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Nonergodic di�usion of single atoms in a
periodic potential
Farina Kindermann1, Andreas Dechant2,3, Michael Hohmann1, Tobias Lausch1, Daniel Mayer1,4,
Felix Schmidt1,4, Eric Lutz2 and Artur Widera1,4*
Di�usion can be used to infer the microscopic features of
a system from the observation of its macroscopic dynamics.
Brownianmotion accurately describesmanydi�usive systems,
but non-Brownian and nonergodic features are often observed
on short timescales. Here, we trap a single ultracold caesium
atom in a periodic potential and measure its di�usion1–3.
We engineer the particle–environment interaction to fully
control motion over a broad range of di�usion constants
and timescales. We use a powerful stroboscopic imaging
method to detect single-particle trajectories and analyse both
non-equilibrium di�usion properties and the approach to
ergodicity4. Whereas the variance and two-time correlation
function exhibit apparent Brownianmotion at all times, higher-
order correlations reveal strong non-Brownian behaviour. We
additionally observe the slow convergence of the exponential
displacementdistribution to aGaussianand—unexpectedly—a
much slower approach to ergodicity5, in perfect agreement
with an analytical continuous-time random-walk model6–8. Our
experimental system o�ers an ideal testbed for the detailed
investigation of complex di�usion processes.

The concept of diffusion is ubiquitous in physics9, chemistry10
and biology11. Recent developments have lead to a better
understanding of the diffusive behaviour of increasingly complex
structures, from colloid particles12 and anisotropic ellipsoids13 to
extended stiff filaments14 and fluidized matter15. At the same time,
the diffusion of tracer particles has become a powerful experimental
tool to probe the properties of complex systems from turbulent
fluids16 to living cells17.

In many systems, diffusion is well described by the theory
of Brownian motion1. The hallmarks of standard Brownian
diffusion are: a linear mean-square displacement (MSD),
σ 2(t)=〈1x2

t 〉−〈1xt〉2∝2Dt , where D is the diffusion coefficient
and 〈·〉 denotes the average over many trajectories; a Gaussian
displacement probability distribution, a direct consequence of
the central-limit theorem; and ergodic behaviour in a potential,
implying that ensemble and time averages are equal in the long-
time limit. Ergodicity lies at the core of statistical mechanics and
indicates that a single trajectory is representative for the ensemble4.
However, an increasing number of systems exhibit nonergodic
features owing to slow, non-exponential relaxation. Examples
include blinking quantum dots18, the motion of lipid granules19,
and mRNA molecules20 and receptors in living cells21. These
systems lie outside the range of standard statistical physics and
their description is hence particularly challenging5,22. Of special
interest is the question of the approach to ergodicity. Many relevant

processes in nature indeed occur on finite timescales19–21 during
which ergodic behaviour cannot be taken for granted.

We experimentally realize an ideal system consisting of a single
atom moving in a periodic potential and interacting with a near-
resonant light field that acts as a thermal bath. Diffusion in a
periodic potential is a paradigmatic model that has been extensively
used to describe a variety of problems1, from superionic conductors2
and Josephson junctions3 to phase-locked loops23 and diffusion on
surfaces24. We perfectly control all internal and external atomic
degrees of freedom, as well as the properties of the light field and of
the periodic potential. Therefore, we can tune and explore diffusion
over a large range of parameters. Moreover, we stroboscopically
image the motion of the single atoms and record their individual
trajectories, a prerequisite for the investigation of ergodicity. The
diffusion of large ensembles of atoms25,26, as well as of single atoms
in periodic potentials, has been examined in the past, but only
ensemble properties have been determined27. The unique ability to
monitor individual diffusive atoms allows us to compare the con-
vergence of the displacement distribution to a Gaussian, as required
by the central-limit theorem, and the approach to ergodicity. We
demonstrate that ergodicity, quantified by the ergodicity breaking
parameter (EBP), equation (7) (ref. 28), is established at a much
slower pace than Gaussianity, characterized by the excess kurtosis,
equation (6) (ref. 1). We further show that the MSD and the two-
time position correlation function are identical to those of Brown-
ian motion, at all times, and that a four-time correlation function
is needed to identify non-Brownian features. Owing to its great
tunability, our system offers a versatile platform to investigate in
detail the effects of noise and disorder, as well as the influence of
confinement and of external forces on general diffusion phenomena.

We initialize the system by preparing a single laser-cooled cae-
sium (Cs) atom, thermalized with a laser light field at a temperature
of T0≈50 µK. We trap the particle in a periodic potential of a one-
dimensional optical lattice with depth U0=kB×850 µK and lattice
spacing λ/2= 395 nm, where no dynamics is observed. Here kB is
the Boltzmann constant and λ the wavelength of the lattice laser
light. Along the lattice axis, the atom is trapped in the nodes of
the interference light field. Transversely, the atom is confined by a
1,064 nm running wave dipole trap, spatially overlapped with the
lattice axis. The dipole trap also contributes a harmonic confine-
ment along the lattice axis with trapping frequency ω≈2π×60Hz
for atoms leaving the lattice potential. The atom is hence initially
confined to disc-shaped lattice wells and performs rapid in-well
dynamics. Diffusion along the lattice axis is generated by, first,
adiabatically lowering the depth toUlow=kB×210 µK, enabling the
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Figure 1 | Stroboscopic position imaging sequence. a, The atom number
is first measured in the magneto-optical trap (image No. 0). The next
14 fluorescence images of a single atom are taken in the lattice and reveal
its successive positions. b, After image acquisition, the light field intensity is
reduced to zero and the lattice potential is adiabatically lowered to a value
Ulow to ensure thermal classical hopping for atoms with energies larger
than the potential barrier. Di�usion is initiated by switching on the light
field during a flight time tflight between 0.1ms and 50ms. The lattice
potential is then ramped up instantaneously before the next image to freeze
the atom’s position, before the whole process is repeated. c, A typical set of
30 single atom traces for tflight=0.1ms.

atom to hop over the potential barrier; and, second, by illuminating
the atom with near-resonant light to couple it to a quasi-thermal
bath. Since the potential depth is always much higher than the
atomic energy, quantum effects such as tunnelling are suppressed,
resulting in classical dynamics. After a variable interaction time tflight,
we freeze the atomic motion by rapidly increasing the lattice depth
to U0 again. The atomic position is stroboscopically detected from
high-resolution fluorescence images (Fig. 1a,b), before the potential
depth is lowered for a next diffusion phase. We define the difference
in position between two subsequent images as the flight distance.
For each parameter set, we record approximately 600–1,000 traces
consisting of 14 images. Taking an image involves scattering of
approximately 106 photons off the tightly confined atom, so that
all properties of the previous diffusion step are effectively reset and
no memory on, for example, velocity or temperature is retained.
As a result, the flights are independent of each other. During the
longest measurements, the atom travels an average total distance
of approximately 100 lattice sites, corresponding to a distance of
approximately 40 µm. The stroboscopic imaging thus leads to a
coarse graining of the atomic trajectory.

From the measured single atom trajectories (Fig. 1c), we
determine the escape time from a potential well, the corresponding
waiting distribution and the flight distance distribution (Fig. 2). The
escape time τesc is the relevant time controlling diffusion between
lattice wells. Its value may be obtained from the MSD, as diffusion
only starts for tflight > τesc (Fig. 2b). The distribution ψ(τw) of the
waiting times τw between random hopping events is found to be
exponential (Fig. 2a),

ψ(τw)=
1
τesc

e−
τw
τesc (1)

We infer an escape time of τesc= 7ms by fitting an accumulated
exponential function to the hopping probability (Fig. 2a).We further
observe an exponential flight distance distribution φ(L) for short
flight times (Fig. 2c),

φ(L)=
1
2L0

e−
|L|
L0 (2)

with a characteristic length L0. The distribution converges to
a Gaussian in the limit of longer flight times (Fig. 2d and
Supplementary Information), in agreement with the central-limit
theorem. Even in the absence of a power-law tail distribution, this
convergence is slow (non-exponential), as discussed below.

We may engineer the atomic motion by exploiting three
independent mechanisms and their associated timescales. First, the
interaction with the near-resonant light field leads to momentum
diffusion with diffusion constant Dp (due to photon scattering) and
damping at a rate γ (due to Doppler cooling)29; a steady state at
temperature kBT0 = Dp/γ is thus reached after a damping time
τdamping= γ

−1. Second, the periodic potential adds the escape time
τesc an atom needs to leave a potential well. Last, owing to the
phase noise of the lattice (Supplementary Information), switching
off the light field, while lowering the potential, leaves the atom in
a non-equilibrium state at an increased temperature T >T0 at the
beginning of each flight of duration tflight. In fact, the relevance of the
non-equilibrium state for the dynamics can be adjusted by tflight, as
explained below. Each of the three times, τdamping, τesc and tflight, may
be changed independently, the first two by tuning the parameters
of the light field and of the potential. In the present set-up, we fix
τdamping'1.3ms and τesc'7ms, and vary tflight for simplicity.

We are able to explore diffusion over four decades of time
(Fig. 3a) and change the diffusion coefficient, evaluated froma linear
fit to the first ten data points of the MSD, by more than three orders
of magnitude (two are shown in Fig. 3b). We identify four different
regimes (Fig. 3): for tflight<τdamping, the dynamics is dominated by
the non-equilibrium phase-noise heating and the atom does not
reach the steady state temperature T0. As a result, the diffusion
coefficient is greatly enhanced (grey and purple dots in Fig. 3b).
For tflight > τdamping, the atom is cooled to temperature T0 and the
motion is governed by the escape from the lattice wells (green and
blue dots in Fig. 3b). For tflight . τesc, dynamics is induced mostly
by single escape processes characterized by the exponential flight
distance distribution in equation (2) (Fig. 2c). On the other hand,
for tflight� τesc, each flight consists of several escape processes and
the flight distance distribution approaches a Gaussian (Fig. 2d).

The motion of the atom is well described by an underdamped
Langevin equation taking intra- and inter-well dynamics in
the periodic potential into account (Methods). We obtain good
agreement between the numerical simulations and the experimental
data (Fig. 2c and d) without any free parameter. To obtain an
analytical understanding of the diffusion process, we employ a
continuous-time random-walk approach (CTRW)6–8. In this coarse-
grained description, the details of the intra-well dynamics are
neglected and the diffusion is modelled as a succession of hopping
events of random length and occurring at random times. The
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Figure 2 | Characteristic time and flight distances. a, Escape probability from a potential well versus the flight time tflight for Ulow=210 µK×kB (blue
circles) and 560 µK×kB (grey squares). The solid lines are fits to a cumulative exponential distribution, equation (1), yielding the escape times τesc=7ms
and 131ms, respectively. The non-zero probability for small tflight is due to heating during the lowering of the potential. b, Mean-square displacement
(MSD) versus tflight for a single ramping process. Di�usion starts when tflight>τesc. The solid blue line is a double linear fit to the data points. Error bars in a
and b represent standard statistical errors. c,d, Flight distance distributions for tflight=0.1ms and tflight=50ms, respectively, for τesc=7ms. With
increasing tflight the flight distance distribution approaches a Gaussian according to the central-limit theorem. In both images the best fitting Gaussian is
depicted (dashed–dotted line). The blue dashed line is a fit of the flight distance distribution φ(L), equation (2) (with R2>0.99); the green solid line is the
result of Langevin simulations.
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Figure 3 | Di�usion properties. a, Mean-square displacement (MSD) for di�erent tflight for a potential depth Ulow=210 µK×kB. Open blue symbols are
measured without a heat bath to confirm that di�usion is driven by the light field; they do not exhibit di�usive behaviour. The slight curvature of the green
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corresponding waiting time and jump length distributions, ψ(τw)
and φ(L), are chosen as the experimentally determined exponential
distributions in equations (1) and (2). The CTRW model permits

one to analytically predict nontrivial properties of the diffusion,
such as the time evolution of the displacement distribution
and higher-order correlation functions, in the cooling-dominated
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≥0.94. c, The ergodicity breaking parameter EPB, equation (7), evaluated for the parameters of
Fig. 2, decays as τerg/t (with R2

≥0.94). d, The ratio τerg/τgau shows that ergodicity is established on a timescale similar to the Gaussianity in the
non-equilibrium heating regime, tflight<τdamping (grey symbols), and on significantly longer timescales in the equilibrium regime, tflight>τdamping. Error bars
indicate the statistical error of1x or x2, respectively, and thus propagate by standard propagation of uncertainty.

regime tflight>τdamping (Methods and Supplementary Information).
Specifically, the computed MSD,

σ
2
(t)=

2L2
0

τesc
t (3)

exhibits normal Brownian diffusion at all times. For our data,
when fitting a power law σ 2(t)∝ tα to the first ten data points, in
analogy to the determination of the diffusion coefficient, we find
α=1.03±0.06 (blue symbols in Fig. 3a) withR2>0.99. In addition,
the normalized two-point position correlation function30 reads

C2
(t ,τ)=

〈1x(t)1x(t+τ)〉
σ 2(t)

=1 (4)

where τ is the time lag between two time points. Remarkably, this
result is identical to that of standard Brownian motion1. Figure 4a
shows good agreement with the experimental correlation function
for all times t and time lags τ for tflight= 1ms. At the level of one-
point and two-point correlation functions, both experiment and
CTRW model thus appear to be undistinguishable from normal
Brownian diffusion. The situation changes when considering the
four-point correlation function,

C4
(t ,τ)=

〈1x2(t)1x2(t+τ)〉
〈1x4(t)〉

=1+
τ

3t+6τesc
(5)

evaluated with two equal times. This quantity explicitly depends
on the microscopic timescale τesc and differs from the Brownian
motion result, which is recovered for τesc=0. Good agreement with
the measured data is observed (Fig. 4a). To directly quantify the

deviations from the displacement distribution from a Gaussian, we
further calculate the excess kurtosis,

κ(t)=
〈1x4(t)〉
3〈1x2(t)〉2

−1=
τgau

t
with τgau=2τesc (6)

Equation (6) vanishes for the Gaussian distribution of standard
Brownian motion (τesc = 0) and displays a slow, algebraic 1/t
decay with a characteristic time τesc for the CTRW model. This
expression confirms that τesc is the relevant time governing the
convergence to the Gaussian central-limit result. The experimental
data again nicely fit to the theoretical prediction (6) for tflight>τesc
(Fig. 4b). The overall excellent agreement between the coarse-
grained experimental data determined via stroboscopic imaging and
the coarse-grained CTRW model indicates that the latter provides
an accurate effective description of the non-equilibrium dynamics
of the atoms, akin to thermodynamics, which gives a correct coarse-
grained description of equilibrium properties of a system.

To investigate the approach to ergodicity, we introduce the
ergodicity breaking parameter (EBP)28,

EBP(t ,τ)=
〈x2(t ,τ)2〉−〈x2(t ,τ)〉2

〈x2(t ,τ)〉2
(7)

Here x2 denotes the time-averaged MSD with time lag τ—that
is, the squared distance travelled in the interval τ , averaged over
the entire trajectory of duration t (Methods). The EBP measures
the degree of randomness of x2: it is zero for an ergodic system in
the limit t→∞; at finite times, it quantifies how reliably the time
average represents the ensemble average. For a particle diffusing
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in a potential, the EBP generally decays as τerg/t , with a constant
τerg that depends on the details of the system31,32. This behaviour is
confirmed by our experimental data (Fig. 4c). While excess kurtosis
(6) andEPB (7) exhibit the same slow 1/t decay, their convergence to
zero depends crucially on the values of the two time constants, τgau
and τerg. Figure 4d shows the ratio τerg/τgau of the two parameters
obtained by fitting the respective experimental curves. We observe
that τgau and τerg are of the same order in the heating-dominated
non-equilibrium regime, tflight<τdamping, where atoms are hotter than
the heat bath. This situation is not described by the CTRW model.
By contrast, in the equilibrium jump-process regime, tflight>τdamping,
where atoms have equilibrated with the heat bath, the constant τerg is
much larger than τgau, indicating that ergodicity is here established
on significantly longer timescales than Gaussianity. These findings
show that Gaussianity and ergodicity may be approached on very
different time constants in the same system, depending on the
considered parameter regime.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.

Received 18 February 2016; accepted 6 September 2016;
published online 10 October 2016

References
1. Risken, H. The Fokker–Planck Equation (Springer, 1989).
2. Fulde, P., Pietronero, L., Schneider, W. R. & Strässler, S. Problem of Brownian

motion in a periodic potential. Phys. Rev. Lett. 35, 1776–1779 (1975).
3. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect

(Wiley, 1982).
4. Dorfman, J. R. An Introduction to Chaos in Nonequilibrium Statistical

Mechanics (Cambridge Univ. Press, 1999).
5. Lutz, E. & Renzoni, F. Beyond Boltzmann–Gibbs statistical mechanics in

optical lattices. Nat. Phys. 9, 615–619 (2013).
6. Montroll, E. W. &Weiss, G. H. Random walks on lattices. II. J. Math. Phys. 6,

167–181 (1965).
7. Klafter, J. & Sokolov, I. M. First Steps in RandomWalks

(Oxford Univ. Press, 2011).
8. Scher, H. & Lax, M. Stochastic transport in a disordered solid I. Theory.

Phys. Rev. B 7, 4491–4502 (1973).
9. Frey, E. & Kroy, K. Brownian motion: a paradigm of soft matter and biological

physics. Ann. Phys. 14, 20–50 (2005).
10. Kramers, H. A. Brownian motion in a field of force and the diffusion model of

chemical reactions. Physica 7, 284–304 (1940).
11. Wang, B., Anthony, S. M., Bae, S. C. & Granick, S. Anomalous yet Brownian.

Proc. Natl Acad. Sci. USA 106, 15160–15164 (2009).
12. Li, T., Kheifets, S., Medellin, D. & Raizen, M. G. Measurement of the

instantaneous velocity of a Brownian particle. Science 328, 1673–1675 (2010).
13. Han, Y. et al . Brownian motion of an ellipsoid. Science 314, 626–630 (2006).
14. Fakhri, N., MacKintosh, F. C., Lounis, B., Cognet, L. & Pasquali, M. Brownian

motion of stiff filaments in a crowded environment. Science 330,
1804–1807 (2010).

15. D’Anna, G., Mayor, P., Barrat, A., Loreto, V. & Nori, F. Observing
Brownian motion in vibration-fluidized granular matter. Nature 424,
909–912 (2003).

16. La Porta, A., Voth, G. A., Crawford, A. M., Alexander, J. & Bodenschatz, E.
Fluid particle accelerations in fully developed turbulence. Nature 409,
1017–1019 (2001).

17. Wang, B., Kuo, J., Bae, S. C. & Granick, S. When Brownian diffusion is not
Gaussian. Nat. Mater. 11, 481–485 (2012).

18. Brokmann, X. et al . Statistical aging and non ergodicity in the fluorescence of
single nanocrystals. Phys. Rev. Lett. 90, 120601 (2003).

19. Jeon, J. H. et al . In vivo anomalous diffusion and weak ergodicity breaking of
lipid granules. Phys. Rev. Lett. 106, 048103 (2011).

20. He, Y., Burov, S., Metzler, R. & Barkai, E. Random time-scale invariant
diffusion and transport coefficients,. Phys. Rev. Lett. 101, 058101 (2008).

21. Manzo, C. et al . Weak ergodicity breaking of receptor motion in living cells
stemming from random diffusivity. Phys. Rev. X 5, 011021 (2015).

22. Lutz, E. Power-law tail distributions and nonergodicity. Phys. Rev. Lett. 93,
190602 (2004).

23. Viterbi, A. J. & Omura, J. K. Principles of Digital Communication and Coding
(Dover, 2013).

24. Sancho, J. M., Lacasta, A. M., Lindenberg, K., Sokolov, I. M. & Romero, A. H.
Diffusion on a solid surface: anomalous is normal. Phys. Rev. Lett. 92,
250601 (2004).

25. Sagi, Y., Brook, M., Almog, I. & Davidson, N. Observation of anomalous
diffusion and fractional self-similarity in one dimension. Phys. Rev. Lett. 108,
093002 (2012).

26. Douglas, P., Bergamini, S. & Renzoni, F. Tunable Tsallis distributions in
dissipative optical lattices. Phys. Rev. Lett. 96, 110601 (2006).

27. Katori, H., Schlipf, S. & Walther, H. Anomalous dynamics of a single ion in an
optical lattice. Phys. Rev. Lett. 79, 2221–2224 (1997).

28. Burov, S., Jeon, J.-H., Metzler, R. & Barkai, E. Single particle tracking in systems
showing anomalous diffusion: the role of weak ergodicity breaking. Phys.
Chem. Chem. Phys. 13, 1800–1812 (2011).

29. Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping (Springer, 2002).
30. Risken, H. & Vollmer, H. D. Correlation functions for the diffusive motion of

particles in a periodic potential. Z. Phys. B 31, 209–216 (1978).
31. Deng, W. & Barkai, E. Ergodic properties of fractional Brownian–Langevin

motion. Phys. Rev. E 79, 011112 (2009).
32. Dechant, A., Lutz, E., Kessler, D. A. & Barkai, E. Fluctuations of time averages

for Langevin dynamics in a binding force field. Phys. Rev. Lett. 107,
240603 (2011).

Acknowledgements
This work was partially funded by the ERC Starting Grant No. 278208, the Collaborative
Project TherMiQ (Grant Agreement 618074) and the SFB/TRR49. T.L. acknowledges
funding by Carl Zeiss Stiftung. D.M. is a recipient of a DFG-fellowship through the
Excellence Initiative by the Graduate School Materials Science in Mainz (GSC 266). F.S.
acknowledges funding by the Studienstiftung des deutschen Volkes.

Author contributions
A.W. and F.K. conceived the experiment. F.K., M.H., T.L., D.M. and F.S. took
experimental data, F.K. analysed the data. A.D. and E.L. developed the theoretical model
and performed numerical simulations. All authors contributed in interpretation,
discussion and writing of the manuscript.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to A.W.

Competing financial interests
The authors declare no competing financial interests.

NATURE PHYSICS | VOL 13 | FEBRUARY 2017 | www.nature.com/naturephysics

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

141

http://dx.doi.org/10.1038/nphys3911
http://dx.doi.org/10.1038/nphys3911
http://dx.doi.org/10.1038/nphys3911
http://www.nature.com/reprints
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS3911

Methods
Trapping and imaging single atoms. The caesium atoms are initially captured in a
high-gradient (≈250G cm−1) magneto-optical trap (MOT). On average, 0–5
atoms are loaded from the background gas and we postselect images where only
one atom is present. Subsequently, we transfer the atoms to a combined optical
trap, formed by a running wave optical dipole trap at λDT=1,064 nm and an
optical lattice. As a consequence, the atoms are radially confined by the running
wave optical trap with a beam waist w0,DT=22 µm and a power of 2.6W, leading to
a potential depth of U0,DT=1mK. Axially the atoms are trapped within the sites of
the lattice formed by two counter-propagating laser beams at λlat=790 nm with a
beam waist of w0,Lat=29 µm and a maximum power of 650mW per beam. During
the experimental sequence, only the lattice potential is lowered, while the radial
confinement is held constant at all times. This allows one to limit the diffusion of
the atoms along the lattice axis and allows an effective one-dimensional
description. The heat bath applied during the diffusion is engineered by the light
field already used during the MOT phase. It consists of six counter-propagating
orthogonal laser beams, red detuned with respect to the atomic resonance. In this
light field the atoms are cooled by laser cooling, mainly Doppler cooling, while they
constantly scatter photons29.

We use the scattered photons (that is, fluorescence imaging) to precisely count
the atom number during the MOT phase as well as to extract the position of the
atoms in the lattice. An objective with a high numerical aperture (NA= 0.36) at a
distance of 30.3mm from the position of the atoms collects about 3.3% of the
fluorescence photons. The collimated light is focused onto an EMCCD camera
(Andor iXon 3 897) with a lens of focal length f =1,000mm, yielding a
magnification ofM=33. Exposure times of 500ms induce a signal-to-noise
ratio of∼5. The point spread function of the image system limits the position
resolution to an uncertainty of 2 µm. For further details of our set-up we refer
to ref. 33.

Error analysis. The uncertainty on the position of the atom is 2 µm, given by the
finite optical resolution of the imaging system, and is thus about 5% for typical
mean flight distances of 40 µm. The main source of errors is purely statistical and is
of the order of 3–10% for the number of measured trajectories (600–1,000). The
corresponding error bars are of the size of the symbols and thus not visible for most
data points.

Control of the diffusion parameters. The diffusion is governed by three
parameters: the diffusion constant D, the damping constant γ and the noise ξ .
These quantities are directly related to the experimental parameters. The damping
constant γ is given by the friction coefficient β/mCs of the light field (that is,
molasses)29,

γ =β/mCs=~k2
4s0δ/0

mCs(1+ s0+ (2δ/0)2)2
(8)

which is on the order of 5×103 s−1 for our parameters. Here δ is the detuning of
the frequency of beams of the light field with respect to the atomic transition, 0 the
natural line width of the caesium D2 line transition and s0= I/Is the saturation
parameter given by the ratio of molasses intensity I over saturation intensity Is. All
of these parameters are precisely controlled in our system. The diffusion coefficient
is D=kBTγ −1, where T is the atomic temperature, mainly set by the light field or
by heating of the lattice due to phase noise. The random noise in the system is
described by a Gaussian white noise ξ originating from individual, random photon
scattering events at rate 0scat.

Langevin simulations. The observed dynamics of the atoms, in the absence of
intentional heating periods, is theoretically well described by a Langevin equation
for a single underdamped Brownian particle in a periodic potential,

ṗ=−γ p−Ulowk sin(2kx)+
√

2Dpξ (9)

Here, the first and last terms on the right-hand side are contributions due to
illumination with the light field (that is, optical molasses). On the one hand, the
red-detuning leads to cooling of the atoms and can be described as a classical
damping term for a particle with massm and damping coefficient γ , arising
from the Doppler cooling force. On the other hand, random absorption and
re-emission processes drive the microscopic motion, described by the momentum
diffusion coefficient Dp and Gaussian white noise ξ . As a consequence, the light
field acts as a reservoir of constant and adjustable temperature to which the atom
is coupled. During the interaction with the light field the atom relaxes to a
temperature determined by the molasses on timescales of the inverse cooling rate
γ −1=90ms. The second term on the right-hand side of equation (9) describes the
periodic trap discussed above, with depth Ulow and periodicity d=λ/2=k/(4π).
The Langevin equation (10) is solved numerically by performing an
Euler–Maruyama integration for 40,000 trajectories with 5×106 integration
steps each.

Continuous-time random-walk model.We consider a CTRWmodel with waiting
distribution ψ(τw) and jump length distribution φ(L), respectively given by the
experimentally determined exponential functions (1) and (2). If up to time t ,m
jumps have occurred, the total displacement x(t) is then the sum over them
corresponding jump lengths Li=1,...,m. The distribution of the total number of lattice
sites traversed can accordingly be obtained in Fourier–Laplace space from the
Montroll–Weiss equation6,

ˆ̃P(k, s)=
1− ψ̃(s)

s
1

1− ψ̃(s)φ̂(k)
(10)

where ψ̃(s) is the Laplace transform of the waiting time distribution and φ̂(k) is the
(discrete) Fourier transform of the jump length distribution. These are given by

ψ̃(s)=
1

1+τ0s
φ̂(k)=

1
1+k2L2

0

(11)

The Laplace inversion is readily performed, and yields

P̂(k, t)=e−
t
τ0
[1−φ(k)]

=e
−

t
τ0

k2L20
1+k2L20 (12)

There does not seem to be a closed-form expression for the Fourier inversion.
However, we may deduce several properties from the above expression. First, from
the characteristic function equation (12), we can easily obtain the variance via
differentiation as

〈x2
(t)〉= ∂2k P̂(k, t)

∣∣∣
k=0
=

2L2
0

τ0
t (13)

This corresponds to normal diffusion for all times, with a diffusion coefficient
D=L2

0/τ0. Second, for short times, t�τ0, we can expand equation (12) to lowest
order to find

P̂(k, t)'1−
k2L2

1+k2L2

t
τ0

As a result, in position space we obtain

P(x , t)'δ(x)
(
1−

t
τ0

)
+

t
τ0

1
2L0

e−
|x|
L0 (14)

For short times, the distribution of the displacement is thus given by an initial
δ-peak that evolves into an exponential distribution equivalent to the jump length
distribution. Note that the result for the variance (3) remains unchanged in the
short-time approximation. On the other hand, for long times, t�τ0, the
characteristic function equation (12) is exponentially small except for small
k.
√
τ0/t/L, corresponding to x&

√
t/τ0L. If x is not too large, we can

accordingly perform a saddle-point approximation around k=0 and find

P̂(k, t)'e−
t
τ0

k2L20 (15)

The displacement distribution is thus a Gaussian,

P(x , t)'
1√

4πL2
0

t
τ0

e
−

x2

4L20
t
τ0 (16)

in this limit, as would be expected for the diffusive behaviour (3). However, we
stress that this approximation breaks down at very large x&

√
t/τ0L, where the

exponential tails prevail. Nevertheless, the result for the variance (3) is valid exactly
for all times, demonstrating that normal diffusion does not necessarily imply a
Gaussian distribution.

Correlation functions of arbitrary order can also be obtained from the
characteristic function (12). We find for instance, for the four-point correlation
function,

C4
(t1, t2, t3, t4)=

4L0t1(t3+2t2+6τ0)
τ 2
0

(17)

To visualize the four-point correlation function, we restrict ourself to the case
where two times are identical and normalize also by the fourth moment,

C4
(t ,τ)=

〈1x2(t)1x2(t+τ)〉
〈1x4(t)〉

=1+
τ

3t+6τ0
(18)

Ergodicity breaking parameter. The ergodicity breaking parameter is defined
as28,31

EBP(t ,τ)=
〈x2(t ,τ)2〉−〈x2(t ,τ)〉2

〈x2(t ,τ)〉2
(19)
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where the time-averaged mean-square displacement x2 is

x2=
1

t−τ

∫ t−τ

0
dt ′(x(t ′+τ)−x(t ′))2 (20)

The time lag τ is smaller than the absolute measurement time t . Physically, the EBP
is the relative variance of the time-averaged MSD, which is a measure for the
randomness of the latter. For large enough observation times and normal

diffusion, the EBP tends to zero as the time-averaged MSD converges to the
ensemble MSD for every single trajectory.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon request.
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