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Breakdown of elasticity in amorphous solids
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What characterizes a solid is the way that it responds to
external stresses. Ordered solids, such as crystals, exhibit an
elastic regime followed by a plastic regime, both understood
microscopically in terms of lattice distortion and dislocations.
For amorphous solids the situation is instead less clear, and
the microscopic understanding of the response to deformation
and stress is a very active research topic. Several studies have
revealed that even in the elastic regime the response is very
jerky at low temperature, resembling very much the response
of disordered magnetic materials™®. Here we show that in a
very large class of amorphous solids this behaviour emerges
upon decreasing temperature, as a phase transition, where
standard elastic behaviour breaks down. At the transition
all nonlinear elastic moduli diverge and standard elasticity
theory no longer holds. Below the transition, the response to
deformation becomes history- and time-dependent.

Our work connects two different lines of research on amorphous
solids such as structural, colloidal and granular glasses. The first
focuses on their behaviour at low temperature. With the aim of
understanding the response of glasses to deformations, there have
been extensive numerical studies of stress versus strain curves ob-
tained by quenching model systems at zero temperature. One of the
main outcomes is that the increase of the stress is punctuated by
sudden drops related to avalanche-like rearrangements both before
and after the yielding point' . This behaviour makes the measure-
ments, and even the definition of elastic moduli fairly involved. In
a series of works, Procaccia et al. have given evidence that in some
models of glasses, such as Lennard-Jones mixtures (and variants),
nonlinear elastic moduli exhibit diverging fluctuations, and linear
elastic moduli differ depending on the way they are defined from
the stress—strain curve™®. Another independent research stream has
focused on gaining an understanding of the jamming and glass tran-
sitions of hard spheres both from real-space and mean-field theory
perspectives™'’. The exact solution obtained in the limit of infinite
dimensions revealed that by increasing the pressure a hard sphere
glass exhibits a transition within the solid phase, where multiple
arrangements emerge as different competing solid phases'"'*. This
is called the Gardner transition, in analogy with previous results in
disordered spin models'*'*. Recent simulations have confirmed that
in three dimensions these different arrangements indeed become
increasingly long-lived, possibly leading to ergodicity breaking".
These mean-field analyses complement and strengthen all the re-
markable results found in the past two decades on jammed hard
spheres glasses. The major outcome of these real-space studies
was the discovery that amorphous jammed solids are marginally
stable—that is, characterized by soft modes and critical behaviour,
and in consequence by properties which are very different from
those of usual crystalline solids'®*. In ref. 21, it was argued that
this is due to the way in which they are formed: unstable elementary
excitations progressively rarify during a crunch, and jamming takes

place exactly when no excitation is left, leaving the system solid
but at the verge of instability (that is, marginally stable). Within
mean-field theory, the results found at jamming are a consequence
of a more general marginal stability: the appearance of multiple
competing particle arrangements is accompanied by the emergence
of long-range power-law correlations and soft modes. These are
related to the Goldstone modes of the Gardner transition and are
present not just at jamming—that is, at infinite pressure—but in the
entire high-pressure regime beyond the critical Gardner point'**.
Here we show that also models of structural glasses exhibit this
transition when decreasing the temperature, and that this drastically
affects their elastic behaviour. In particular, we reveal that elastic
anomalies, such as the ones found in zero-temperature simulations,
are a signature of this phase transition. To show the existence and the
properties of the Gardner transition in structural glasses, we focus
on a system of soft elastic spheres, which has been studied recently
in several numerical simulations and shown to behave as canonical
glass formers™*°. The interaction potential between particles reads
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where r is the distance between particles, V, is the interaction
strength, D the interaction range and the 6 function is the usual
Heaviside step function. We choose this model since, in the limit
V, — 00, it maps on hard spheres with diameter D. This enables us
to make connections with previous results on jamming.

In this work we want to study the elastic properties of amorphous
solids created by thermal quenches and also by compression.
Theoretically, these solids are actually ultra-viscous liquids observed
on timescales on which flow is absent. From the energy landscape
perspective™, these are systems unable to escape from a given
metabasin within the experimental timescale. The large dimensional
limit (d — 00) is particularly useful to analyse these long-lived
amorphous metastable states. Because the lifetime of metastable
states diverges exponentially with d, one does not have to develop
a full dynamical treatment, but can instead resort to a generalized
thermodynamic framework able to capture the properties of
metastable states”?*. What is generically considered a weakness of
mean-field theory—the inability to describe activated dynamics in
the supercooled regime—here becomes an advantage. In the infinite
dimensional limit, metabasins become very long-lived below a well-
defined temperature Ty, corresponding to the mode coupling
transition (MCT). Although in three dimensions the increase of
the lifetime of metabasins is not as sharp below Tycr (MCT
becomes a crossover), in the experimentally relevant regime in
which we are interested, amorphous solids do become well-defined
metastable states. Indeed, for realistic quenches (0.1-100 Kmin™"'),
supercooled liquids fall out of equilibrium at a temperature T, well
below Tycr, and their properties do not change with time (except
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Figure 1| Energy versus temperature (in rescaled units, see
Supplementary Methods) for ¢ = ¢29/d = 8. EOS denotes the equilibrium
line obtained by the equation of state. The other lines correspond to
amorphous solids created by different cooling rates (slower to higher from
bottom to top). Lines become dashed when the Gardner transition takes
place. The change in the free-energy landscape at the Gardner transition is
shown pictorially.

for very large times where ageing sets in); hence, the generalized
thermodynamic framework”*® we use is particularly well adapted.

To solve the model (1) in the d — 00 limit, and to study the
properties of the metastable amorphous solids, we use the replica
method, whose order parameter is the mean square displacement
between couples of replicas (x* is the position of the particle i in
replica a):

Aab

d N
Sl — 5P @
ND* ‘3
Roughly speaking, this order parameter allows one to study the
statistical properties of the metabasins and probe their ruggedness:
a breaking of replica symmetry means that that different replicas are
trapped in different minima and, hence, that an ergodicity-breaking
transition has taken place within the solid phase. Technically, the
replica method intervenes because the metabasins in which the
system is trapped play a role similar to quenched disorder in spin
glasses: to obtain the average value of the elastic moduli, and their
fluctuations, we need to use the replica method to handle the average
over metabasins. This method has been developed and explained
in full detail in several recent works on hard spheres®'. Here
we directly present our main results and refer to Supplementary
Methods, in which the derivation and the generalization to compute
the elastic moduli is presented.

Henceforth we consider packing fractions such that Tycr(¢) >0
and focus on glass states formed by slow quenches below it (Tycr (¢)
rises from zero at a well-defined packing fraction ¢, which in
three dimensions should correspond to ¢ycr 22 0.58). For a given
cooling rate, the system follows the equilibrium line in the energy-
temperature plane until it falls out of equilibrium and becomes an
amorphous solid at T,. We have computed both the equilibrium
and the amorphous solid branches, as shown in Fig. 1 for a given
packing fraction. The main result is that generically, by decreasing
the temperature, amorphous solids undergo a Gardner transition at
a temperature T (¢). The lower the glass transition temperature T,
the more one has to cool to reach T (¢). By comparing the results
obtained for amorphous solids formed at the same T, at different
packing factions, we find that T;(¢) decreases when ¢ is increased,
as shown in Fig. 2 (for too small densities, when T, crosses Tycr, it
is simply not possible to create a solid). We conclude this analysis by
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Figure 2 | Evolution of the Gardner transition temperature (red line)
obtained by cooling amorphous solids at fixed ¢. All amorphous solids are
formed at the same ?g =0.12. The blue line denotes the MCT transition
temperature as a function of .

considering glasses formed by compression to derive a relationship
with studies on hard spheres and jamming. In this case, we find
first a direct and then an inverse Gardner transition, as shown in
Fig. 3. The results obtained for glasses formed at the same ¢, at
different temperatures show that, the higher the temperature, the
smaller is the extent of the Gardner phase, thus creating a dome in
the T-¢ plane. (At very large ¢, the glass state becomes unstable
again. This new Gardner transition is completely disconnected from
the jamming point.) This re-entrant behaviour is in agreement with
very recent studies on the spectrum of harmonic vibrations of elastic
sphere glasses™”.

In summary, we have shown that, by cooling, amorphous solids
undergo the same transition towards a marginal glass state as found
for hard spheres'”. The marginality of this new solid phase is related
to the presence of long-range correlations and soft modes'***. We
can now turn to our main concern, which is the change in the elastic
properties of the solid approaching the Gardner transition. For a
normal elastic solid, for example, a crystal, a small shear strain y
induces a change in free energy per unit volume equal to

]:el M 2
A
v 27 T

Hs
—y +... (3)

where V is the volume and wu, is the nth order elastic modulus:
w,=(do"")/(d"'y), where o is the stress (i, is the usual linear
shear modulus). This is also true for amorphous solids, but only
above the Gardner transition. Our explicit computation in the limit
of infinite dimensions shows that in this regime all elastic moduli
are well defined (up to fluctuations of the order 1/ «/7 ) and that
they depend on the glass state only through the value of T,—that
is, the speed of the quench used to form the glass—and of the
applied temperature and packing fraction. (We are focusing on
the NVT ensemble, but of course our results can be translated to
other cases—for example, the more experimentally relevant NPT
case.) The situation changes drastically approaching the Gardner
transition line, at which the fluctuations of all elastic moduli blow
up. Although averages remain featureless, the fluctuations from
one glass state to another, rescaled by their typical value 1/4/V,
diverge as:

V)2 ~

T 1
GuN V)~ ————— (4)

1
(T — Ty’ lp — g~

where the right and left expressions correspond to different
protocols to induce the transition (cooling and compression). This
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Figure 3 | Gardner critical packing fractions ¢ obtained by compressing
amorphous solids at fixed temperature. All amorphous solids are formed
at the same @z = 8. The location of the jamming point is denoted by ;.

increase leads to giant fluctuations at the Gardner transition.
Finite-size (mean-field) scaling implies that, at the transition,
(B11un/V)? ~ V¥371 For n =2, fluctuations are subleading—
hence the linear elastic shear modulus is regular and well defined:
Wy, 7L, + O(V~Y%). In contrast, all nonlinear moduli are not:
their fluctuations diverge as V"/>"! and completely overwhelm the
average, which remains finite but is not representative of the typical
behaviour. Note, moreover, that all odd moduli, which vanish by
symmetry in ordered solids, can be neglected only above T;. At
T, they also blow up and, instead of being of the order of 1/ JV
(and zero in average), they diverge as V"°~' and fluctuate. All
these results signal that standard elastic behaviour breaks down
at T;. Below T, even an infinitesimal deformation leads in the
thermodynamic limit to ageing and time-dependent shear moduli.
In this regime, elastic moduli depend on the history and on the
protocol used to measure them. Only strains whose amplitude scales
to zero with V do not lead to ageing and irreversible behaviour®.
The elastic moduli computed in this way, called quenched in ref. 8
and zero-field cooled in ref. 33, are a property of the metabasin
to which the system belongs. They are characterized by the same
divergent fluctuations found at T;. This is a consequence of the
marginal stability of glasses within the whole Gardner phase. We
derived our results in a specific realistic model in the limit of infinite
dimensions. However, our findings go beyond the specific d — 00
computation we have presented, and hold for generic interaction
potentials. Indeed, one can obtain them using a Landau theory,
as shown in the Supplementary Methods. Similar to the existence
of diverging magnetic responses at a ferromagnetic transition, the
breakdown of elastic behaviour and the divergence of nonlinear
elastic moduli are the generic signature of the Gardner transition.
Since our results are derived essentially using a Landau theory
approach, they can be easily extended mutatis mutandis to spin
glasses in a field and provide new ways to test for the existence of
the de Almeida-Thouless line.

Our results reveal that the jerky elastic behaviour exhibited by
amorphous solids at low temperature could be related to the exis-
tence of a phase transition within the glass phase. Our exact solution
in the limit of infinite dimensions characterizes the dependence of
this transition on the control parameters (T, ¢) and protocols (cool-
ing, compression), providing guidance for experimental tests both
in structural, colloidal, and possibly granular glasses. As has been
shown in refs 30,31, the Gardner transition can be induced not only
by decreasing the temperature or increasing the pressure, but also by
straining an amorphous solid. We expect that our results generalize
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to this case: standard elastic behaviour has to break down at the
finite value of the strain corresponding to the Gardner transition. To
substantiate our predictions, it would be interesting to extensively
study by experiments and by simulations whether standard elastic
behaviour breaks down at a well-defined temperature in the way
identified in this work. The simulations of model systems quenched
at zero temperature by Procaccia et al. show very promising results:
the linear elastic intra-state modulus is found to be well defined,
whereas f; has fluctuations of O(1) and p, shows diverging fluc-
tuations, as we found. On the theoretical side, it is important to go
beyond the Landau theory to obtain more quantitative predictions
of the value of the critical exponents controlling the divergence of
the elastic moduli*. Moreover, it is certainly worth exploring the
implications of our results on the statistics of avalanches induced
by strain, generalizing the ideas originally put forward in ref. 2,
and connect our results with studies on shear-transformation-zone
interactions’'.

All these factors open the way towards new research directions
aimed at revealing the true nature of glasses. As suggested by several
recent research results on jamming and amorphous plasticity,
glasses might not be just liquids that have ceased to flow, but an
entirely different new kind of solid'****.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author upon request.
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