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Statistical mechanics is founded on the assumption that
all accessible configurations of a system are equally likely.
This requires dynamics that explore all states over time,
known as ergodic dynamics. In isolated quantum systems,
however, the occurrence of ergodic behaviour has remained
an outstanding question1–4. Here, we demonstrate ergodic
dynamics in a small quantum system consisting of only three
superconducting qubits. The qubits undergo a sequence of
rotations and interactions and wemeasure the evolution of the
density matrix. Maps of the entanglement entropy show that
the full system can act like a reservoir for individual qubits,
increasing their entropy through entanglement. Surprisingly,
these maps bear a strong resemblance to the phase space
dynamics in the classical limit; classically, chaotic motion
coincides with higher entanglement entropy. We further
show that in regions of high entropy the full multi-qubit
system undergoes ergodic dynamics. Our work illustrates how
controllable quantum systems can investigate fundamental
questions in non-equilibrium thermodynamics.

Imagine air molecules in a room. They move around with all
possible velocities in all directions. Attaining the exact knowledge
of these trajectories is a daunting and an unrealistic task. Statistical
mechanics, however, claims that exact knowledge of individual
trajectories is not required and systems can be accurately described
using only a few parameters. What is the essential property of these
systems that allows for such a simple description?

Ergodic dynamics provide an explanation for this simplicity. If
the dynamics are ergodic, then the system will uniformly explore all
microscopic states over time, constrained only by conservation laws.
Ergodicity ensures that

〈O〉time=〈O〉states (1)

where O is any macroscopic observable and brackets denote
averaging. In the limit of many particles, macroscopic observables
such as pressure or density approach equilibrium and are
stationary—therefore, at any time, O(t) = 〈O〉time. These two
equations imply that macroscopic observables can be predicted by
uniformly averaging over all states, and this forms the foundation
for all thermodynamic calculations.

In classical systems, it is chaotic motion which drives the
system to ergodically explore the state space5. Quantum systems,
however, are governed by Schrodinger’s equation, which is linear
and consequently forbids chaotic motion6. This poses fundamental
questions regarding the applicability of statistical mechanics in

isolated quantum systems1–4. Do quantum systems exhibit ergodic
behaviour in the sense of equation (1)? Do quantum systems act
as their own bath to approach thermal equilibrium? Extensive
experimental efforts have been made to address these fundamental
questions7–13.

Here, we investigate ergodic dynamics by considering a simple
quantum model whose classical limit is chaotic14–18. This model
describes a collection of spin-1/2 particles whose collective motion
is equivalent to that of a single larger spin with total angular
momentum j governed by the Hamiltonian

H(t)=
π

2τ
Jy+

κ

2j
J 2z

N∑
n=1

δ(t−nτ) (2)

where Jy and Jz are angular momentum operators. The sum over
delta functions implies N applications of J 2z , each at integer time
steps. The angular momentum operators can be expressed in
terms of the constituent spin-1/2 Pauli operators, for example,
Jz= (h̄/2)

∑
i σ

(i)
z . Setting τ=1, the first term inH causes each spin

to rotate around the y-axis by an angleπ/2. The second term couples
every spin to every other spin with strength κ/2j. This can be seen
by expanding J 2z in terms of z operators, where terms such as σ (1)z σ

(2)
z

and all other combinations appear.
The classical dynamics, being simple to visualize and interpret,

can provide valuable intuition for studying the quantum limit.
The classical limit of this model occurs when j is very large and
quantization effects become negligible. In this limit, the system
behaves like a classical spinning top, with dynamics which are
known to be chaotic14–17. The parameter κ sets the chaoticity and
takes the dynamics from regular to chaotic as κ increases; at
intermediate values, the system exhibits a rich mixture of both
regular and chaotic motion.

Experimentally realizing this model requires a high degree of
control over both local terms and interactions in a multi-qubit
Hamiltonian. This led to the design of a three-qubit ring of planar
transmonswith tunable inter-qubit coupling (see Supplementary In-
formation)19–21. The rotations around the y-axis (Jy) are performed
using shaped microwave pulses that are resonant with the qubit
transition. The simultaneous and symmetric three-qubit interaction
(J 2z ) is turned on and off using a tunable coupling circuit controlled
by three separate square pulses. The qubit–qubit interaction energy
g and the duration of the interaction pulses T set κ through the
relation κ = 3gT/h̄. We measure the strength of the interaction
energy κ by determining the time it takes for an excitation to swap
between the qubits (see Supplementary Information).
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Figure 1 | Pulse sequence and the resulting quantum dynamics. a, Pulse sequence showing first the initial state of the three qubits (equation (4)) followed
by the unitary operations for a single time step (equation (3)). These operations are repeated N times before measurement. Single-qubit rotations are
generated using shaped microwave pulses in 20 ns; the three-qubit interaction is generated using a tunable coupling circuit controlled using square pulses
of length 5 ns for κ=0.5 and 25 ns for κ=2.5. b, The state of a single qubit is measured using state tomography and shown in a Bloch sphere. The initial
state is shown in red with subsequent states shown in blue for N= 1–20.

The periodic nature of H allows us to write down the unitary
evolution over one cycle as

U=e−i(κ/2jh̄)J
2
z e−i(π/2h̄)Jy (3)

shown schematically in Fig. 1a. We begin by initializing each qubit
in the state

|θ0,ϕ0〉=cos(θ0/2)|+σz〉+e−iϕ0 sin(θ0/2)|−σz〉 (4)

where θ0 and ϕ0 are angles describing the orientation of the single-
qubit states. This state is known as a spin coherent state and is the
most classical spin state in the sense of minimum uncertainty and
zero entanglement. After preparing the initial state, we rotate each
qubit around the y-axis by an angle π/2. Next, we allow all of the
qubits to interact with one another for a duration which sets the
value of κ . We repeat these two stepsN times and then tomographi-
cally reconstruct the resulting densitymatrix22. For details regarding
the pulse sequence, see Supplementary Information.

We visualize the evolution of the system by depicting the single-
qubit state as a vector inside of a Bloch sphere, shown in Fig. 1b. Each
Bloch vector is constructed by measuring the expectation values of
the x , y and z Pauli operators after evolving the system according to
equation (3). As the dynamics are symmetric under qubit exchange,
the qubits undergo nominally identical evolution and we plot the
average behaviour (see Supplementary Information). The chosen
initial state is shown in red, with the Bloch vector after subsequent
steps shown in blue. After each step, there are two qualitative
changes: a rotation and a change in the length. The orientation is
analogous to the orientation of the classical spin. The change in
length, however, describes entanglement among the qubits.

Entanglement can be characterized using the entanglement
entropy S,

S=−Trρsq log2(ρsq) (5)

where ρsq is the density matrix of a single qubit. Writing the trace as
a sum reproduces the familiar definition of entropy−

∑
pi log(pi),

where pi is the probability of being in the ith microstate. If the qubit
is in a pure state, then the single-qubit state is completely known
and the entropy is zero. However, if the qubits are entangled with
one another, then ρsq is a statistical mixture of states and the entropy
is non-zero.

In Fig. 2a, we show the entanglement entropy between a single
qubit and the rest of the qubits at several instances in time. The
entanglement entropy is measured by performing state tomography
on the individual qubits22 and then directly applying equation (5)
to the reconstructed density matrix. In each panel, we prepare
various initial states |θ0,ϕ0〉, evolve the system for N steps and plot
the entanglement entropy; different panels correspond to different
N . Initial states prepared close to the y-axis have low entropy
(red), which remains low as the system evolves. States prepared
farther away from the y-axis gain higher entropy (blue) given
sufficient time.We perform the same set of experiments for stronger
interaction, κ= 2.5, shown in Fig. 2b. At stronger interactions, the
entropy increases rapidly and regions of low entropy are no longer
isolated to near the y-axis.

In Fig. 2a,b, we see that the entropy fluctuates over time. In
small quantum systems, there are fluctuations or revivals that vanish
when the system size is taken to infinity (known as the thermody-
namic limit). For finite systems, averaging the entropy over time
is commonly used to estimate the equilibrium value approached
by larger systems. In Fig. 2c, we show the entanglement entropy
averaged over time (N ) for both values of interaction strength κ .
The corresponding classical dynamics are shown in Fig. 2d.

We find a striking resemblance between the average
entanglement in the quantum system and chaotic dynamics
in the classical limit. The regions of classical phase space where
the dynamics are chaotic correspond to high entropy (blue) in the
quantum system; regions that are classically regular correspond
to low entropy (red), including bifurcation at large κ . The results
shown in Fig. 2b have been predicted by recent theoretical
works23,24. The connection between chaos and entanglement has
been of theoretical interest for a considerable time25–27. However,
these studies focused on very large systems near the border of
quantum and classical physics28,29. Here, we show that the results
hold deep in the quantum limit. It is interesting to note that chaos
and entanglement are each exclusive to their respective classical
and quantum domains, and any connection is surprising. The
correspondence is even more unexpected given that our system is
so far from the classical limit6,30.

In Fig. 2b, the entanglement entropy in the blue regions
approaches 0.8, close to the maximum attainable value of 1.0 for a
single qubit. The value of 0.8 is very close to the value one would
obtain by uniformly averaging over all states, 0.73 (ref. 31). In
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Figure 2 | Entanglement entropy and classical chaos. a,b, The entanglement entropy (colour) of a single qubit (see equation (5)) averaged over qubits and
mapped over a 31× 61 grid of the initial state, for various time steps N and two values of interaction strength κ=0.5 (a) and κ=2.5 (b). The
entanglement entropy of a single qubit can range from 0 to 1. c, The entanglement entropy averaged over 20 steps for κ=0.5 and over 10 steps for κ=2.5;
for both experiments the maximum pulse sequence is≈500 ns. The left/right asymmetry is the result of experimental imperfections and is not present in
numerical simulations (see Supplementary Information). d, A stroboscopic map of the classical dynamics is computed numerically and shown for
comparison. The map is generated by randomly choosing 5,000 initial states, propagating each state forwards using the classical equations of motion, and
plotting the orientation of the state after each step as a point. We observe a clear connection between regions of chaotic behaviour (classical) and high
entanglement entropy (quantum).

equation (2), the Hamiltonian depends on time and, as a result,
energy is not conserved. Therefore, statistical mechanics would
predict the values of observables using an ensemble with maximum
entropy or, equivalently, an infinite temperature ensemble. The
observed density matrix approaching maximum entropy suggests
that even small quantum systems undergoing unitary dynamics can
appear to thermalize3,32,33.

In the Supplementary Information, we numerically compute the
evolution for larger systems and show that fluctuations decrease
with increasing system size, as expected for finite-size systems
approaching thermal equilibrium. Additionally, we compute the
behaviour at larger values of κ and show that all initial states
obtain near-maximal entropy, as opposed to the mixed phase space
shown in Fig. 2. This further supports the idea that what we
see in the experiment is the onset of thermalization in a small
quantum system.

The observed single-qubit entropy can originate from two
sources: entanglement with the other qubits and entanglement with
the environment (decoherence). In Fig. 3, we show that the contrast
between high- and low-entropy results from entanglement among
the qubits, confirming our assumption that the system is well
isolated. To distinguish these two effects, we measure the three-
qubit density matrix. Using these measurements, we compute the
expectation values of all combinations of Pauli operators. The first
nine columns in Fig. 3 contain operators on only a single qubit,
and thus provide information about local properties. The remaining
columns contain products of two- and three-qubit operators, and
describe correlations between the qubits.

In the top panel, we consider an initial state whose entropy has
increased by the least amount (most red), shown inset. After ten
time steps, we see that each qubit is oriented along the y-axis, as
indicated by the first three peaks. The qubits pointing along the
same direction lead to classical correlations, as indicated by the
remaining peaks among the two- and three-qubit correlations. In
the lower panel, we consider an initial state whose entropy has
increased by the largest amount (most blue). In addition to the
qubit orientations and classical correlations, we also find many
significant peaks among the multi-qubit correlations. These non-
classical correlations are clear signatures of entanglement among
the qubits. Additionally, we find that the three-qubit state purity, a
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Figure 3 | Multi-qubit entanglement.We represent the three-qubit density
matrix for two initial states shown inset, one where the entropy was low
(top) and one where the entropy was high (bottom). In both cases, the
initial state was evolved for N= 10 time steps and κ=0.5. Each bar
indicates the expectation value of one possible combination of Pauli
operators on the three qubits, the corresponding operator is shown using
coloured squares. The increase in multi-qubit correlations in the lower
panel signifies that the contrast between high and low entropy is the result
of entanglement.

measure of decoherence, is equal for both of these states, showing
that the contrast between high and low entropy is entirely the result
of inter-qubit entanglement (see Supplementary Information). This
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Figure 4 | Ergodic dynamics. The overlap of the time-averaged three-qubit
density matrix with a microcanonical ensemble (see equation (6)) versus
number of time steps N, for κ=2.5. We choose three di�erent initial states,
shown inset. A value of 1.0 indicates that the dynamics are fully ergodic.

finding is in contrast to previous studies which found that, for initial
states with high entropy, the system displayed a hypersensitivity to
perturbations, such as environmental decoherence17.

The advantage of studying statistical mechanics in a small
quantum system is that we can directly check for ergodic motion
in the three-qubit dynamics. Using measurements of the full
multi-qubit density matrix, we investigate the connection between
ergodic dynamics in the full system and entropy production in
subsystems. Note that the full system is ideally in a pure state
whose entropy is zero and stays zero as the system evolves—this
is in stark contrast to subsystems which gain entropy over time
through entanglement. While the full system cannot thermalize in
the sense of reaching maximum entropy, it can undergo ergodic
motion (time averages being equal to state-space averages). In
statistical mechanics, a uniform average over states is given by the
microcanonical ensemble. In Fig. 4, we plot the overlap of the time-
averaged density matrix ρ̄ with a microcanonical ensemble ρmc,
given by

Overlap=Tr
√
√
ρmcρ̄
√
ρmc (6)

Here, ρmc is an 8-by-8 density matrix which attributes equal
probability to all of the accessible states. The overlap of these two
distributions approaching 1.0 would imply that time averages are
equivalent to state-space averages for all measurable quantities.

We choose three different initial states: two are chosen from
regions where subsystems had high entropy (blue and green) and
one from a region that had low entropy (red). After just three
steps, initial states where subsystems had high entropy approach
a microcanonical ensemble to within 94%. Numerical simulations
indicate that ideally the overlap plateaus at 98%—deviations from
this ideal behaviour are primarily due to decoherence. We find that
initial states where subsystems had low entropy fail to approach
a microcanonical ensemble. The strong overlap between time
averages and state-space averages demonstrates that the three-
qubit dynamics are ergodic and further supports the statistical
mechanics framework for understanding the entropy production in
single qubits.

Previous experiments have investigated the signatures of classical
chaos in quantum systems17,34. Here, using our ability to generate
arbitrary product states, we establish a clear signature across the
entire phase space. Our uniquemeasurement capabilities allow us to
go beyond previous works by directly connecting our observations
to entanglement among the qubits, as opposed to environmental
decoherence. Together, these tools allow us to demonstrate ergodic
dynamics and show that superconducting qubits can be used to
study fundamental concepts in statistical mechanics.

It is interesting to know the generality of our results, as they
could provide a generic framework for studying quantumdynamics.
Numerical results suggest that ergodic behaviour breaks down only
when the evolution is highly constrained by conservation laws; such
systems are referred to as integrable and represent models that
are fine tuned and consequently rare3. Our choice of Hamiltonian
was motivated by the lack of conserved quantities, where only the
total spin is conserved—not even energy is conserved. We believe
that our simple and clear descriptions of thermalization merely lay
the foundation upon which many fundamental questions in non-
equilibrium thermodynamics can be experimentally investigated.

Data availability. The data that support the plots within this paper
and other findings of this study are available from the corresponding
author upon request.
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