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Naltrexone reduces drinking among individuals with alcohol use disorders (AUDs), but it is not effective for everyone. Variability in its
effects on reward-related brain activation, genetic variation, and/or cigarette smoking may account for this mixed response profile. This
randomized clinical trial tested the effects of naltrexone on drinking and alcohol cue-elicited brain activation, evaluated whether OPRM1
A118G genotype or smoking moderated these effects, and explored whether the effects of medication on cue-elicited activation predicted
subsequent drinking. One hundred and fifty-two treatment-seeking individuals with alcohol dependence, half preselected to carry at least
one A118G G (Asp) allele, were randomized to naltrexone (50 mg) or placebo for 16 weeks and administered an fMRI alcohol cue
reactivity task at baseline and after 2 weeks of treatment. Naltrexone, relative to placebo, significantly reduced alcohol cue-elicited
activation of the right ventral striatum (VS) between baseline and week 2 and reduced heavy drinking over 16 weeks. OPRM1 genotype did
not significantly moderate these effects, but G-allele carriers who received naltrexone had an accelerated return to heavy drinking after
medication was stopped. Smoking moderated the effects of medication on drinking, such that naltrexone was superior to placebo only
among smokers. The degree of reduction in right VS activation between scans interacted with medication in predicting subsequent
drinking, such that individuals with greater reduction in activation who received naltrexone, but not placebo, experienced the least heavy
drinking during the following 14 weeks. These data replicate previous findings that naltrexone reduces heavy drinking and reward-related
brain activation among treatment-seeking individuals with AUDs, and indicate that smoking and the magnitude of reduction in cue-elicited
brain activation may predict treatment response.
Neuropsychopharmacology (2017) 42, 2640–2653; doi:10.1038/npp.2017.74; published online 17 May 2017
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INTRODUCTION

The μ-opioid antagonist naltrexone (NTX) reduces heavy
drinking among individuals with alcohol use disorders
(AUDs; Jonas et al, 2014), but not everyone responds,
perhaps due to individual variation in its mechanism of
action. Specifically, NTX efficacy may be moderated by
variation in the μ-opioid receptor gene (OPRM1), variability
in its effects on reward-related brain activation, or indivi-
duals’ smoking status. The present study evaluated each of
these factors as a predictor of NTX response.
There is mixed evidence regarding the influence of a

single-nucleotide polymorphism (SNP) in OPRM1, A118G
(Asn40Asp; rs1799971), in moderating NTX efficacy. Several
initial randomized clinical trials (RCTs; Anton et al, 2008;

Chamorro et al, 2012; Oslin et al, 2003), including a post hoc
analysis of the COMBINE study (Anton et al, 2008), reported
greater NTX efficacy among individuals who carried the
A118G G (Asp) allele, which ~ 25% of Caucasians and 40%
of Asians carry and which has been associated with increased
β-endorphin-binding affinity for μ-opioid receptors (Bond
et al, 1998). However, three subsequent RCTs (Coller et al,
2011; Gelernter et al, 2007; Oslin et al, 2015), including one
that prospectively genotyped subjects before medication
randomization to increase G-allele carrier enrollment, have
found no such pharmacogenetic effect, although the Oslin
study also reported no main effect of NTX, allowing the
possibility that enhanced placebo response may have
obscured a pharmacogenetic effect. Thus, the effects of
A118G genotype on NTX response remain debatable.
There is stronger evidence from neuroimaging studies that

NTX reduces alcohol cue-elicited activation of reward-
related brain areas. We previously reported that NTX
(50 mg, 7 days), relative to placebo, reduced cue-elicited
activation of the ventral striatum (VS), medial prefrontal
cortex (mPFC), and orbitofrontal cortex (OFC; Myrick et al,
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2008). Another group found that extended release NTX (XR-
NTX; 380-mg injection, 14 days), relative to placebo, reduced
cue-elicited OFC, anterior cingulate cortex (ACC), and
inferior frontal gyrus activation (Lukas et al, 2013).
Independent of NTX, the A118G G-allele has been associated
with greater alcohol cue-elicited activation (Bach et al, 2015;
Filbey et al, 2008; Ray et al, 2014) and enhanced striatal
dopamine response to intravenous ethanol (Ramchandani
et al, 2011), suggesting that OPRM1 genotype might
moderate the effects of NTX on this phenotype; however,
G-allele carrier sample sizes have been small. Prospectively
genotyped studies with more G-allele carriers have reported
little evidence of an interaction between A118G genotype
and NTX (50 mg, 5–7 days) on cue-elicited midbrain, VS,
mPFC, ACC, OFC, insula, or amygdala activation (Schacht
et al, 2013c; Ziauddeen et al, 2016), or on global binding of
the selective μ-opioid agonist [11(C)]-carfentanil (Weerts
et al, 2013). However, overall, neuroimaging studies of NTX
and OPRM1 genotype have primarily enrolled non-treatment
seekers and have largely failed to include baseline scans,
leaving open the possibility that reported differences between
medication and/or OPRM1 groups are pre-existing or do not
extend to treatment-seeking subjects, whose AUDs are more
severe (Rohn et al, 2017).
Independent of OPRM1 genotype, there is growing interest

in whether cue-elicited brain activation may predict response
to NTX or other pharmacotherapies (Courtney et al, 2016).
For NTX, this phenotype might provide insight into a debate
about whether abstinence early in treatment is particularly
beneficial. Subjects with more lead-in abstinence respond
best to XR-NTX (Garbutt et al, 2005; O'Malley et al, 2007),
and COMBINE subjects with abstinent drinking goals,
irrespective of medication, had better outcomes (Bujarski
et al, 2013). Conversely, other studies have suggested that
NTX is less effective when abstinence is promoted
(Krystal et al, 2001), or that it should be administered
specifically to actively drinking patients, so that its effects on
craving- and/or alcohol-induced stimulation encourage
extinction of these responses (Heinala et al, 2001; Sinclair,
2001). The analysis of the effects of NTX on cue-elicited
activation among subjects with and without early abstinence
could help resolve this dilemma. In the large German
PREDICT study (modeled after COMBINE), subjects with
greater baseline VS activation who subsequently received
NTX (50 mg) had a longer time to relapse (Mann et al, 2014),
and greater baseline VS and OFC activation after 2 weeks of
treatment with NTX, acamprosate, or placebo was associated
with shorter time to first relapse (Reinhard et al, 2015).
However, PREDICT reported no medication effects on cue-
elicited activation, leaving open the question of whether the
effects of NTX on this phenotype might predict treatment
response.
Cigarette smoking status may also moderate the effects of

NTX. Nicotine dependence is twice as prevalent (45%)
among alcohol-dependent individuals as in the general
population (Grant et al, 2004). Studies of NTX for smoking
cessation among heavy-drinking smokers have suggested
that NTX reduces drinking in this subgroup (Fridberg et al,
2014; King et al, 2009; O'Malley et al, 2009). Most
importantly, re-analysis of the COMBINE study suggested
that NTX, relative to placebo, reduced heavy drinking only

among smokers (Fucito et al, 2012). However, no other NTX
RCT has yet analyzed this effect.
To further evaluate these potential predictors of NTX

response, we conducted an RCT in which treatment-seeking
individuals with AUDs were prospectively genotyped for the
A118G SNP, randomized to NTX or placebo, and adminis-
tered an fMRI alcohol cue reactivity paradigm at baseline
and after 2 weeks of treatment. We focused on the effects of
medication, genotype, and smoking on drinking and cue-
elicited VS activation. The study had five hypotheses as
follows: (1) NTX, relative to placebo, would reduce cue-
elicited VS activation over 2 weeks and heavy drinking over
16 weeks; these effects would be greatest among (2) A118G
G-allele carriers and (3) cigarette smokers; (4) NTX would
reduce cue-elicited activation more among individuals who
abstained from drinking between scans and; (5) greater
reduction in VS activation would predict less subsequent
heavy drinking among NTX-treated subjects.

MATERIALS AND METHODS

Overview

The study was a 16-week RCT (ClinicalTrials.gov identifier:
NCT00920829). The Medical University of South Carolina
Institutional Review Board approved all procedures, and all
subjects provided informed consent before participation. The
study consisted of an initial assessment session, a baseline
visit, and nine follow-up visits. fMRI scans were conducted at
baseline and the second follow-up (week 2). At initial
assessment, subjects completed a variety of self-report
measures, including the Obsessive Compulsive Drinking
Scale (OCDS; Anton et al, 1996) and Alcohol Dependence
Scale (ADS; Skinner and Allen, 1982), and provided a blood
sample for A118G genotyping. As A-allele homozygotes
were, as expected, more common, all G-allele carriers who
met inclusion/exclusion criteria and approximately one of
every three A-allele homozygotes were selected for participa-
tion. Typically, after an eligible G-allele carrier presented for
assessment, the next eligible A-allele homozygote similar in
sex and age to the G-allele carrier was selected.

Subjects

Subjects were recruited via media advertisements and clinical
referrals, and were required to be ages 18–70; self-identify as
Caucasian or Asian (secondary to low G-allele frequency
among individuals of African descent); report heavy drinking
(at least five/four standard drinks per day for men/women)
on at least 50% of the days in the 90 days before assessment;
and meet the DSM-IV (Diagnostic and Statistical Manual of
Mental Disorders, revised 4th edition) diagnostic criteria for
Alcohol Dependence, as assessed by the Structured Clinical
Interview for DSM-IV (First et al, 2002). Subjects who
reported cocaine or marijuana use in the 90 days before
assessment were included, as long as they did not meet the
DSM-IV criteria for dependence on either substance or any
other except nicotine, and had a negative urine drug screen
upon medication randomization. Exclusion criteria
were as follows: current psychotropic medication use other
than antidepressants (for which a stable dose for at least one
month was required); current DSM-IV Axis I diagnosis or
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suicidal/homicidal ideation; history of significant
medical illness; liver enzyme (ALT or AST) levels greater
than three times the upper normal limit; and past-month
NTX, disulfiram, or acamprosate use. Female subjects could
not be pregnant or nursing.
The effect size for the A118G by medication interaction on

heavy drinking from the COMBINE study (Anton et al,
2008) indicated that 40 subjects per medication/genotype
group (N= 160) would yield 80% power to detect this
interaction. One hundred and fifty-two individuals were
ultimately selected for participation and randomized to
medication (Figure 1). Six subjects were deemed non-
evaluable (eg, study protocol violations), leaving 146 evalu-
able subjects for the drinking outcomes. Of these subjects, 15
were not scanned (14 had MRI contraindications (eg,
implanted metal, claustrophobia, and obesity) and 1 had a
scheduling conflict) and 5 dropped out before week 2. This
left 126 evaluable subjects who were scanned twice, of whom
10 were excluded due to motion artifacts during one or both
scans, leaving 116 subjects with usable imaging data.
Medication/genotype groups did not significantly differ in
demographic characteristics, quantity/frequency of baseline
drinking, the number of days between medication randomi-
zation and the subject’s last drink, or dependence severity
(Table 1). In addition, there were no significant differences
in demographic, drinking, or severity variables between
subjects with vs without usable imaging data (Table 2).

Genotyping

Genomic DNA was extracted from peripheral blood mono-
nuclear cells (Gentra Puragene Blood Kit; Qiagen, Valencia,
CA). After PCR amplification, A118G genotype was
determined with a Taqman 5′ nuclease assay, using allele-
specific probes (catalog no. C8950074, Applied Biosystems,

Foster City, CA) and three known controls for each
genotype.

Randomization and Intervention

Subjects were required to maintain abstinence for at least
4 days before medication randomization; those who were
concerned that alcohol withdrawal symptoms would pre-
clude this length of abstinence (n= 17) were first treated with
a lorazepam taper, with the last dose consumed at least 1 day
before randomization. Subjects were then urn randomized
(Stout et al, 1994) to receive NTX (25 mg for 2 days, then
50 mg thereafter) or placebo for 16 weeks. Randomization
was stratified by A118G genotype, with the following urn
variables balanced across medication groups: gender, smok-
ing status (non-smoker vs smoker, defined as ⩾ 10 cigarettes
per day), recent cocaine use, current antidepressant use, and
AUD family history, defined as one or more first-degree
relatives who the subject reported had a problem with
alcohol. Study medications were identically over-
encapsulated with 100 mg of riboflavin and distributed in
labeled blister packs. Subjects and investigators were blind to
both genotype and medication assignment. After randomi-
zation, subjects returned at weeks 1, 2, 3, 4, 6, 8, 10, 12, and
16, at which time all received medical management (MM)
sessions (Pettinati et al, 2005), consisting of brief (15–
20 min) interaction with a clinician who provided education
and supportive advice aimed to enhance treatment
adherence.

Assessment

During MM sessions, daily drinking since the last visit was
assessed with the researcher-administered, calendar-based
timeline follow-back (TLFB) interview (Sobell and Sobell,

Figure 1 CONSORT diagram of subject flow through the study.
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1992), and the adverse effects of medication were assessed
with the Systematic Assessment for Treatment Emergent
Events (SAFTEE; Johnson et al, 2005). The number of
cigarettes subjects smoked each day at baseline, week 8, and
week 16 was assessed with the Addiction Severity Index
(McLellan et al, 1980). Subjects who dropped out after
randomization were compensated ($50) to return at week 16
to provide missing drinking data. Forty subjects ultimately
dropped out, at similar rates across medication/genotype
groups, but the full drinking data were available on 130 of
146 (89%) evaluable subjects and on 109 of 116 (94%)
subjects with usable imaging data. To evaluate stability of
response, the TLFB was administered again at 4 weeks
(phone assessment), and at paid ($50) assessments at 12 and
24 weeks after the end of the 16-week medication period.

Adherence

Urine samples were collected at baseline and each of the nine
study visits. Adherence was assessed with a fluorometric
assay based on standard curves of weighed-in riboflavin
(Anton, 1996). Samples were considered adherent if the
urinary riboflavin value was ⩾ 1000 ng/ml or had doubled
from baseline. In addition, subjects returned their blister
packs at each study visit, and the pills taken since the last
visit were counted.

fMRI Scans

Subjects were scanned at baseline (immediately before
ingesting the first medication dose) and after at least 2 weeks

Table 1 Demographic Data, Alcohol Use, and Severity Measures

Characteristic Total sample
(N= 146)

A/A Any G Test for differencea

Placebo
(n= 38)

Naltrexone
(n=35)

Placebo
(n= 35)

Naltrexone
(n= 38)

No. % No. % No. % No. % No. %

Demographics

Sex, M 101 69.2 26 68.4 26 74.3 24 68.6 25 65.8 p= 0.88

Employed 114 78.1 32 84.2 26 74.3 26 74.3 30 78.9 p= 0.69

Education⩽ 12 years 24 16.4 5 13.0 8 22.9 7 20.0 4 10.5 p= 0.45

Current smoker 58 39.7 14 36.8 16 45.7 11 31.4 17 44.7 p= 0.60

Recent cocaine use 19 13.0 5 13.2 3 8.6 6 17.1 5 13.2 p= 0.76

Current antidepressant use 48 32.9 15 39.5 12 34.3 12 34.3 9 23.7 p= 0.60

Family history positive 92 63.4 23 60.5 23 65.7 22 62.9 24 63.2 p= 0.97

Alcohol biomarkers

GGT463 IU/l 46 31.5 9 23.7 14 40.0 12 34.3 11 28.9 p= 0.48

dCDT⩾ 1.7%b 80 55.9 24 63.2 22 64.7 15 44.1 19 51.4 p= 0.25

Mean SD Mean SD Mean SD Mean SD Mean SD

Demographics

Age (years) 49.3 10.1 46.3 10.8 51.1 8.2 49.7 10.6 50.3 10.2 p= 0.18

Alcohol use and severity

Drinks per drinking dayc 11.2 4.8 10.7 3.9 12.0 5.7 10.3 4.6 11.8 4.8 p= 0.37

Drinks per dayc 9.6 5.0 9.0 4.1 10.3 5.4 8.8 4.9 10.2 5.4 p= 0.44

Heavy-drinking days (%)c 79.7 22.3 80.8 20.4 81.7 24.5 77.4 23.3 78.8 21.5 p= 0.85

Days from last drink to randomization 6.9 4.4 6.4 3.3 7.1 5.1 8.2 5.6 6.0 2.7 p= 0.13

ADS score 15.4 6.4 14.8 5.9 16.0 6.0 15.6 6.7 15.1 7.1 p= 0.18

OCDS score 25.6 8.1 26.8 6.7 25.1 8.8 24.9 8.9 25.4 7.9 p= 0.74

DrInC score 41.4 18.6 41.9 16.8 43.4 17.8 39.9 20.5 40.6 19.9 p= 0.73

Abbreviations: ADS, Alcohol Dependence Scale; dCDT, disialo-carbohydrate-deficient transferrin; DrInC, Drinker Inventory of Consequences; GGT,
γ-glutamyltransferase; OCDS, Obsessive Compulsive Drinking Scale.
SI conversion factor: to convert GGT to microkatals per liter, multiply by 0.01667.
ap-values are the significance of difference across all four gene×medication groups; they refer to the χ2 statistic for categorical variables and the F statistic for continuous
variables.
bdCDT, n= 143 (3 subjects were not measured).
cIn 90 days before randomization.
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of medication, with the majority conducted at week 2. To
accommodate subject schedules while maximizing retention,
three subjects were scanned at week 3 and one at week 4;
however, the amount of time between scans did not
significantly differ between groups. Scan procedures were
identical to those previously published (Schacht et al, 2013b).
Briefly, subjects were first breathalyzed and assessed for
alcohol withdrawal with the Clinical Institute Withdrawal
Assessment for Alcohol-Revised (CIWA-Ar; Sullivan et al,
1989); no subject had a breath alcohol content 40 or a
CIWA-Ar score 43. Subsequently, subjects were positioned
in the scanner, and a high-resolution anatomical image was
acquired. Subjects then completed a 12-m-long task during
which they passively viewed pseudorandomly interspersed
blocks of alcoholic beverage images (ALC; equally distributed
between beer, wine, and liquor), non-alcoholic beverage
images (BEV), blurred versions of these images that served as
visual controls, and a fixation cross. Each 24-s-long block
comprised only one image type and was followed by a 6-s
period during which subjects were instructed to rate their

urge for alcohol at that moment. Images were selected from a
normative set (Stritzke et al, 2004), supplemented with
images from advertisements, and matched for intensity,
color, and complexity. Because subjects were treatment-
seeking, they were not administered a sip of alcohol before
viewing the images, unlike some past versions of this task.

Image Acquisition and Pre-Processing

Functional images were acquired with a gradient echo, echo-
planar imaging sequence on a Siemens (Munich, Germany)
TIM Trio 3 T scanner. Acquisition parameters were:
repetition/echo times: 2200/35 ms; 328 volumes; flip angle:
90°; field of view: 192 mm; matrix: 64 × 64; voxel size:
3.0 × 3.0 mm; and 36 contiguous 3.0-mm-thick axial slices.
Using FEAT v6.00, part of FSL (Oxford Centre for
Functional MRI of the Brain, Oxford, UK; Smith et al,
2004), functional images were realigned to the middle
volume, high-pass filtered (period= 240 s), and spatially
smoothed (8-mm full width at half maximum Gaussian

Table 2 Demographic Data, Alcohol Use, and Severity Measures for all Subjects with Usable Scans, and for Those who Were and Were
Not Abstinent Between Scans

Characteristic Subjects with usable scans (n= 116) Abstinent (n= 49) Non-abstinent (n= 63)a Test for difference
between abstinent
and non-abstinent

subjectsb

No. (%) No. (%) No. (%)

Demographics

A118G G-allele carriers 61 (52.6) 25 (51.0) 33 (52.4) p= 0.89

Sex, M 82 (70.7) 32 (65.3) 47 (74.6) p= 0.28

Employed 89 (76.7) 35 (71.4) 50 (79.4) p= 0.33

Education⩽ 12 years 18 (15.5) 8 (16.3) 9 (14.3) p= 0.77

Current smoker 45 (38.8) 16 (32.7) 27 (42.9) p= 0.27

Recent cocaine use 10 (8.6) 1 (2.0) 7 (11.1) p= 0.06

Current antidepressant use 36 (31.0) 11 (22.4) 23 (36.5) p= 0.11

Family history positive 76 (65.5) 30 (61.2) 42 (66.7) p= 0.55

Mean (SD) Mean (SD) Mean (SD)

Demographics

Age (years) 49.5 (10.4) 51.0 (10.6) 48.8 (10.2) p= 0.25

Alcohol use and severity

Drinks per drinking dayc,d 11.4 (5.0) 12.7 (6.0) 10.3 (3.9) p= 0.02

Drinks per day c,d 9.9 (5.1) 10.8 (6.3) 9.1 (3.9) p= 0.11

Heavy-drinking days c,d 73.2 (20.0) 72.8 (21.8) 73.7 (18.5) p= 0.81

Days from last drink to randomization 7.0 (4.4) 8.8 (5.3) 5.6 (3.1) po0.001

ADS score 15.3 (6.1) 15.1 (6.7) 15.4 (5.9) p= 0.77

OCDS score 25.6 (7.8) 23.6 (9.0) 26.9 (7.0) p= 0.03

Days between scansc 14.6 (2.3) 14.1 (0.8) 14.4 (1.6) p= 0.17

Abbreviations: ADS, Alcohol Dependence Scale; OCDS, Obsessive Compulsive Drinking Scale.
aExcludes subjects who were scanned after week 2 (n= 4), all of whom were non-abstinent.
bp-values refer to the χ2 statistic for categorical variables and the t statistic for continuous variables.
cEqual variances not assumed.
dIn 90 days before randomization.
Bolded values indicate variables that significantly differed between abstinent and non-abstinent subjects.
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kernel). Subjects with 42 mm/2° of translational/rotational
movement during either scan (n= 10) were excluded from
analysis. Each subject’s functional images were then
registered to his/her high-resolution anatomical image, and
the 12 degree-of-freedom affine transformations between
these images and the Montreal Neurological Institute (MNI)
152-brain-average template were calculated.
The average percentage change of the blood-oxygen-level-

dependent (BOLD) signal between ALC and BEV blocks (ie,
ALC vs BEV percent signal change) was then extracted from
two anatomically defined regions of interest (ROIs): right
and left VS. We focused on the VS for four reasons: (1) VS is
the region most consistently activated by alcohol cues, and
this activation has repeatedly been associated with alcohol
craving and AUD severity (Schacht et al, 2013a); (2) cue-
elicited VS activation has good within-subject stability,
suggesting it would be sensitive to intervention (Schacht
et al, 2011); (3) NTX reduces this activation among non-
treatment seekers (Myrick et al, 2008); and (4) PREDICT
indicated that VS activation, relative to ACC/mPFC and
OFC, was the strongest brain-based relapse predictor
(Reinhard et al, 2015). ROIs were defined a priori as 6-
mm-radius spheres centered at [− 12 6 − 9] (left VS) and [12
6 − 9] (right VS) in MNI space, and were reverse-registered
from the MNI-152 image to each subject’s anatomical image.

Statistical Analysis

A series of linear mixed models with unstructured variance/
covariance matrices (SPSS 22, IBM, Armonk, NY) was used
to evaluate the five primary hypotheses. For both the
drinking and imaging outcomes, the primary model
evaluated included a within-subject factor for time,
between-subject factors for medication and A118G genotype,
and all interactions of these factors. Subsequent hypothesis-
driven analyses added between-subject factors for smoking
status and, for the imaging outcomes, abstinence (any
drinking vs complete abstinence between baseline and week
2), to test whether these factors moderated the effects of
medication. Smoking was also evaluated as a continuous
variable (number of cigarettes per day at baseline), and the
effects of medication on smoking during the study were
explored as well. Evaluation of baseline covariates found that
the number of days between medication randomization and
a subject’s last drink significantly predicted % HDD, so it was
covaried in all analyses. The use of lorazepam for
detoxification was also explored as a covariate, but it did
not reduce the statistical significance of any significant effect.
All significant interactions were followed up with simple
effects testing, corrected for multiple comparisons.
For the drinking data, an intent-to-treat analysis of all

subjects with at least one week of drinking data was used.
The dependent variable was the proportion of days on which
subjects drank heavily (%HDD;⩾ five/four drinks in one day
for men/women), binned into four 4-week periods. Because
the A118G by medication interaction was greatest in the last
month of treatment in COMBINE (Anton et al, 2008), a post
hoc simple effect test within the larger mixed model was used
to evaluate the main effect of medication separately in each
genotype group for this period. A sensitivity analysis of
subjects who completed the study (eg, were prescribed all
study medications) and who had at least seven adherent

urine riboflavin samples (out of nine total samples) was also
conducted. In addition, change in % HDD between
treatment and the post-treatment follow-up was analyzed
using multi-level piecewise regression in HLM 7 (SSI,
Skokie, IL).
For the imaging data, models were run separately for right

and left VS. The dependent variable was VS ALC vs BEV
percent signal change. For the analysis of the interaction
between medication and between-scan abstinence, to reduce
the possibility that subjects were non-abstinent simply
because more time between scans had eclipsed, subjects
scanned after week 2 (n= 4, all non-abstinent) were
excluded. Finally, to evaluate whether change in VS
activation between scans interacted with medication in
predicting treatment outcome, a between-subject factors for
reduction in VS activation (median split; median reduction=
0.023 (35% reduction from baseline)) was added to a model
that also included a within-subject factor for time in study, a
between-subject factor for medication, and all interactions.
In this model, the dependent variable, %HDD, was binned
into the two weeks following the second scan and each of the
three subsequent 4-week periods of the study.

RESULTS

Adherence

Adherence was examined separately for the samples collected
at the week 1 and 2 visits, to assess adherence between scans,
and for all nine samples collected during the study, to assess
adherence across the entire medication period. Week 1
samples were available for 108 subjects with usable imaging
data, of whom 96 were adherent, with no significant
difference between medication groups (47/54 placebo and
49/54 NTX; w2 (1, N= 108)= 0.38, p= 0.54). Of these
adherent subjects, 79 remained adherent at week 2, again
with no significant difference between groups (36/46 placebo
(1 subject’s value was missing) and 43/49 NTX; w2

(1, N= 95)= 1.53, p= 0.22). Adherence differences between
the four medication/genotype groups were also not sig-
nificant for the week 1 or 2 samples. For the remainder of the
study, both riboflavin values and pill counts also indicated no
significant adherence differences; the number of subjects
taking ⩾ 80% of pills ranged from 79 to 89% across
medication/genotype groups.

Drinking Outcomes

Effects of medication and OPRM1 genotype. There was a
significant main effect of medication, such that individuals
treated with NTX, relative to placebo, had less %HDD (F(1,
136.90)= 5.30, p= 0.023) over the 16-week treatment period
(Figure 2). The interaction between genotype and time
approached significance, such that %HDD increased over
time among G-allele carriers, but it remained stable among
A-allele homozygotes (F(3, 127.73)= 2.64, p= 0.053); the
simple effect of genotype approached significance in the last
month of treatment, such that G-allele carriers had more %
HDD than A-allele homozygotes (F(1, 129.12)= 3.67,
p= 0.058). There were no significant interactions between
genotype and medication or between genotype, medication,
and time. Nonetheless, planned simple effect analysis
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indicated that, in the last month of treatment, the simple
effect of medication was significant among G-allele carriers
(F(1, 124)= 4.24, p= 0.042), but not among A-allele
homozygotes (F(1, 124)= 0.32, p= 0.57), such that G-allele
carriers treated with NTX, relative to placebo, had less %
HDD. In the exploratory analysis of completers with the
greatest adherence (n= 60; insets, Figure 2), although
the genotype by medication interaction was not significant,
the effect size (Cohen’s d) for NTX, relative to placebo, was
1.1 for G-allele carriers, but it was only 0.19 for A-allele
homozygotes.

Post-treatment follow-up. Changes in %HDD during the
treatment and post-treatment periods as a function of
genotype and medication were evaluated (Figure 3). There

was a significant interaction between genotype, medication,
and time (B= 0.063, SE= 0.023, t(142)= 2.78, p= 0.006),
such that G-allele carriers who received NTX increased their
rate of heavy drinking once medication was stopped
(B= 0.048, SE= 0.015, t(142)= 3.23, p= 0.002), whereas
other groups’ %HDD remained stable.

Moderation by smoking status. There was a significant
main effect of smoking status (F(1, 139.34)= 7.13, p= 0.008),
such that smokers had greater %HDD than non-smokers, as
well as a significant interaction between smoking, medica-
tion, and time, such that %HDD increased over time among
smokers, but not among non-smokers, and NTX, relative to
placebo, ablated this increase among smokers (F(3,
128.21)= 2.79, p= 0.043; Figure 4). The simple effect of

Figure 2 Percent heavy-drinking days (%HDD) by OPRM1 A118G genotype and medication group. The larger figures include all subjects included in the
intent-to-treat analysis, and the insets include subjects who completed the study and had at least seven out of nine adherent riboflavin samples. Naltrexone
(NTX), relative to placebo, significantly reduced %HDD across all 16 weeks. A118G genotype interacted with time, such that G-allele carriers’ %HDD
increased over time, whereas A-allele homozygotes’ remained stable, but did not significantly moderate the effects of NTX on drinking. Figures are estimated
marginal means± SE’s. Ns indicate the number of subjects who provided drinking data at each time point.

Figure 3 Percent heavy-drinking days by smoking status at study entry and medication group. There was a significant interaction between smoking,
medication, and time, such that %HDD increased over time among smokers, but not among non-smokers, and naltrexone, relative to placebo, ablated this
increase among smokers. Figures are estimated marginal means± SE’s. Ns indicate the number of subjects who provided drinking data at each time point.
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medication was significant during each month of treatment
for smokers, but not for non-smokers. The interaction
between smoking and medication was significant when
smoking was evaluated as a continuous variable (F(1, 126.26)
= 4.27, p= 0.041), such that individuals who smoked a
greater number of cigarettes per day at baseline had less %
HDD over 16 weeks on NTX, relative to placebo. There was
no significant effect of medication on smoking rates or
cigarettes smoked per day. Smoking did not significantly
moderate the genotype by medication interaction.

Adverse effects. Four SAFTEE effects were significantly
more frequent in the NTX group than the placebo group:
nausea (p= 0.026), diarrhea (p= 0.004), abdominal pain
(p= 0.028), and dizziness (p= 0.017). The genotype by
medication interaction was not significant for these effects
or any others. A time-varying covariate analysis, using GI
complaints or dizziness as the covariate, indicated that the
presence of these complaints did not significantly influence
the effect of medication or its interactions with genotype or
smoking on %HDD.

Imaging Outcomes

Between-scan stability. To test the stability of VS activa-
tion between scans, which we previously reported was high
among non-treatment-seeking subjects (Schacht et al, 2011)
and on which the study design was based, we first calculated,
among placebo-treated subjects, the two-way mixed single-
measure intraclass correlation coefficient, ICC(3,1), for each
subject’s baseline and scan 2 values. Consistent with our
previous findings, average within-subject stability between
scans was good for both right (ICC(3,1)= 0.43, po0.001)
and left (ICC(3,1)= 0.36, p= 0.003) VS.

Effect of OPRM1 genotype at baseline. We next evaluated
whether genotype affected baseline VS activation. A-allele
homozygotes had significantly greater right VS activation
than G-allele carriers (F(1, 114)= 6.33, p= 0.01) and non-

significantly greater left VS activation (F(1, 114)= 1.95,
p= 0.17).

Effects of medication and OPRM1 genotype. For right VS,
the interaction between medication and time was significant
(F(1, 112)= 4.03, p=0.047), such that NTX, relative to placebo,
reduced activation more between scans (Figure 5). The simple
effect of time was significant in the NTX group (F(1, 112)= 4.49,
p= 0.036), but not in the placebo group. Although this
difference was driven by greater reduction among NTX-
treated A-allele homozygotes, the interaction between genotype,
medication, and time was not significant (F(1, 112)= 1.46,
p= 0.23). For left VS, the interaction between medication and
time was in the same direction, but was not significant
(F(1, 112)=2.31, p=0.13); the interaction between genotype,
medication, and time approached significance (F(1, 112)= 3.52,
p= 0.063), such that NTX, relative to placebo, reduced activation
more among A-allele homozygotes.

Moderation by smoking status. Smoking did not signifi-
cantly moderate the interactions between time and medication
or between time, medication, and genotype on VS activation.

Moderation by early abstinence. On average, non-
abstinent subjects drank 2.6 standard drinks per day (SD=
2.3) between scans, with 3.3 heavy drinking days (SD= 3.6).
Abstainers had significantly more lead-in abstinence, more
pre-randomization drinks per drinking day, and lower
OCDS scores than non-abstainers, and trended toward being
less likely to have recently used cocaine, but did not
significantly differ in genotype, demographic variables, or
ADS scores (Table 2). For right VS, the interaction between
abstinence, medication, and time was significant (F(1,
108)= 4.32, p= 0.040), such that NTX, relative to placebo,
reduced activation more among abstainers than non-
abstainers. This interaction remained significant when any
or all of the variables that significantly differed between
abstainers and non-abstainers were covaried. The simple
effect of time was significant in the abstinent/NTX group

Figure 4 Percent heavy-drinking days during the 16-week treatment period and the 24-week post treatment follow-up by OPRM1 A118G genotype and
medication group. Regression lines were fit separately for each period. The genotype by medication by time interaction was significant, such that G-allele
carriers who received naltrexone had an increased rate of heavy drinking once medication was stopped, whereas the other groups did not. Figures are
estimated marginal means± SE’s. *po0.05 for the simple effect of medication among smokers during each month.
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(F(1, 108)= 8.06, p= 0.005), but not in any other group
(Figure 6). For left VS, the interaction between abstinence
and medication was significant (F(1, 108)= 4.92, p= 0.029),
such that abstainers who received NTX, relative to placebo,
had less activation at both scans, whereas the opposite was
true for non-abstainers. The interaction between abstinence,
medication, and time was in the same direction as for right
VS, but was not significant (F(1, 108)= 1.32, p= 0.25).
Genotype did not significantly moderate any of these
interactions for either right or left VS.

Prediction of drinking outcomes from medication and
reduction in VS activation. For right VS, the interaction
between medication and reduction in VS activation (between
baseline and week 2) on subsequent drinking was significant
(F(1, 109.71)= 4.99, p= 0.028), such that, among subjects
with greater reduction in activation, those who received
NTX, relative to placebo, had fewer subsequent heavy-
drinking days. The simple effect of medication was
significant in the group with greater reduction, but not in
the group with less reduction, across all blocks (F(1,
109.75)= 8.06, p= 0.005) (Figure 7). As between-scan
abstinence moderated the effects of NTX on right VS
activation, percent days abstinent between scans was added
as a covariate; it accounted for a large amount of variance in
subsequent drinking (F(1, 108.26)= 80.93, p= 8.73 × 10− 15),
but the interaction between medication and reduction in
right VS activation remained significant (F(1, 105.75)= 5.02,
p= 0.027). For left VS, the interaction between medication
and reduction in VS activation on subsequent drinking was
not significant. When genotype was added to the models, the
interaction between genotype and time was significant or

approached significance, consistent with the results of the
drinking outcomes model discussed above, but genotype did
not significantly moderate the interactions between medica-
tion and reduction in VS activation on subsequent drinking.

DISCUSSION

Taken together, these data indicate several potential
predictors of NTX response among treatment-seeking
individuals with AUDs. Replicating previous findings, NTX
reduced heavy drinking and alcohol cue-elicited VS activa-
tion. Further, as hypothesized, early abstinence moderated
the effects of NTX on VS activation, and smoking and the
magnitude of reduction in VS activation predicted reduced
heavy drinking in the NTX group. However, OPRM1 A118G
genotype did not moderate the effects of NTX on either the
drinking or imaging outcomes.
With respect to the drinking outcomes, although there was

a significant medication effect in the intent-to-treat analysis,
the interaction with genotype was not significant over the full
course of the study. In a sensitivity analysis among the most
adherent subjects, the genotype by medication interaction
was also not significant. Although small cell sizes for this
analysis limit interpretation, there was nevertheless a large
effect size for NTX only among G-allele carriers. Further,
independent of medication, G-allele carriers’ drinking
significantly increased over the course of the study relative
to A-allele homozygotes. This difference was greatest at the
end of the study, a time at which NTX showed some
modification of drinking among G-allele carriers. Once
medication was stopped, G-allele carriers who had received
NTX had an increased trajectory to heavier drinking, unlike

Figure 5 Insets: regions of interest for right and left ventral striatum (VS). Main figure: alcohol cue-elicited activation in right (a) and left (b) VS at baseline and
week 2 in each medication group. Naltrexone (NTX), relative to placebo, significantly reduced right VS activation between baseline and week 2. There was a
significant main effect of A118G genotype on right VS activation at baseline, but genotype did not significantly moderate the effects of NTX on right (c) or left
(d) VS activation. Figures are estimated marginal means± SE’s. *po0.05 for an interaction between medication and time, and a simple effect of time within the
NTX group.
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the other groups. These data are significant because, in
COMBINE, the A118G interaction with NTX emerged over
time and was strongest at the end of the trial (Anton et al,
2008), and subsequent re-analysis of COMBINE suggested

that NTX was more effective than placebo only towards the
end of the trial (Falk et al, 2010). Taken together, these data
suggest that the A118G G-allele might confer liability to
relapse to heavy drinking, which might not emerge
immediately, but might be more evident over longer
treatment periods. Thus, G-allele carriers could represent a
specific subtype of AUD individuals who might benefit from
longer NTX treatment and closer observation once medica-
tion is discontinued.
This study also replicated a previous re-analysis of

COMBINE data (Fucito et al, 2012) that indicated greater
NTX efficacy among AUD smokers, independent of the
amount they smoked during the trial. Reasons for this
finding need further exploration. The combined effects of
nicotine and alcohol might increase VS dopamine (Tizabi
et al, 2002), leading to sensitized effects of drinking in
smokers (Piasecki et al, 2011). As such, the known effect of
NTX in reducing VS dopamine (Benjamin et al, 1993;
Gonzales and Weiss, 1998; Middaugh et al, 2003) might be
the most salient among these individuals, leading to even less
reinforcement, craving, and drinking than seen in non-
smokers. Alternatively, smoking might be a proxy variable
for other neurobiological adaptations that make smokers
more responsive to NTX, such as changes in μ-opioid
receptor binding (Weerts et al, 2014). Consistent with the
findings of an older Cochrane report that found equivocal
NTX efficacy for smoking cessation (David et al, 2006), the
current study found no effect of NTX on smoking.
Unfortunately, the trial was not designed and subsequently
not statistically powered to detect an interaction between
smoking status and A118G genotype on drinking.
With respect to the imaging outcomes, the most important

finding from this study was that reduction in cue-elicited
right VS activation predicted subsequent heavy drinking
among NTX-treated subjects. The PREDICT study reported
a similar finding; subjects with greater baseline VS activation,
relative to those with less activation, responded better to
NTX (Mann et al, 2014). Although PREDICT was placebo-
controlled and included a second scan after 2 weeks of

Figure 7 Percent heavy-drinking days by the medication group and reduction in right VS alcohol cue-elicited activation between baseline and week 2.
Subjects with greater reduction in activation who received NTX, relative to placebo, demonstrated significantly less heavy drinking throughout the medication
period. Figures are estimated marginal means± standard errors. **po0.01 for a simple effect of medication within the greater reduction group across all four
months.

Figure 6 Alcohol cue-elicited activation in right (a) and left (b) VS in each
medication group as a function of between-scan abstinence. NTX, relative
to placebo, significantly reduced right VS activation only among subjects who
abstained between baseline and week 2. Figures are estimated marginal
means± SE’s. *po0.05 for an interaction between abstinence, medication,
and time; **po0.01 for a simple effect of time within the abstinent/
NTX group.
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treatment (Mann et al, 2009), extant publications have not
reported the effects of medication on cue-elicited activation;
thus, the current study extends the PREDICT findings.
Taken together, these results have important implications for
both AUD neuroimaging and medications development. The
clinical utility of the effects of medication on neuroimaging
phenotypes has been debated, but the current data suggest a
clinically meaningful result: individuals treated with NTX
whose cue-elicited VS activation is reduced by a third or
more may respond best to this medication. Further research
should examine whether this effect is unique to NTX or
shared with other efficacious AUD medications; as VS
activation was also reduced among some placebo-treated
subjects, it is possible that reduced VS activation may reflect
a process associated with subsequent improvements in
drinking but not specific to NTX. In any case, these data
suggest that modern biomarkers (functional neuroimaging in
this case) should continue to be evaluated and advanced to
predict addiction treatment outcomes.
The main effect of NTX on right VS activation replicates

and extends our previous findings in this region among
non-treatment seekers (Myrick et al, 2008). Importantly, the
current study addressed limitations of extant studies by
employing a baseline scan and enrolling a large number of
treatment-seeking subjects. A similarly designed but much
smaller study reported that XR-NTX reduced cue-elicited
activation in a variety of cortical areas, but not in VS or other
subcortical areas (Lukas et al, 2013). Subjects in the study
lacked VS activation at baseline, perhaps because they had
much more lead-in abstinence (M= 51 days) than our
subjects and were administered olfactory alcohol cues, which
less consistently elicit VS activation (Kareken et al, 2010;
Schneider et al, 2001). In contrast, baseline VS activation in
the current study was robust. Thus, our data suggest that oral
NTX effectively reduces initially elevated cue-elicited VS
activation in treatment-seeking individuals with AUDs.
NTX reduced right VS activation more among subjects

who were abstinent between scans. Interestingly, abstinent
placebo-treated subjects displayed no reduction in activation,
and NTX had no effect on VS activation in non-abstinent
subjects. NTX reduces VS dopamine transmission (Gonzales
and Weiss, 1998), which is believed to underlie cue-elicited
brain activation (Heinz et al, 2005). In contrast, short-term
alcohol abstinence does not affect VS dopamine transmission
(Rominger et al, 2012) and decreases cue-elicited activation
of some brain areas, but not of VS areas (Brumback et al,
2015). The pairing of pharmacological effect of NTX with the
effects of abstinence on cue-elicited activation of other areas
may thus be necessary to achieve the greatest reduction in VS
activation and needs further exploration. This finding could
account for the utility of a lead-in abstinence period in many
NTX trials, including a re-analysis of the XR-NTX trial,
where the effects of XR-NTX were greater among individuals
who were abstinent for at least 4 days before beginning
medication (O'Malley et al, 2007).
Neither smoking nor A118G significantly moderated the

effects of NTX on VS activation. The smoking by medication
interaction on drinking was significant, but since the cue
reactivity task was specific to alcohol cues, the absence of this
interaction for VS activation is interesting but perhaps not
surprising; future work that targets the effects of NTX among
AUD smokers might consider the use of both smoking and

alcohol cues (eg, Courtney et al, 2014). Several factors could
explain the null pharmacogenetic effect. First, this result is
consistent with the absence of a pharmacogenetic interaction
on drinking during the medication period, as well as with
four previous studies (Mann et al, 2014; Schacht et al, 2013c;
Weerts et al, 2013; Ziauddeen et al, 2016), including
PREDICT, where A118G genotype did not moderate
relationships between baseline activation and the effects of
NTX on drinking. Second, although previous studies have
reported greater cue-elicited activation among G-allele
carriers, these studies have primarily enrolled small numbers
of non-treatment seekers with relatively low levels of
drinking. This study included a large sample of treatment-
seeking, heavy-drinking G-allele carriers, who displayed
significantly less baseline VS activation than A-allele
homozygotes, leaving less of an effect for NTX to reduce
among these subjects. Finally, the G-allele has been
associated with both increased β-endorphin-binding affinity
for μ-opioid receptors (Bond et al, 1998; Weerts et al, 2013)
and reduced OPRM1 mRNA and protein expression (Zhang
et al, 2005); the latter effects might be associated with
reduced cue-elicited activation among G-allele carriers.
All of the imaging outcomes reported here were specific to

the right VS. A meta-analysis identified the right, but not left,
VS as the area most consistently activated by alcohol cues
(Schacht et al, 2013a). Our cue reactivity task consistently
elicits right-sided VS activation (Myrick et al, 2004; 2008;
2010), and a combined fMRI/PET study also reported right-
lateralized VS BOLD response and dopamine release to
alcohol taste cues (Oberlin et al, 2016). We previously found
better within-subject stability for right VS activation than left
VS activation (Schacht et al, 2011) and replicated this finding
in the placebo group here; thus, it was easier to detect a
treatment effect on that side. The right-sided lateralization
also recalls the work by Cahill et al (2004) on amygdala
response to emotional memory, which found that men’s
response was right-lateralized, whereas women’s response
was left-lateralized; further exploration of sex differences in
the effects of NTX on cue-elicited brain activation would be
valuable.
Strengths of the current study include a large sample

acquired at a single site, prospective and blinded genotyping,
the use of a well-validated cue reactivity task, and a high
proportion of subjects with complete 16-week drinking data.
However, several factors limit its implications and general-
izability. First, African-Americans were not included,
secondary to low A118G G allele frequency. More research
regarding pharmacogenetic or other predictors of NTX
response for African-Americans is needed. Second, although
subjects with current antidepressant and/or recent cocaine
use were included to facilitate recruitment and extend
generalizability to the treatment-seeking AUD population,
these considerations may have altered the effects of
medication on drinking or alcohol cue-elicited activation
among these subjects. However, these factors were equally
distributed across medication/genotype groups and did not
affect baseline drinking or VS activation. Third, smoking
severity assessment was limited to the ASI; more detailed
evaluation of this variable, and the manner in which it may
interact with NTX treatment, is needed. Fourth, the study
was powered to detect a pharmacogenetic interaction on
drinking, not cue-elicited activation, and recruitment fell
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slightly short of the targeted N. However, we previously
reported a large effect of NTX, relative to placebo, on cue-
elicited activation with groups of 20 (Myrick et al, 2008),
suggesting that the moderating effect of A118G genotype
would have to be quite small to avoid detection in the large
sample enrolled here. Fifth, although models were run
separately for right and left VS, the alpha level was not
corrected for both comparisons. Our primary interest, given
the findings noted above, was in right VS activation, but we
examined left VS for completeness. Finally, other drug use
was not assessed on the day of the second scan; however,
very few subjects used other drugs (by self-report and urine
drug screen at baseline).
In conclusion, this study evaluated several potential

moderators of NTX response in AUD and found that
smoking and changes in cue-elicited brain activation, rather
than OPRM1 A118G genotype, were the best predictors of
treatment outcome over 16 weeks. Continued research in this
area may ultimately allow individual prediction of clinical
response for AUD treatment.
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