAPK) p38 as well
as Notch have been suggested to provide tumor-suppressive
function in the liver.5,6 However, activation of these critical genes by
microenvironmental factors during inflammation remains poorly
understood. The extracellular tissue inhibitor of metalloproteinase 3
(TIMP3) has a fundamental role in liver biology. Studies pertinent to
hepatic fate such as liver regeneration,7 systemic inflammation,8

Fas-dependent hepatotoxicity9 and high-fat diet-induced diabetes10

or steatohepatitis11 have identified TIMP3 to be a critical regulator
of hepatic inflammation, cell death and survival. A key function of
TIMP3 is to inhibit ADAM17 (a disintegrin and metalloproteinase 17),
a protease responsible for ectodomain shedding of multiple cell
surface proteins including tumor necrosis factor (TNF), TNF
receptors and epidermal growth factor (EGF) receptor ligands, or
participating in Notch cleavage.12–14 Thus, TIMP3 regulates TNF and
EGF signaling, and possibly the Notch activation.7,9,15 Genomic
studies have identified TIMP3 silencing in several human cancers via
hypermethylation,16,17 microRNA18,19 and loss of heterozygosity,20,21

suggesting a tumor-suppressive function for this gene.

Timp3-deficient mouse offered an opportunity to model liver
tumorigenesis in the context of inflammation and TIMP3 silencing.
Contrary to our expectation, we found that TIMP3 is required for

liver tumorigenesis. Timp3-deficient mice were strongly resistant
to carcinogen-induced HCC despite their proclivity for inflamma-
tion. The loss of Timp3 enabled coactivation of p53, p38 and Notch
signaling enhancing senescence and hepatic cell differentiation.
The TNF pathway participated in progression to malignancy but
was not essential for HCC. In conclusion, TIMP3 has a critical role in
liver tumorigenesis by directing the balance between hepatocyte
apoptosis and senescence during the p53-dependent DNA
damage response.

RESULTS
Heightened inflammation but compromised hepatic cell death in
carcinogen-treated Timp3− ⁄− mice
An acute dose of the carcinogen diethylnitrosamine (DEN; 100 μg/g
body weight) administered to mice (Figure 1a) triggers immediate
hepatocyte DNA damage and cell death, with concomitant Kupffer
cell activation releasing cytokines as hepatomitogens.22 DEN
cytotoxicity depends on its metabolic activation by cytochrome
P450 2E1 (CYP2E1) within centrolobular hepatocytes;23 Cyp2e1− ⁄−

mice are resistant to DEN-induced HCC.24 We performed
quantitative reverse transcription PCR measurements over 48 h
post DEN and found comparable Cyp2e1 expression between
Timp3− ⁄− and wild-type (WT) livers, thereby suggesting similar
DEN-induced cytotoxicity in these groups (Figure 1b). Participation
of the Timp gene family members in DEN-induced hepatic response
was assessed by measuring expression of individual Timp1, Timp2,
Timp3 and Timp4 post DEN in WT liver. Timp3 expression
increased at 4 h and steadily declined over 24 h, indicating its
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specific induction at the onset of the hepatic carcinogen
challenge, whereas other Timps did not show modulation at
the early time points (Figure 1c and Supplementary Figure S1). All
Timps, except Timp4, then rose at 48 h although not significantly.
Measurement of gene expression in pro-inflammatory cytokines
interleukin (IL)-6, TNF, interferon gamma (IFNγ) and IL-12p35
showed a greater increase in Timp3− ⁄− versus WT livers, whereas
the levels of IL-1β and IL-10 (an anti-inflammatory cytokine)
remained similar (Figure 1d). Measurement of IL-6, TNFα and IFNγ
protein levels by enzyme-linked immunosorbent assay in liver
tissue lysates confirmed the changes observed at RNA level
(Supplementary Figure S2).
DEN products cause DNA damage by forming DNA ethyl

adducts and this is typically followed by cell death and

compensatory hepatocyte proliferation. Hepatocyte apoptosis
was determined by the terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) assay and cleaved caspase 3
immunohistochemistry (IHC), proliferation was assessed by Ki67
IHC, and the release of alanine transaminase (ALT) into serum
provided another measure of hepatic damage over 48 h following
carcinogen administration. We observed that hepatocyte cell
death was reduced despite the heightened liver inflammation in
Timp3− ⁄− liver. Specifically, far fewer apoptotic hepatocytes were
detected at 24 h post DEN (TUNEL and cleaved caspase 3-positive
cells (Figure 1e and Supplementary Figure S3)), and ALT levels
were lower compared with WT (Figure 1f). Hepatocyte prolifera-
tion was marginally lower at this time point (Figure 1g). However,
these parameters of liver injury were comparable at 48 h,
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Figure 1. Cytokine expression and hepatocyte apoptosis after DEN-induced hepatic injury. (a) A schematic showing the analyses on 4-week-
old male mice after acute DEN treatment. (b) Expression of Cyp2E1, the cytochrome responsible for DEN metabolization, determined by
reverse transcription PCR (RT-PCR). (c) RT-PCR measurement of Timp3 expression in WT liver post DEN. (d) Hepatic cytokine expression in
DEN- or PBS-treated control (C) WT and Timp3− ⁄− mice as determined by RT-PCR. (e) Representative images of TUNEL staining in the
indicated mouse cohorts and quantification of the positive hepatocytes (green) undergoing apoptotic cell death post DEN. (f) Serum level of
ALT reflecting hepatic injury. (g) Quantification of hepatocytes proliferation identified by Ki67 immunostaining. Data are presented as the
mean± s.e.m., n= 3–6 mice per group. *Po0.05, **Po0.01 and ***Po0.001 for the indicated comparisons. Scale bar, 100 μm.
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suggesting an altered kinetics of cellular response to DNA damage
in the Timp3 null liver. Therefore, TIMP3 not only altered hepatic
inflammatory response but also hepatocyte cell death upon
genotoxic insult.

Increased p53 activation in Timp3 null hepatocytes
In response to cellular stress such as the DNA damage, p53
activation promotes cell cycle checkpoints, DNA repair, cellular
apoptosis and senescence. Histone gamma H2AX phosphorylation
(γ-H2AX) is an immediate event in DNA damage and repair,25 and
γ-H2ax foci seen in WT hepatocytes at 4 h were mostly resolved by
12 h post DEN (Figure 2a). Equivalent at 4 h, these foci remained
obvious until 12 h in Timp3− ⁄− centrolobular hepatocytes
indicating an early difference in the DNA damage response.
Examination of p53 in hepatocyte nuclei by IHC showed fourfold
higher number of p53-positive nuclei at 12 h in the null liver
reflecting a more robust p53 response, whereas WT livers
displayed a transient peak of nuclear p53 localization at 24 h
(Figure 2b). Western blotting confirmed early p53 activation and
higher levels in Timp3− ⁄− liver (Figure 2c). We determined the
expression of several p53 target genes, and those involved in p53
regulation (Mdm2) and cycle arrest (p21) were significantly higher
at 4 h in deficient liver, whereas pro-apoptotic genes (Puma and
Noxa) were lower than WT throughout the time course, providing
an explanation for the delayed cell death observed in carcinogen-
challenged Timp3− ⁄− liver (Figure 2d). Thus, differential p53
kinetics directed the DNA damage response; p53 activation
normally favors apoptosis in WT liver, but precocious p53 activity,
defect in apoptosis and p21 upregulation suggested increased cell
cycle arrest in liver lacking the Timp3 gene.

The Timp3 null cells are predisposed to senescence
Given the higher p53 activity but lower hepatocyte apoptosis, we
then examined cellular senescence by comparing p21 protein
level and senescence-associated β-galactosidase activity (SA-β-
gal) after acute DEN treatment. p21 levels were higher as early as
4 h, and increased SA-β-gal staining was evident in deficient
livers compared with WT controls (Figures 3a and b), raising the
probability that precocious p53 activity has triggered cell cycle
arrest and senescence in TIMP3 null liver. To assess whether
Timp3 loss promotes DNA damage-induced senescence in a cell
type other than hepatocytes, low-passage mouse embryo
fibroblasts (MEFs) were exposed to methyl methanesulfonate
(MMS; 130 μg/ml, 2 h). The alkylating agent MMS was chosen for
induction of DNA damage in cell culture setting, as it does not
require cytochrome P450-mediated hepatic metabolization
unlike DEN. After MMS treatment, the cells were allowed to
recover in fresh media for 0–48 h (Figure 3c). Timp3− ⁄− MEFs
responded with higher expression of p21 within the first 4 h
(Supplementary Figure S4) and substantially lower apoptosis
compared with WT cells (Figure 3d). In fact level of cleaved
caspase 3 at 48 h in null MEFs was comparable to those at 4 h in
WT revealing the magnitude of cell death delay. Furthermore,
senescence-associated protein p16 expression was sustained
over 48 h in Timp3− ⁄− MEFs (Figure 3d). Higher SA-β-gal
staining was seen from 0 to 24 h following MMS treatment in
TIMP3-deficient cells (Figure 3e). These results show that
TIMP3 alters the balance between apoptosis and senescence
following DNA damage in diverse cell types such as hepatocytes
and fibroblasts.
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Figure 2. p53 activation after acute DEN treatment. (a) Representative images of immunostaining for histone γH2ax, a marker of DNA damage
and repair following acute DEN treatment (100mg/kg), n= 3–4 mice per group. (b) p53 immunostaining and quantification of positive
hepatocyte nuclei (arrows) around the central veins (CVs) at 12 h post DEN. WT, n= 3; Timp3− ⁄− , n= 4. (c) Immunoblotting of p53 at 4 and 12 h
post DEN in liver protein extracts. Each lane represents an individual mouse, and β-actin serves as a loading control. (d) Expression of p53
target genes within 48h post DEN, as assessed by reverse transcription PCR. Data are presented as the mean± s.e.m. n= 3–4 mice per group.
Scale bar, 20 μm. NS, not significant, *Po0.05, **Po0.01 and ***Po0.001 for the indicated comparisons.

Timp3 impacts p53-dependent senescence during HCC
V Defamie et al

4100

Oncogene (2015) 4098 – 4108 © 2015 Macmillan Publishers Limited



Timp3-deficient mice are protected from carcinogen-induced HCC
Hepatic inflammation is known to potentiate liver carcinogenesis
but decreased hepatocyte apoptosis and/or increased senescence
would impact the tumor initiation process. To study the importance
of these opposing cellular events on HCC development, cohorts of
WT and Timp3− ⁄− neonatal mice were given a single carcinogen
injection (15-day-old males, 5 μg/g of DEN), and tissue analyzed at 8
and 12 months post treatment (Figure 4a). DEN administration is a
widely used method of inducing HCC, as it recapitulates many
events seen in human liver cancer.26 As expected, WT mice
harbored large vascularized hepatic tumors by 12 months, with
increased liver weight and serum ALT (Figures 4b–d).
Tumorigenesis was markedly suppressed in Timp3− ⁄− mice as
determined by lower tumor burden, tumor size and ALT levels,
although the number of nodules on the liver surface was similar
between the two cohorts (Figures 4b–f). Histological examination
showed that all WT mice had HCC (100% incidence) by 12 months
post DEN, but only 33% of the Timp3− ⁄− cohort developed HCC;
the remaining Timp3− ⁄− mice had hepatoadenoma or hepatic cell
damage (Table 1).
To establish whether Timp3− ⁄− mice were protected from liver

carcinoma or merely delayed in developing cancer, a group of mice
were aged and the tumor burden was examined at 15 months post
DEN (Figures 4c–g). No significant increase in liver weight occurred
between 12 and 15 months (Figure 4c), and the ALT levels were still
severely reduced when compared with WT mice at 12 months
(Figure 4d). More importantly, only 57% of the Timp3− ⁄− mice
developed HCC, with the others harboring hepatoadenoma or foci
(Table 1) indicating their prolonged resistance against carcinogen-
induced liver tumorigenesis. This data provides strong evidence for
TIMP3 requirement in HCC development.

HCC suppression is not dependent on TNF signaling
Molecular effectors of the nuclear factor-κB pathway, activated
downstream of TNF, are implicated in inflammation and liver
cancer,22,27,28 although there is little understanding of how TNF

itself affects DEN-induced liver tumorigenesis. Cell surface release of
TNF and its receptors is controlled by TIMP3, and many of the
inflammation-related phenotypes of Timp3-deficient mice are
rescued by deleting components of the TNF pathway.7–9 We tested
whether HCC resistance requires TNF bioactivity by generating
double knockouts that lacked TNF or TNF receptor I in addition to
Timp3 (Timp3− ⁄− /Tnf− ⁄− ; Timp3− ⁄− /Tnfr1− ⁄− ). At 12 months post
DEN, TNF deficiency alone (Tnf− ⁄− ) reduced the liver weight and
tumor size compared with WT, but this difference was not
statistically significant (Figures 5a and 4d). On the other hand,
tumors classified as HCC were significantly lowered to 42%,
suggesting TNF participation in malignant progression to HCC
(Table 1). In contrast, compound cohorts Timp3− ⁄− /Tnf− ⁄− and
Timp3− ⁄− /Tnfr1− ⁄− presented substantially greater tumor suppres-
sion than individual Tnf or Timp3 knockouts. Specifically, tumor
number and size were reduced, with liver weights being compar-
able to that of a normal, 12-month-old non-tumor bearing liver
(WT=1.33±0.04 n=6; Timp3− ⁄− /Tnf− ⁄− =1.36± 0.3 n=5; Timp3−
⁄− /Tnfr1− ⁄− =1.39±0.20 n=9; Figures 5a–d). Further, tumors
classified as HCC fell to 25% in Timp3− ⁄− /Tnf− ⁄− and 11% in
Timp3− ⁄− /Tnfr1− ⁄− groups (Table 1). The cumulative tumor
inhibition seen in compound knockouts shows that TIMP3 and
TNF act through different mechanisms to promote HCC. The
process underlying HCC suppression in Timp3-deficient liver occurs
despite excess inflammation observed at the onset of DNA damage.

p38 and Notch signaling aligns with p53 activation in the Timp3
null state
We next ask how TIMP3, located in the extracellular microenvir-
onment, can modulate the DNA damage response and hepatocyte
cell fate after genotoxic stress. As MAPKs (p38, c-Jun NH(2)-
terminal kinase (JNK) and extracellular signal-regulated kinase
(ERK1/2)) can impact p53 activity and we previously found
increased MAPK-dependent survival signaling during Fas-
mediated cell death in Timp3 null mice,9 we considered MAPKs
as a protective mechanism.29 Activation of these stress kinases
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typically occurs in a wave, and we therefore examined p38, JNK
and ERK1/2 phosphorylation over 48 h after acute DEN treatment.
JNK and ERK1/2 activation in livers was generally comparable in
Timp3− ⁄− and WT cohorts (Figure 6a and Supplementary Figure
S5A). In contrast, the p38 phosphorylation kinetics was different
between the two genotypes. A striking reduction in p38
phosphorylation noted in WT at 4 and 48 h was absent in

Timp3− ⁄− liver and p38 activation was sustained post DEN. Thus,
TIMP3 deficiency allowed continued p38 MAPK signaling during
hepatic damage.
TIMP3 is the endogenous inhibitor of ADAM17, a metallopro-

teinase critical for Notch signaling in the skin.30 Notch coordinates
biliary fate and bile duct morphogenesis in hepatic
development,31 and has a complex role in HCC. ADAM17 and
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γ-secretase perform successive Notch cleavage to produce Notch
intracellular domain (NICD) that then translocates to the nucleus
and activate gene expression for cell fate determination. We found
that NICD levels were higher in Timp3-deficient livers at 4 h post
DEN (Figure 6b), and several liver-specific or ubiquitous Notch
target genes were subsequently examined. SOX9 (SRY-box
containing gene 9) and HNF1β (hepatocyte nuclear factor-1β)
are transcriptional regulators of biliary development32,33 and both
were elevated in Timp3 null livers post DEN (Figure 6c).
Interestingly, baseline SOX9 and HNF1β expression was also
upregulated. On the other hand, expression of generic Notch
targets, basic helix–loop–helix proteins Hes (Hairy enhancer of
split) or Hey (Hairy-related family), did not differ between the two
cohorts (Supplementary Figure S5B). The hepatocyte marker
HNF4α was increased in Timp3− ⁄− liver31 (Figure 6c) and behaved
similarly to SOX9 and HNF1β at baseline and 48 h. These data
suggest that TIMP3 regulates Notch activation and subsequently
affects hepatic cell differentiation.

Tumor suppressor coactivation triggers senescence and
differentiation to attenuate HCC
Next, we focused on the preneoplastic stage (8 months post DEN)
of liver tumorigenesis. WT foci exhibited extensive cellular damage
and adjacent hepatic parenchyma compression, while Timp3− ⁄−

foci conserved lobular architecture with the presence of portal
triads and reduced hepatocyte damage (Figure 7a). Further, a
lower proportion of Ki67-positive hepatocytes in Timp3− ⁄− foci
(Figure 7b) indicated reduced proliferation. Serum IL-6, a potent
hepatocyte mitogen,34 was also lower at both 8 and 12 months in
TIMP3 null mice, although serum TNF was similar (Figure 7c). In
human HCC, the MKK6/p38 pathway is downregulated compared
with the adjacent non-tumor tissues.35 Comparison of p38
phosphorylation in tumor versus adjacent non-tumor tissues at
8 and 12 months in Timp3-deficient and WT groups was then
performed (Figure 7d). We found increased p38 phosphorylation
in tumor nodules at 8 months, and both non-tumor and tumor

Table 1. Histopathological analysis of liver tumors from DEN-treated mice

12 Months 15 Months

WT T3−⧸− Tnf−⧸− T3−⧸−Tnf−⧸− T3−⧸−Tnfr1−⧸− T3−⧸−

Carcinoma 9/9 (100%) 3/9 (33%) 5/12 (42%) 1/4 (25%) 1/9 (11%) 4/7 (57%)
Adenoma 0/9 3/9 3/12 0/4 3/9 2/7
Foci 0/9 2/9 4/12 3/4 5/9 1/7
Normal liver 0/9 1/9 0/12 0/4 0/9 0/7

Abbreviations: DEN, diethylnitrosamine; T3−⧸− , Timp3−⧸− ; WT, wild type. Liver sections obtained from the indicated genotypes at 12 and/or 15 months post-
DEN injection (5 μg/g, 15-day-old males) were stained by hematoxylin and eosin, and the tumor were classified by a pathologist. The number of mice
presenting HCC is also given as a percentage of the total number of mice analyzed.
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tissue had higher p38 activation at 12 months in Timp3− ⁄−

cohorts. With respect to Notch activation, NICD levels were also
increased in the null liver at 8 months (Figure 7e). Moreover,
Notch-dependent biliary specification transcription factors SOX9
and HNF1β were markedly higher, while hepatocyte marker
HNF4α expression was not different (Figure 7f). Finally, a
significant increase in p53 as well as the senescence-associated
genes, p19 and p16, was found in preneoplastic Timp3-deficient
livers (Figure 7g), indicating an increased propensity for prolonged
cell cycle arrest and senescence over months of liver transforma-
tion in Timp3− ⁄− mice. Thus, p38 suppressor function and Notch-
dependent hepatic cell differentiation cooperate to inhibit
tumorigenesis in Timp3 null mice.

DISCUSSION
A pro-inflammatory milieu is an essential component of human
liver cancer development. Proteolytic overactivity, also critical for
tumor progression, is found in all human cancers. Yet genetic loss
of metalloproteinase inhibitor Timp3 delays hepatic tumorigenesis

and prevents progression to malignancy despite eliciting heigh-
tened inflammation in response to carcinogen. We uncover a role
of TIMP3 in p53, p38 and Notch co-regulation (Figure 7h). These
signal transduction pathways are recruited during tumor suppres-
sion whereas TNF signaling is found dispensable. At the cellular
level, Timp3 loss shifts the carcinogen-induced DNA damage
response to favor senescence and hepatic cell differentiation
conferring protection against HCC.
Naugler et al.36 showed that although DEN administration led to

modest accumulation of TNF, ablation of TNFR1 had little effect on
DEN-induced HCC. In contrary, another study suggested an
important role for the TNF pathway in the promotion phase of
HCC following administration of a choline-deficient and ethionine-
supplemented diet to mice, as HCC development was attenuated
in TNFR1-deficient mice.37 Our data show that TNF is important in
the process of liver tumorigenesis because DEN-induced HCC
incidence was reduced in Tnf− ⁄− mice. Further, when the TNF
pathway was deleted through removal of this ligand or its
receptor in combination with TIMP3, the extent of HCC resistance
was more profound. We hypothesize that TNF promotes
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tumorigenesis by enhancing liver inflammation and/or controlling
cell fate. On the other hand, although TIMP3 regulates the TNF
pathway during inflammatory response in the liver, its action on
HCC does not operate through TNF.
Upon DNA damage, p53 induces a transient growth arrest to

allow DNA repair. Alternatively, it promotes senescence or apoptosis
in case of extensive DNA damage.38,39 p53-induced senescence has
been responsible for protection against HCC even after tumor
formation, as brief reactivation of endogenous p53 in p53-null
hepatic tumors leads to complete regression by induction of cell
senescence and tumor clearance by immune cells.40 Our study
reveals that acute DEN exposure induces a transient p53 activation
and hepatocyte apoptosis in WT liver, while precocious p53
activation leads to senescence in Timp3− ⁄− liver; p53 expression
is also higher at the attenuated preneoplastic stage in the null liver.
In addition, carcinogen-exposed Timp3− ⁄−

fibroblasts show reduced
apoptosis as well as greater p21 expression and senescence, thereby
suggesting a mechanism not restricted to hepatocyte. The powerful
tumor suppressor p53 has been under scrutiny for decades,
although factors that collaborate to increase p53 activity and
determine a specific cell fate are less well understood. Figure 7h
models how signaling pathways influenced by TIMP3 integrate to
enhance p53 bioactivity and trigger senescence, cell differentiation
and facilitate tumor suppression. Specific knockdowns or inhibitors
of individual pathways can provide a deeper understanding of these
interactions in future studies.
Two other major pathways, p38 and Notch, were activated in

Timp3− ⁄− livers. p38 negatively regulates cell cycle progression
facilitating DNA repair41,42 by inducing p21 or directly activating
p53. Moreover, a tumor-suppressive function of p38 was
suggested in the liver, as hepatocyte-specific p38α knockouts
have a greater DEN-induced ROS accumulation, JNK activation,
liver damage, compensatory hepatocyte proliferation and
enhanced hepatocarcinogenesis.5,43 We pinpoint sustained p38
activation during the DNA damage response and liver cancer
attenuation in Timp3-deficient mice, which is in line with our
previous observation of MAPK (Erk1/2 and JNK) regulation by the
TIMP3/ADAM17 axis during Fas-induced fulminant hepatitis.9

Interestingly, a recent study has placed this axis downstream of
p38 activation. ADAM17 phosporylation by p38 led to dissociation
of ADAM17 dimer from TIMP3 on the cell surface and allowed
ADAM17 activity.44 Our work suggests that p38 functions as a
tumor suppressor in Timp3− ⁄− liver, likely mediating the negative
regulation of hepatic cell cycle progression and induction of
terminal differentiation.42,45,46

The decision between growth arrest, senescence or apoptosis is
believed to be determined by the appropriate qualitative status of
p53. For instance p53 nuclear concentration or its phosphorylation
status can modulate its target gene promoter affinity, thus
modulating the transcriptional program and cellular response.47

Incidentally, consistent with the altered p53 activation kinetics in
Timp3 null tissue upon DEN challenge was the increased
expression of p21 and MDM2, but lower expression of PUMA
and NOXA pro-apoptotic target genes. It is conceivable that in the
WT liver, the p38 inhibition observed at 4 h post DEN under the
control of normal TIMP3 may direct the p53 DNA damage
response toward apoptosis. In contrast, at the onset of DNA
damage, the lack of TIMP3 and the subsequent sustained p38
activation may modify p53 conformation and/or stabilization and
critically shift hepatocyte cell fate toward senescence.
We have recently shown the requirement of ADAM17 for Notch

activation in the adult skin where it maintains the barrier
immunity.30 Because of its ability to inhibit ADAM17, TIMP3 can
putatively regulate Notch, yet physiological evidence for this
capacity has been lacking. Notch and p53 are interconnected; p53
directly binds to the Notch 1 promoter to induce its expression
and Notch in turn can stimulate p53 transcription via derepression
of RBP-Jκ bound to the p53 gene.48 For instance ultraviolet-B and

genotoxic exposure induces Notch1 expression in a p53-
dependent manner in skin and cultured keratinocytes.49,50 Notch1
has also been identified as a key determinant of keratinocyte
differentiation, promoting cell cycle arrest through p21 induction
and commitment to differentiation.51 In the liver, the Notch
pathway activation affects hepatocyte growth and differentiation
during regeneration,52 and coordinates biliary cell fate and
morphogenesis in a temporal- and dose-dependent manner
during hepatic development.31,33 More recently, Notch 2 was
shown to direct biliary reprogramming of adult hepatocytes.53

Interestingly, Notch1 overexpression in HCC cells induces a G0/G1
cell cycle arrest by acting on cell cycle regulators, and induces
apoptosis by altering the balance between p53 and the anti-
apoptotic protein Bcl-2.6 A contradictory pro-tumorigenic role of
Notch signaling in liver has emerged in recent studies related to
its prolonged overexpression.54,55 In the current study, increased
Notch signaling in Timp3− ⁄− liver is reflected as higher NICD
cleavage, and increased Notch-dependent hepatic cell markers at
baseline, at acute post DEN and at preneoplastic stage. We
propose that Notch signaling, via p53 and p21 activation, couples
enhanced cell cycle arrest and senescence with hepatic cell
differentiation to inhibit tumorigenesis.
Metalloproteinases generally promote cancer progression with

their tissue inhibitors acting to suppress tumor cell properties.56

A number of studies have shown TIMP3 silencing through
promoter hypermethylation to be associated with poor prognosis
in human cancers including kidney, brain, colon, lung and
endometrium, again suggesting it as a tumor suppressor
gene.16,17,57 We provide convincing evidence that TIMP3, a
metalloproteinase inhibitor that normally controls liver inflamma-
tion, increases the predisposition to hepatic tumorigenesis. This
work sheds light on the complexity of metalloproteinase biology
revealing their role in DNA damage response and hepatic cell fate.
A better understanding of the underpinnings of protease-
mediated p53 response in normal and cancer cells may impact
our ability to develop future cancer therapy.

MATERIALS AND METHODS
Animal genotypes, treatment and tissue collection
Experimental animal protocols and animal procedures were in accordance
with the guidelines approved by the Canadian Council for Animal Care and
the Animal Care Committee of the Ontario Cancer Institute. All mice used in
this study were on a C57BL/6 background. Tnf−/− and Tnfr1−/− mice
obtained from the Jackson Laboratory (Bar Harbor, ME, USA) were crossed
with the previously described Timp3−/− mice 7 to generate Timp3−/−Tnf−/−

and Timp3−/−/Tnfr1−/− mice. In long-term studies, HCC was induced by
intraperitoneally administration of 5 μg/g of DEN (Sigma-Aldrich, Oakville,
ON, Canada) in 15-day-old male mice. Animals were euthanized by CO2

inhalation at 8, 12 or 15 months post-DEN treatment. Visible tumors and
lesions on the liver surface were counted and measured with calipers. Half of
the left lobe from mice not showing liver surface tumors, or one part of the
larger tumors as well as adjacent non-tumor tissue on the same lobe was
snap-frozen; the other parts and lobes were fixed in 4% paraformaldehyde
overnight and subsequently were paraffin-embedded. Liver sections (5 μm)
were hematoxylin and eosin-stained and were analyzed by one pathologist
who was blinded to the genetic background. In short-term studies, 4-week-
old male WT and Timp3 null mice were treated (intraperitoneally) with PBS
(control) or with an acute dose of DEN at 100 μg/g and euthanized at 4, 12,
24 and 48 h post treatment to assess the early DNA damage response and
hepatic injury. One part of the left and median lobes were fixed in 4%
paraformaldehyde overnight, one part of the same lobes snap-frozen in
liquid nitrogen and a part of the left lobe was frozen in optimal cutting
temperature compound and used to assess SA-β-gal activity.

TUNEL staining and IHC
Sections (5 μm) from paraffin-embedded liver tissue, obtained within 48 h
of PBS or DEN injection (100mg/kg), were subjected to TUNEL staining
according to manufacturer’s instructions (ApoAlert DNA fragmentation kit;
Clontech, Mountain View, CA, USA). The apoptotic (green nucleus cells)

Timp3 impacts p53-dependent senescence during HCC
V Defamie et al

4106

Oncogene (2015) 4098 – 4108 © 2015 Macmillan Publishers Limited



were counted around the central veins at x40 magnification in at least 10
fields. The results are plotted as number of TUNEL-positive cells per central
vein. For IHC, 4% paraformaldehyde-fixed paraffin-embedded tissue
sections were de-paraffinized in xylene, gradually rehydrated in descend-
ing concentrations of ethanol and subsequently treated in Borg Decloaker
antigen retrieval solution (pH 9) for 5 min at 125 °C and 10 s at 90 °C using
a Decloaking chamber (Biocare Medical, Concord, CA, USA). Tissue sections
were stained using Horseradish peroxidase (HRP) 3-amino-9-ethylcarbazole
(AEC) tissue staining kit according to manufacturer’s instructions (R&D
Systems, Minneapolis, MN, USA). Primary antibodies used were anti-Ki67
(Thermo Scientific (SP6), Burlington, ON, Canada) 1:200 dilution, anti-
cleaved caspase 3 (no. 9661, 1:50) and anti-p53 (no. 2524, 1: 1500; Cell
Signaling Technology, Danvers, MA, USA), anti-γH2AX (05–636, 1:200;
Millipore, Temecula, CA, USA). Ki67-positive hepatocytes were scored in the
entire liver sections at x40 magnification and results are plotted as number
of Ki67-positive hepatocytes per field. Positive hepatocyte nuclei for p53
were scored around 10 comparable size central veins at x40 magnification
and their number plotted as number of p53-positive hepatocyte per
central vein.

Western blotting
RIPA extraction buffer containing 50mM Tris-HCl, pH 7.4, 1% Triton X-100,
0.1% SDS, 1% sodium deoxycholate, 10 mM EDTA, 150mM NaCl, 200 μM
Na3VO4, 50mM NaF and an appropriate dilution of Complete Mini, EDTA-
free protease inhibitor cocktail tablets (Roche, Laval, QC, Canada) was used
to lyse all tissues and MEFs, the lysates were stored at –80 °C. Total liver
protein was extracted by mortar and pestle homogenization of snap-
frozen tissues. A quantity of 30–40 μg of protein was loaded on SDS–
polyacrylamide gel electrophoresis gels for western blotting. The following
primary antibodies were used: anti-phosphorylated JNK (p-JNK,Thr183/
Tyr185), anti-JNK, anti-phosphorylated p44/42 MAPK (p-ERK1/2, Thr202/
Tyr204), anti-p44/42 MAPK (ERK1/2), anti-p38 MAPK, anti-phosphorylated
p38 MAPK (p-p38, Thr180/Tyr182), anti-cleaved caspase 3, anti-p53, anti-
cleaved Notch1 (Cell Signaling Technology, Beverly, MA, USA) and anti p21,
anti-β-actin, anti-p16 (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA).
HRP-conjugated secondary antibodies against rabbit or mouse were
obtained from Cell Signaling Technology.

MEF isolation and treatment
Primary WT and Timp3−⧸− MEFs were harvested from 13.5-day-old
embryos as described in Sun et al.58 Cells were cultured at 37 °C (5% CO2)
in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine
serum. All experiments were performed using early passage MEF cultures
(passages 2–3); cells were seeded in six-well plates at a density of 2 × 105

cells/well and used for the experiment at 70% confluency. MEFs cells were
treated with the alkylating agent MMS (Sigma-Aldrich, Oakville, ON,
Canada) at 130 μg/ml for 2 h at 37 °C. Control cells were incubated at 37 °C
for 2 h in culture media without MMS. The cells were washed twice with
PBS and either immediately harvested for protein and RNA extractions
(noted 0 h) or incubated for additional time (1.5, 4, 24 and 48 h) in fresh
Dulbecco’s modified Eagle’s medium 10% fetal bovine serum to allow cell
to recover from DNA damage before lysis.

Senescence-associated-β galactosidase activity
MEFs were fixed and stained using the SA-β-gal staining kit from Cell
Signaling (no. 9860) according to manufacturer’s instructions. The cells
were visualized using a bright-field microscope at x10 magnification. One
image per quarter of each six well-plate was taken using the Infinity 2
camera and Infinity Capture software, and a representative picture was
chosen from four images. Cryosections (10-μm-thick) of mouse liver tissues
preserved in optimal cutting temperature were also assessed for SA-β-gal
activity using the same Cell Signaling kit.

Serum and tissue analysis
Blood was collected from mice by cardiac puncture upon sacrifice at
indicated time points and serum was obtained from whole blood by
centrifugation and frozen until analysis. Liver injury was determined by
measuring serum ALT levels. TNFα and IL-6 enzyme-linked immunosorbent
assay were performed on diluted mouse serums (1:20). TNFα, IL-6 and IFNγ
were also measured in 200 μg of total liver protein homogenates obtained
for the western blotting analysis using enzyme-linked immunosorbent
assay protocol as per manufacturer’s instructions (R&D Systems).

RNA preparation and quantitative reverse transcription PCR
RNA was prepared from frozen liver tissue using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) according to manufacturer’s instructions. cDNAs were
obtained using a first-strand cDNA synthesis protocol (qScript cDNA
supermix, Quanta Biosciences, Gaithersburg, MD, USA). Gene expression
was measured using SYBR Green reagent (Perfecta SYBR Green Supermix
ROX, Dural, NSW, Australia) in a 7800HT Real-time PCR system (Applied
Biosystems, Carlsbad, CA, USA). All gene expression levels were normalized
to hypoxanthine-guanine phosphoribosyltransferase (HPRT) and the fold
change measured relative to liver samples from WT PBS-treated mice for
the short-term study or the WT samples from the 8 and 12 months cohorts,
or the untreated control MEFs for the in vitro experiments. Amount of each
product was calculated using the 2−ΔΔCt method. Primer sequences are
provided in Supplementary Table S1.

Statistical analysis
Statistical analysis was carried out using GraphPad Prism 4 software (La
Jolla, CA, USA). Data are expressed as mean± s.e.m. Statistical significance
was calculated with a Student’s t-test and the data are expressed as
mean± s.e.m. P⩽ 0.05 was considered to be statistically significant.
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