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The chronic and relapsing nature of addiction suggests that drugs produce persistent adaptations in the brain that make individuals with
drug addiction particularly sensitive to drug-related cues and stress and incapable of controlling drug-seeking and drug-taking behavior. In
animal models, several long-lasting neuroadaptations have been described. However, few studies have used brain-imaging techniques to
provide a complete picture of brain functioning in the course of withdrawal from cocaine. In this study, we allowed rats to self-administer
cocaine under short-access (1-h/day) or long-access (6-h/day) conditions and used 2-deoxy-2-(18F)fluoro-d-glucose (18FDG) positron
emission tomography scanning to investigate the longitudinal changes in metabolic activity 1 and 4 weeks after discontinuation of cocaine
self-administration. We found that compared to naive rats, both long-access and short-access rats showed significant disruptions in basal
brain metabolic activity. However, compared to short-access, long-access rats showed more intense, and long-lasting neuroadaptations in a
network of brain areas. In particular, abstinence from extended access to cocaine was associated with decreased metabolic activity in the
anterior cingulate cortex, the insular cortex, and the dorsolateral striatum, and increased metabolic activity in the mesencephalon,
amygdala, and hippocampus. This pattern is strikingly similar to that described in humans that has led to the proposal of the Impaired
Response Inhibition and Salience Attribution model of addiction. These results demonstrate that extended access to cocaine leads to
persistent neuroadaptations in brain regions involved in motivation, salience attribution, memory, stress, and inhibitory control that may
underlie increased risks of relapse.
Neuropsychopharmacology (2017) 42, 1981–1990; doi:10.1038/npp.2017.109; published online 21 June 2017
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INTRODUCTION

Brain imaging approaches are powerful tools to identify
differences in brain structure and function in individuals
with drug addiction compared to healthy controls (Goldstein
and Volkow, 2002; Volkow et al, 1997b, 2003). Some of these
modifications persist long after discontinuation of drug use
and may underlie the persistent risk of relapse over time
whereas others appear recovered after withdrawal from the
drug (Goldstein and Volkow, 2002; Parvaz et al, 2011). For
example, using 2-deoxy-2-[18F]fluoro-d-glucose (18FDG)
positron emission tomography (PET) imaging, it has been
found that during early withdrawal, individuals with cocaine
addiction show global increases in functional brain activity
whereas after protracted periods of withdrawal, brain activity
decreases compared to naive subjects (Goldstein and

Volkow, 2002; Parvaz et al, 2011; Volkow et al, 1991,
1997b). Neuroimaging studies have been instrumental to the
understanding of the brain changes associated with addiction
(Goldstein and Volkow, 2002; Koob and Volkow, 2010).
Whereas brain imaging in humans have greatly contrib-

uted to our understanding of the neurobiological dysfunc-
tions associated with drug addiction, rodent models could be
invaluable tools to rapidly test novel hypotheses that could be
then translated back to humans. In animals, several studies
have used brain imaging to investigate the changes in brain
activity induced by drugs (Caprioli et al, 2013; Gould et al,
2014; Hammer et al, 1993; Hanlon et al, 2013; Howell, 2008;
Macey et al, 2004). Using functional magnetic resonance
imaging (fMRI), Gozzi et al found that after 10 days of
abstinence rats with a history of extended access to cocaine
self-administration show decreases in basal cerebral blood
flow in fronto-cortical regions such as the orbitofrontal
(OFC), prefrontal and anterior cingulate (ACC) cortices, and
the nucleus accumbens (NAc) (Gozzi et al, 2011). In another
study, Calipari et al used ex vivo 2-[14C]deoxyglucose
methods and found a decrease in the activity of several
brain areas 48 h after 5 days of extended access to cocaine
self-administration, including the NAc and the ACC
(Calipari et al, 2013). However until now, no longitudinal
study has been performed to assess changes in brain activity
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that occur after short and long periods of abstinence from
cocaine. Importantly, investigating changes in brain activity
after long periods of withdrawal could enable obtaining
information about brain recovery processes and about
mechanisms underlying incubation of drug craving
(Grimm et al, 2001; Hanlon et al, 2013; Pickens et al, 2011).
In the present study, we used PET with 18FDG to evaluate

metabolic activity changes after short (1 week) and long
(4 weeks) periods of abstinence from cocaine in rats with a
history of cocaine self-administration using the escalation
model (Ahmed and Koob, 1998). In this model, rats are given
either short-access (ShA) or long-access (LgA) to cocaine
self-administration for several weeks, allowing comparing
recreational use in ShA rats to extended addiction-like
escalated intake in LgA rats. Thus, the comparison of the
brain metabolic maps obtained for ShA, LgA and naive rats,
may provide insights into the short- and long-term cerebral
metabolic changes after withdrawal after exposure to
different regimens of cocaine intake.

MATERIALS AND METHODS

For detailed material and methods see Supplementary
Information.

Subjects and Housing Conditions

Adult male Sprague-Dawley rats (Janvier Labs, France),
experimentally naive at the beginning of the study, were used
in this study. All experiments were conducted in accordance
with European Union directives (2010/63/EU) for the care of
laboratory animals and approved by the local ethics
committees (COMETHEA).

General Experimental Design

Our general experimental design is schematized in Figure 1.
During the first 7 days, rats were allowed to self-administer
cocaine in 2-h training sessions. On the 8th day, rats were
divided into two groups: one group had access to cocaine for
1 h (ShA, n= 8) and the other group had access to cocaine
for 6 h (LgA, n= 8) to 20 sessions. At the end of the last self-
administration session (day 20), rats were transferred from
the animal facility at the University of Poitiers to the animal

facility at University of Tours by an authorized transporter
and underwent abstinence for 4 weeks. Metabolic imaging
using 18FDG was performed in the same rats after 6–8 days
(1 week) and 27–29 days (4 weeks) of abstinence. Naive rats
of the same age and with analogous housing conditions were
used as controls (n= 8).

Brain Imaging

Local uptake of 18FDG reflects cerebral metabolic rates of
glucose utilization and allows the investigation of regional
brain metabolic status (Phelps et al, 1979; Sokoloff, 1977).
Metabolic imaging using 18FDG was performed under basal
conditions. Rats were habituated to the PET experimental
procedures for 4 days before each scan, and fasted overnight
before each scan. The day of brain-imaging acquisition,
awake rats were injected with 18FDG (18.5 MBq/100 g i.p.;
Cyclopharma, Tours), and placed in the habituation cage for
45 min. Then, they were anesthetized using isoflurane 4%
(Baxter, Maurepas, France), placed on a heating pad
(Minerve, Esternay, France) and centered in the field of
view of the Explore VISTA-CT microPET camera (GE
Healthcare, Velizy, France). A CT-scan was performed for
attenuation correction of PET images and a list-mode PET
acquisition of 30 min started 60 min after 18FDG injection.
After data reconstruction using a 2-D OSEM algorithm, all
images were co-registered and normalized for tissue activity
in the whole brain. Quantitative results were expressed as
mean± SD and were presented on Z-score maps. Analyses
focused on brain areas known to be key nodes in addiction:
the ACC, OFC, prelimbic (PrL), infralimbic (IL), insular and
motor cortices, in addition to the dorsal striatum (DStr),
NAc, ventral pallidum (VP), substantia nigra/ventral teg-
mental area (SN/VTA), amygdala (Amyg), and hippocampus
(Hipp) (Volkow and Baler, 2014). It should be noted that
areas that were too small to be identified using microPET
18FDG imaging were not included in our analysis.

Statistical Analyses

For self-administration, two-way repeated measures ANO-
VA with time as a within-subject factor and cocaine
exposure (LgA or ShA) as a between-subject factor was

Training
(7 days)

Self-administration
(20 days)

Abstinence
(4 weeks)

ShA rats (1h/day)

LgA rats (6h/day)

PET Scan

2h/day

week 1 week 4

naive rats

PET Scan

Figure 1 Experimental design. After 7 days of cocaine self-administration training (2-h/day), rats were assigned to two groups short access (ShA), which
have access to cocaine for 1-h/day and long access (LgA), which have access to cocaine for 6-h/day. At the end of the 20 days of cocaine self-administration,
rats underwent a 4-week abstinence during which brain metabolic imaging using 18FDG was performed at 1 week and 4 weeks of abstinence. Naive rats were
used as controls.
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used. Results showing significant overall changes were
subjected to a Student-Newman-Keuls post hoc test.
For micro-PET data, a voxel-based analysis was used to

assess the differences in cerebral 18FDG uptake between the
averaged brains of LgA/ShA vs control rats at each stage of
withdrawal. The regions of interest were derived from Schiffer’s
templates (Schiffer et al, 2006) using PMOD v3.2 software
(PMOD Technologies Ltd, Switzerland) and applied to Z-score
maps to obtain the Z-score values in these areas. Inter-group
comparison was performed using a two-tail unpaired Student
t-test. Intra-group comparisons were performed using a two-
tail paired t-test to reveal within-rat differences over the course
of cocaine withdrawal. Differences were considered significant
when po0.05.

RESULTS

Self-Administration

Cocaine self-administration started with seven 2-h sessions
(Figure 2, left in all graphs a–d). After the initial training, rats
were divided into two groups and were allowed to self-
administer cocaine for 1-h (ShA) and 6-h (LgA) for 20
additional sessions (Figure 2, right in all graphs a–d). In the
ShA group, active nose-pokes (Figure 2a) and cocaine intake
(Figure 2c) during the 20 sessions were stable whereas in the
LgA group, the number of active nose-pokes (Figure 2a) and
cocaine intake (Figure 2c) significantly increased over time.

Figure 2d shows the cocaine intake during the first hour of
access to the drug in ShA and LgA. During the first 7 days of
self-administration ShA and LgA rats had similar levels
of cocaine intake. In the ShA group the cocaine intake was
stable over time, from 8.0± 1.6 at day 8 to 8.8± 1.3 mg/kg of
cocaine at day 27. In contrast, in the LgA group, the cocaine
intake significantly escalated over time, from 10.4± 1.7 at
day 8 to 14.8± 0.9 mg/kg of cocaine at day 27. Statistical
analysis revealed a significant effect of time [F(20 280)= 2.83,
po0.0001] and a significant GroupXTime interaction
[F(20 280)= 2.14, po0.01].

Brain Metabolic Activity in Long-Access and
Short-Access Rats During Abstinence in Areas
Involved in Reward, Salience, Motivation and Drive

Nucleus accumbens. In the NAc, 18FDG uptake was not
altered in the ShA group (Figure 3) but was reduced in LgA
rats vs controls after short periods of abstinence (Table 1)
and recovered after 4 weeks of abstinence (Figure 4, Tables 1
and 2). The direct comparison between LgA and ShA rats
confirmed that the metabolic activity of the NAc was
reduced after 1 but not after 4 weeks of abstinence in LgA
rats compared to ShA rats (Figure 5, Table 1).

Ventral pallidum. No significant differences between groups
were found in the VP at any time point (Figures 3 and 4).
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Figure 2 Cocaine self-administration training. Number of active (a) and inactive (b) nose-pokes, total cocaine intake (c) and cocaine intake during the first
hour of sessions (d) during the training phase in which all animals had access to cocaine for 2 h (left part of the graphs) and during the escalation phase in which
rats were divided into short access (ShA, n= 8, 1-h sessions) and long access (LgA, n= 8, 6-h sessions) groups (right part of the graphs). *po0.05 and
**po0.01 compared to session 1 of LgA self-administration, ##po0.0001 LgA compared to ShA group.
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Dorsal striatum. In the DStr, 18FDG uptake was increased
in both ShA and LgA rats in the medial part (DMStr) after
short periods of abstinence (Table 1) and decreased in the
lateral part (DLStr) after long periods of abstinence
compared to controls (Figures 3 and 4, Table 1). Thus, the
metabolic activity was restored in the DMStr and decreased
in the DLStr during cocaine abstinence in both groups
(Table 2). Importantly, direct comparison of LgA to ShA rats
showed that the metabolic activity of the DLStr was similar
after 1 week of abstinence but it was lower in LgA compared
to ShA rats after 4 weeks (Figure 5, Table 1), suggesting that
extended access to cocaine produces quantitatively bigger
disruptions in the activity of this brain area.

Substantia nigra/ventral tegmental area. In the SN/VTA,
increased 18FDG uptake was observed after 1 week of
abstinence in both ShA and LgA rats compared to controls
(Figures 3, and 4, Table 1), but this effect was stronger in
LgA than in ShA rats (Figure 5, Table 1). After 4 weeks of

abstinence, increased 18FDG uptake was still observed and it
was significantly stronger in the SN/VTA of LgA rats
(Figure 3, Tables 1 and 2), whereas a decreased uptake was
observed in ShA rats (Figure 4, Tables 1 and 2). Direct
comparison of LgA and ShA rats confirmed that the
metabolic activity of the SN/VTA was higher in LgA
compared to ShA rats (Figure 5, Table 1).

Orbitofrontal cortex. In the OFC, a decreased metabolic
activity compared to controls was found in ShA rats after
1 week of abstinence but this returned to control levels after
4 weeks of abstinence (Figure 3, Tables 1 and 2). No change
in the metabolic activity of this region was detected in LgA
rats (Figure 4). Direct LgA/ShA comparison showed that the
metabolic activity in the OFC of LgA rats was increased
compared to ShA rats after 1 week of abstinence (Figure 5,
Table 1) but this effect was due to metabolic hypoactivity in
ShA rats rather than a change compared to control.
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Figure 3 Changes in metabolic activity in ShA rats compared to naive controls. (a) Summary of the significant increases (red) and decreases (blue) in 18FDG
uptake observed in ShA rats vs controls (n= 8/group) after 1 week (upper part) and 4 weeks (lower part) of cocaine withdrawal presented on representative
coronal plates of the Paxinos and Watson atlas (Student’s two-tailed t-test; po0.01). (b) Examples of the significant differences in 18FDG uptake observed
between ShA and control rats after 1 week (upper part) and 4 weeks (lower part) of cocaine abstinence presented on coronal images of Z-score maps fused
with an MRI template (increases in 18FDG uptake from dark red to yellow, decreases in 18FDG uptake from black to light blue; Student’s two-tailed t-test;
po0.01). ACC, anterior cingulate cortex; Amyg, amygdala; DHipp, dorsal hippocampus; DMStr, dorsomedial striatum; DLStr, dorsolateral striatum; IL,
infralimbic cortex; Ins, insula; Mot, motor cortex; NAc, nucleus accumbens; OFC, orbitofrontal cortex; PrL, prelimbic cortex; SN/VTA, substantia nigra/ventral
tegmental area; VHipp, ventral hippocampus; VP, ventral pallidum.
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Motor cortex. In the Motor cortex, increased 18FDG uptake
was found in ShA (Figure 3, Table 1) but not LgA rats
compared to controls after 1 week of abstinence (Figure 4).
However, the metabolic activity of this region returned to
control levels after 4 weeks of abstinence (Figures 3 and 4,
Table 2). Direct LgA/ShA comparison highlighted a lower
metabolic activity in the Motor cortex of LgA compared to
ShA rats after 1 week of abstinence (Figure 5, Table 1) but
this effect was due to metabolic hyperactivity in ShA rats
rather than a change compared to controls.

Brain Metabolic Activity in Long-Access and
Short-Access Rats after Abstinence in Areas
Involved in Inhibitory Control, Executive Functions,
and Interoception

Prelimbic and infralimbic cortices. No change in the
metabolic activity of the PrL was observed in any group at
any time point (Figures 3 and 4). On the other hand, the IL
shows increases in 18FDG uptakes in ShA (Figure 3, Table 1)
and decreases in LgA rats (Figure 3, Table 1) after 1 week of
abstinence but both modifications disappeared after 4 weeks
of abstinence (Figures 3 and 4, Table 2). Direct LgA/ShA
comparison confirmed that the IL of LgA rats show a
hypoactive metabolism compared to ShA rats specifically
after a short period of abstinence (Figure 5, Table 1).

Anterior cingulate cortex. The 18FDG uptake was reduced
in the ACC in both ShA and LgA rats compared to controls
after both short and long periods of abstinence (Figures 3
and 4, Table 1). Whereas the decreases observed in LgA rats

persisted overtime, in ShA rats the effect was significantly
weaker after 28 days of cocaine abstinence (Table 2)
indicating some level of recovery in this group. When we
compared directly LgA to ShA rats, we found that the
hypoactive metabolism was more pronounced in ShA rats
after 1 week of abstinence (Table 1), while the contrary was
observed after 4 weeks of abstinence with LgA rats showing
less activity of the ACC compared to ShA rats (Figure 5,
Table 1). This suggests that extended self-administration of
cocaine produced more intense and more persistent
disruptions in the activity of this brain area.

Insular cortex. In the insula, the 18FDG uptake was
reduced in LgA, but not in ShA rats after short and long
periods of abstinence (Figures 3 and 4, Table 1). Direct LgA/
ShA comparison confirmed that the metabolic activity in this
area was consistently lower in LgA compared to ShA rats
(Figure 5, Table 1). The effect observed in LgA rats persisted
over the course of cocaine withdrawal (Table 2).

Brain Metabolic Activity in Long-Access and
Short-Access Rats after Abstinence in Areas
Involved in Contextual and Emotional Memories

Hippocampus. After short periods of abstinence, metabolic
activity was reduced in both ShA and LgA rats in the dorsal
part of the Hipp (DHipp) and in the ventral part (VHipp;
Figures 3 and 4, Table 1).

After 4 weeks of abstinence, in ShA rats the metabolic
activity of the DHipp was still reduced (Table 1) and not
significantly different from what was observed after 1 week

Table 1 Statistical Significances for Inter-Group Comparisons

1 Week 4 Weeks

ShA LgA ShA LgA

Z-score d-value Z-score d-value p-value Z-score d-value Z-score d-value p-value

ACC − 4.28± 1.38 1.26 − 3.66± 0.22 0.83 0.0163 − 2.01± 1.00 1.06 − 3.22± 1.228 1.12 0.0093

Motor cortex 3.84± 1.41 0.94 — — — — — — — —

OFC − 3.92± 0.50 1.17 — — — — — — — —

IL 3.52± 1.16 0.96 − 3.20± 1.08 0.98 o0.0001 — — — — —

PrL — — — — — — — — — —

Insula — — − 3.67± 1.38 1.01 — — — − 3.25± 1.05 1.42 —

DMStr 3.88± 1.00 1.21 3.63± 0.20 0.86 0.4232 — — — — —

DLStr — — — — — − 2.92± 1.57 1.65 − 3.97± 1.32 1.58 0.0154

NAc — — − 3.71± 0.35 1.18 — — — — — —

VP — — — — — — — — — —

Amyg 3.47± 1.02 1.70 — — — — — 3.26± 1.05 1.31 —

DHipp − 3.71± 1.27 0.95 − 3.41± 1.22 0.84 0.9279 − 3.42± 1.21 1.20 3.59± 0.16 1.65 0.0003

VHipp − 2.00± 0.45 1.32 − 3.55± 0.21 1.08 0.0051 3.81± 1.64 1.34 3.95± 1.44 1.24 0.3234

SN/VTA 2.03± 0.28 0.82 3.70± 0.37 0.92 0.0024 − 3.78± 1.47 1.01 4.15± 0.66 0.70 o0.0001

Abbreviations: Amyg, amygdala; ACC, cingulate cortex; DHipp, dorsal hippocampus; DMStr, dorsomedial striatum; DLStr, dorsolateral striatum; IL, infralimbic cortex;
LgA, long-access; NAc, nucleus accumbens; OFC, orbitofrontal cortex; PrL, prelimbic cortex; ShA, short-access; SN/VTA, substantia nigra/ventral tegmental area; VHipp,
ventral hippocampus; VP, ventral pallidum. The Z-score and d-values are presented for each significant differences observed between ShA and LgA rats vs controls after 1
or 4 weeks of cocaine abstinence. P-values of unpaired t-test also show the differences between LgA and ShA at each withdrawal stage. It should be noticed that p-values
were only calculated when both ShA and LgA showed a significant effect (Z-score 42). Italic font indicates significant p-values.
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(Table 2), whereas the VHipp became hyperactive (Tables 1
and 2). In contrast, both the DHipp and the VHipp became
hyperactive in LgA rats compared to controls after 4 weeks of
abstinence (Figure 4, Tables 1 and 2). When we compared
directly LgA to ShA rats, the metabolic activity of the VHipp
was lower in LgA rats compared to ShA rats after 1 week of
abstinence suggesting that hypoactivity of this region was
more pronounced in LgA than in ShA rats (Figure 5,
Table 1). In addition, after 4 weeks of abstinence, the
metabolic activity of the DHipp was higher in LgA compared
to ShA rats (Figure 5, Table 1).

Amygdala. In ShA rats, the metabolic activity of the Amyg,
was increased compared to controls after short periods of
abstinence (Table 1) but recovered after 4 weeks of
abstinence (Figure 3, Table 2). Conversely, in LgA rats the
metabolic activity of the Amyg was normal after short
periods of abstinence but increased after 4 weeks of
abstinence (Figure 4, Tables 1 and 2). Direct comparison of

LgA and ShA rats, confirmed that the metabolic activity of
the Amyg in LgA rats was lower compared to ShA rats after
1 week of abstinence but became higher after 4 weeks of
abstinence (Figure 5, Table 1).

DISCUSSION

We show that voluntary intake of cocaine produces changes
in basal brain metabolic activity that depends on the
intensity of cocaine self-administration and on the duration
of abstinence. Indeed, escalation of cocaine self-
administration produces cerebral changes that are quantita-
tively and qualitatively different from those found after ShA
cocaine self-administration. Importantly, the neuroadapta-
tions found in this study are consistent with data described
in humans and support the idea that cocaine exposure is
associated with specific disruptions in interconnected meso-
striato-cortical, limbic and fronto-cortical circuits that are
involved in reward, motivation, salience attribution,
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executive control, stress reactivity and negative affect
(Goldstein and Volkow, 2002; Koob and Volkow, 2010;
Parvaz et al, 2011; Volkow and Baler, 2014; Volkow et al,
2003).

Longitudinal Brain Dysregulations During Abstinence
from Cocaine Self-Administration

Several animal studies have investigated the changes in brain
functioning associated with drug exposure (Caprioli et al,
2013; Gould et al, 2014; Hammer et al, 1993; Hanlon et al,
2013; Howell, 2008; Macey et al, 2004) but only two studies

have focused on withdrawal from extended access to cocaine
using brain imaging in rats (Calipari et al, 2013; Gozzi et al,
2011). Whereas those studies were limited to the early
consequences of cocaine withdrawal on brain activity, here
we investigated longitudinally both early and long-term
changes in metabolic activity related to cocaine abstinence in
rats exhibiting two different patterns of cocaine voluntary
intake (stable low intake and escalated high intake).
Although the direct comparison of the results is complicated
because of the different experimental protocols and imaging
approaches used (fMRI vs PET), a common finding in all
studies is that cocaine-exposed rats displayed decreased

Table 2 Statistical Significances for Intra-group Comparisons

ShA LgA

1 Week 4 Weeks p-value DF t 1 Week 4 Weeks p-value DF t

ACC − 4.28± 1.38 − 2.01± 1.00 0.0001 7 7.449 − 3.66± 0.22 − 3.22± 1.228 0.7063 7 0.393

Motor cortex 3.84± 1.41 — o0.0001 7 12.200 — — — — —

OFC − 3.92± 0.50 — 0.0454 7 2.518 — — — — —

IL 3.52± 1.16 — 0.0006 7 5.838 − 3.20± 1.08 — 0.0469 7 2.408

PrL — — — — — — — — — —

Insula — — — — — − 3.67± 1.38 − 3.25± 1.05 0.1188 7 1.777

DMStr 3.88± 1.00 — 0.0105 7 3.460 3.63± 0.20 — 0.0372 7 2.567

DLStr — − 2.92± 1.57 0.0455 7 2.429 — − 3.97± 1.32 0.0374 7 2.562

NAc — — — — — − 3.71± 0.35 — o0.0001 7 12.410

VP — — — — — — — — — —

Amyg 3.47± 1.02 — 0.0216 7 2.944 — 3.26± 1.05 0.0175 7 3.093

Hab — — — — — — — — — —

DHipp − 3.71± 1.27 − 3.42± 1.21 0.3229 7 1.060 − 3.41± 1.22 3.59± 0.16 0.0119 7 3.373

VHipp − 2.00± 0.45 3.81± 1.64 0.0002 7 6.831 − 3.55± 0.21 3.95± 1.44 0.0042 7 4.489

SN/VTA 2.03± 0.28 − 3.78± 1.47 o0.0001 7 9.263 3.70± 0.37 4.15± 0.66 0.0310 7 2.803

Abbreviations: Amyg, amygdala; ACC, cingulate cortex; DHipp, dorsal hippocampus; DMStr, dorsomedial striatum; DLStr, dorsolateral striatum; IL, infralimbic cortex;
LgA, long-access; NAc, nucleus accumbens; OFC, orbitofrontal cortex; PrL, prelimbic cortex; ShA, short-access; SN/VTA, substantia nigra/ventral tegmental area; VHipp,
ventral hippocampus; VP, ventral pallidum. The Z-score, t, DF and p-values of paired t-test are presented for each significant differences observed during cocaine
abstinence within ShA and LgA rats. Italic font indicates significant p-values.
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Figure 5 Comparisons of the changes in metabolic activity in LgA vs ShA rats. Summary of the significant increases (red) and decreases (blue) in 18FDG
uptake observed in LgA vs ShA rats (n= 8/group) after 1 week (upper part) and 4 weeks (lower part) of cocaine abstinence presented on representative
coronal plates of the Paxinos and Watson atlas (Student’s two-tailed t-test; po0.01).
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metabolic activities in the ACC, medial prefrontal cortex and
the NAc after short periods of withdrawal (Calipari et al,
2013; Gozzi et al, 2011). It is important to note that some of
these adaptations were found both after limited and extended
access to cocaine. However, the intensity of metabolic
modification was significantly higher in LgA than in ShA.
In addition, whereas some brain regions show spontaneous
recovery of normal metabolic activity after protracted
abstinence, in LgA rats, a few brain structures (the DStr,
the ACC, the SN/VTA, the Amyg, the Hipp and the insula)
show persistent changes in metabolic activity that may
contribute to long-lasting risks of relapse. These results are
consistent with separate previous studies that have shown
that withdrawal from cocaine self-administration is asso-
ciated with neuroadaptations in the DStr (Hearing et al,
2008; Pomierny-Chamiolo et al, 2015), ACC (Pomierny-
Chamiolo et al, 2015; Zavala et al, 2007; Zorrilla et al, 2001),
VTA (mostly with no change in the SN (Arroyo et al, 2000;
Chen et al, 2008; Grimm et al, 2003; Lu et al, 2003), Amyg
(Lee et al, 2013; Lu et al, 2005a; Zorrilla et al, 2001) and Hipp
(Garcia-Fuster et al, 2012; Noonan et al, 2008; Pomierny-
Chamiolo et al, 2015; Thompson et al, 2004). Importantly,
each of these regions has been shown to be involved in
cocaine craving and relapse in animal models (Cosme et al,
2015; Fuchs et al, 2005, 2006; Grimm and See, 2000; Lu et al,
2005b; McFarland and Kalivas, 2001; Torregrossa et al,
2013). Thus, these results suggest that extended access
cocaine self-administration is associated with simultaneous
dysregulations in interconnected networks that can lead to
increased risks of relapse.

Similarities between Rat and Human Studies

Over a decade ago, on the basis of clinical and brain-imaging
data in humans, Goldstein and Volkow proposed the
Impaired Response Inhibition and Salience Attribution
(I-RISA) model of addiction that postulates that addiction
is the result of a change in the balance of different functions
and in the activity of corresponding brain areas (Goldstein
and Volkow, 2002). In this model, the six main functions
involved in drug addiction are: (1) reward/saliency involving
the NAc, the VP and the dopaminergic system; (2) memory/
learning/habits involving the DStr, the Amyg and the Hipp;
(3) inhibitory control/executive functions involving the
prefrontal cortex and the ACC; (4) motivation/drive invol-
ving the OFC, the motor cortex and the dopaminergic
system (SN/VTA); (5) interoception involving the insula and
ACC and (6) aversion involving the Amyg (Goldstein and
Volkow, 2002; Koob and Volkow, 2010; Parvaz et al, 2011;
Volkow and Baler, 2014; Volkow et al, 2003). In particular, in
this model, reductions in the activity of prefrontal and
frontal cortical areas induce dysregulated top–down pro-
cesses ultimately leading to difficulties in controlling and
inhibiting drug-seeking behavior and increased risks of
relapse (for review see Goldstein and Volkow (2002)). For
example, long-term abstinent cocaine abusers (more than
6 weeks) show frontal hypo-metabolism (Volkow et al, 1992)
and this disruption is supposed to favor compulsive drug
taking (Volkow et al, 1993). This hypo-metabolism is
associated with decreased dopamine D2 receptor availability
(Volkow et al, 1990, 1993), reflecting a dysregulation of
dopamine receptors following alterations in the activity of

the dopaminergic system, described in detoxified cocaine
abusers (Volkow et al, 1997a, 1997c). Our data demonstrate
that rats that have extended access to cocaine show a profile
of brain metabolic activity that is consistent with this model.
In fact, we found a persistent reduction in the metabolic
activity of ACC associated with an increase in the activity of
the SN/VTA and a decrease in the activity of the DStr, which
could be secondary to hyperactivity of the dopaminergic
system and activation of dopamine receptors. In addition,
after long periods of abstinence, we found that the Amyg and
Hipp are hyperactive which is consistent with the critical role
of memory, negative affect and stress-related process in
relapse (Koob and Volkow, 2010, 2016). Finally, we found a
decrease in the activity of the insula that reveals a
dysregulation in the functioning of this region that has been
shown to be critical for interoceptive processes and relapse
(Goldstein et al, 2009).

Methodological Considerations

When interpreting the results of this study, several aspects
should be considered. First, our measures reflect metabolic
activity under resting states. Thus, it is possible that
dysregulation in the ability of certain brain regions to
respond to external or internal stimuli may have passed
unnoticed in the present study. This is particularly important
because most of the recent studies in humans have used
fMRI approaches to highlight the changes in reactivity of the
brain of individuals with addiction to several manipulations
such as exposure to drug cues (Goldstein and Volkow, 2002;
Volkow and Baler, 2014; Wilson et al, 2004). In addition,
PET imaging allows a resolution of one millimeter (Caprioli
et al, 2013). For this reason, some regions that were too small
to be identified individually, such as the SN/VTA or different
nuclei of the Amyg, had to be pooled. Thus, it is possible that
certain changes attributed to one region may be actually due
to changes in one of their sub-regions. Conversely, it is
possible that lack of effects in some regions may be in part
due to differences in the activity of the sub-regions. Whereas
in this study we focused our attention to the abstinence
phase of addiction, brain-imaging studies could be poten-
tially used longitudinally to compare brain functioning in the
same individual before, during, and after exposure to
cocaine. Unfortunately, because the behavioral equipment
and the PET scan were not in the same location, we were not
able to perform such studies. Future studies will be needed to
allow this additional important comparison. Another im-
portant consideration is that given that imaging procedure
was conducted twice in each rat, the effects of repeated
manipulations such as fasting, habituation, and general
anesthesia may have at least in part contributed to the effects
measured in the second scan. However, analysis of brain
activity in control rats at different time points did not show
significant effect of retesting (data not shown). A final aspect
to consider is that in our study, control naive animals did not
undergo surgery and were not exposed to operant cages.
While we cannot rule out the possibility that these
manipulations may have contributed to differences in
metabolic activity measured in ShA and LgA rats vs controls,
the contribution of these experimental differences is likely
limited compared to exposure to cocaine. Furthermore, it
should be considered that from a translational point of view,
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cocaine naive individuals do not share with individuals with
cocaine addiction a wide variety of drug-related experiences
and may indeed resemble in many ways to our naive control
groups. Finally, whereas the comparison to naive control is
an important aspect of this work, our main focus concerns
the differences between ShA and LgA rats that had very
similar experimental histories.

CONCLUSIONS

We show that extended access intake of cocaine in the
escalation model (Ahmed and Koob, 1998) produce a
complex regional and temporal pattern of changes in basal
brain metabolic activity that are strikingly similar to those
reported in humans and framed into the I-RISA model of
addiction (Goldstein and Volkow, 2002). These functional
dysregulations would lead to increased sensitivity to drugs
and drug-related cues, difficulties in regulating emotional
responses and deficits in cognitive functions that render
individuals with addiction persistently vulnerable to relapse.
The combination of animal models of addiction and brain
imaging approaches represents a unique tool to investigate
the brain mechanisms underlying the effects of novel
therapeutic interventions.
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