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General relativity and cosmic structure formation
Julian Adamek1*, David Daverio1*, Ruth Durrer1 and Martin Kunz1,2

Numerical simulations are a versatile tool for providing
insight into the complicated process of structure formation
in cosmology1. This process is mainly governed by gravity,
which is the dominant force on large scales. At present, a
century after the formulation of general relativity2, numerical
codes for structure formation still employ Newton’s law of
gravitation. This approximation relies on the two assumptions
that gravitational fields are weak and that they originate
from non-relativistic matter. Whereas the former seems well
justified on cosmological scales, the latter imposes restrictions
on the nature of the ‘dark’ components of the Universe
(dark matter and dark energy), which are, however, poorly
understood. Here we present the first simulations of cosmic
structure formation using equations consistently derived from
general relativity. We study in detail the small relativistic
e�ects for a standard lambda cold dark matter cosmology that
cannot be obtained within a purely Newtonian framework. Our
particle-meshN-bodycodecomputesall sixdegreesof freedom
of the metric and consistently solves the geodesic equation
for particles, taking into account the relativistic potentials and
the frame-dragging force. This conceptually clean approach is
very general and can be applied to various settings where the
Newtonian approximation fails or becomes inaccurate, ranging
from simulations of models with dynamical dark energy3 or
warm/hotdarkmatter4 to corecollapsesupernovaexplosions5.

The applicability of Newton’s law of gravitation in the context
of cosmic structure formation has been discussed extensively in
the recent literature6–8. In particular, it is now well understood that
this simplified description is fairly accurate when applied within
standard lambda cold dark matter (3CDM) cosmology where
perturbations come entirely from non-relativistic matter. However,
the situation is not satisfactory for two reasons. First, the quality
of observational data is rapidly increasing, and upcoming galaxy
surveys will eventually reach a precision where a naive treatment of
the effects of spacetime geometry becomes insufficient9,10. Second,
the true nature of darkmatter and dark energy is not yet established.
To study models beyond 3CDM, some of which may feature
relativistic sources of stress-energy, employing the Newtonian
approximation is not always justified. A number of numerical
codes have been developed for particular models11–14, yet a general
framework would be desirable. Furthermore, Newtonian gravity is
acausal and not sensitive to the presence of a cosmological horizon.
Even if a judicious interpretation of the output of Newtonian
simulations can cure this problem at the linear level, it comes back
when one goes beyond linear perturbation theory, and it would be
preferable to use the correct physics from the outset.

Moving from the absolute space and time of the Newtonian
picture towards a general relativistic view where geometry is
dynamical poses a significant conceptual challenge. Recent progress
is owed to a suitable formulation of the relativistic setting in
terms of a weak-field expansion which is well adapted for (but

not restricted to) cosmological applications7,15,16. Based on these
ideas we have developed a numerical code, gevolution, which uses
the LATfield2 library17 and is designed to perform cosmological
N -body simulations fully in the context of general relativity,
evolving all six metric degrees of freedom. In brief, our approach
can be summarized as follows.

We choose a suitable ansatz for the metric which is split into
background and perturbations.Wework in Poisson gaugewhere the
perturbed Friedmann–Lemaître–Robertson–Walker metric is

ds2=a2(τ )[−(1+2Ψ )dτ 2
−2Bi dx i dτ

+(1−2Φ)δij dx i dx j
+hij dx i dx j

] (1)

where a denotes the scale factor of the background, x i are comoving
coordinates on the spacelike hypersurfaces, and τ is conformal time.
Φ and Ψ are the Bardeen potentials that describe the scalar metric
perturbations; Bi (also denoted as B) is transverse and is responsible
for frame dragging; hij is transverse and traceless, it contains the two
spin-2 degrees of freedom of gravitational waves.

We also assume that the perturbations of the metric, but not
necessarily their derivatives, remain small on the scales of interest.
This is a valid approximation for cosmological scales even when
perturbations in the stress-energy tensor are large.

Einstein’s equations are then expanded in terms of the metric
perturbations, but without a perturbative treatment of the stress-
energy tensor. We include all terms linear in metric perturbations
and go to quadratic order in terms which have two spatial
derivatives acting on Φ , Ψ . This weak-field expansion contains
all six components of the metric correctly at leading order. To
determine the evolution of the metric, we numerically solve the ‘00’
and the traceless part of the ‘ij’ Einstein equations:

(1+4Φ)1Φ−3HΦ ′−3H2Ψ +
3
2
(∇Φ)2=−4πGa2δT 0

0 (2)(
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1
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i ) (3)

Equation (2) is the generalization of the Newtonian Poisson
equation (1Φ = 4πGa2δρ) and contains additional relativistic
terms. Here 1Φ and δT 0

0 =−δρ=T 0
0 − T̄ 0

0 are not required to be
small—in fact, they becomemuch larger than the background value
T̄ 0

0 inside dense regions. Equation (3) can be used to evolve all the
non-Newtonian degrees of freedom of the metric: Φ−Ψ , the two
spin-1 degrees of freedom, B, and the two spin-2 helicities, hij. To
do this, we decompose the equation into scalar, vector and tensor
parts in Fourier space.

The metric is then used to solve the equations of motion
for matter (and possibly other degrees of freedom); collisionless
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Figure 1 | Spin-1 and spin-2 metric perturbations. Visualization of a simulation volume of (512 Mpc/h)3 at redshift z=0. Dark matter halos are rendered as
orange blobs scaled to the virial radius. a, Illustration of the spin-2 perturbation hij by applying it as a�ne transformation to spheroids of fixed radius; the
shape and size of the resulting ellipsoids therefore indicates, respectively, the polarization and amplitude of the tensor perturbation. Note how the signal is
dominated by long-wavelength perturbations that are significantly correlated with the matter distribution. b, Stream plot of the spin-1 perturbation B,
indicating how ‘spacetime is dragged around’ by vortical matter flows. (The Supplementary Material contains movies that also show the time evolution of
the simulation.)

particles propagate along geodesics in the perturbed geometry. This
determines the evolution of the stress-energy tensor.

As a first application we choose standard 3CDM cosmology.
We expect only small effects in this case, but we can use
these simulations to gain confidence in our new approach. We
generate18 two halo catalogues containing ∼500,000 halos each,
one using our relativistic approach and one with the traditional
Newtonian approach as reference, starting from identical linear
initial conditions. A Kolmogorov–Smirnov test shows no significant
disagreement in the distributions of some 25 different halo
properties such as mass, spin or shape parameters.

The largest non-Newtonian effect is frame dragging, which is
associated with the spin-1 perturbation B. This perturbation is
sourced by the curl part of the momentum density found, for
example, in rotating massive objects. As long as perturbations are
small this is a second-order effect which has been studied using
perturbation theory19. The power spectrum for B has also been
computed in the non-perturbative regime of structure formation
using a post-Newtonian framework20 which is expected to give good
agreement with our approach as long as one considers 3CDM
(ref. 16). These results are useful benchmarks for our code, but we
now go beyond: our simulations track the full three-dimensional
realization of B (see Fig. 1). We can therefore measure the actual
frame-dragging force on individual particles.

Whereas the typical gravitational acceleration on Mpc scales
is of the order of 10−9 cm s−2, frame dragging contributes only at
the level of 10−14 cm s−2 (both numbers are mass-weighted r.m.s.
values from our simulations at redshift zero), and the highest
value we measure is some 10−12 cm s−2. Thus, for objects moving at
1,000 km s−1 (a typical peculiar velocity at those scales) the1v due
to frame dragging is no more than 1 km s−1. It should be noted that
these numbers are scale dependent, as the acceleration is larger on
smaller scales.

We compare our simulation results also with predictions21,22 from
second-order perturbation theory for the power spectra of hij, of
B and of Φ−Ψ . The latter requires regularization in the infrared,
which is implemented by the finite volume of the simulation.

To fully capture the amplitude of the non-Newtonian terms, it is
important that the scale of matter–radiation equality is represented
in the simulation volume. On the other hand, these terms are
generated by nonlinearities and are therefore amplified at small
scales. To obtain our results we had to cover at least three orders of
magnitude in scale. Our largest simulation used a lattice with 4,0963
points, corresponding to 6.7×1010 particles as we always start with
one particle per grid point. This simulation used 16384 CPUs on
the Cray XC30 supercomputer Piz Daint ; its 1088 time steps were
completed in about 7 h, therefore totalling about 115000CPUhours.

Figure 2 shows the numerical power spectra at three redshifts.
For these spectra we used eight simulations with lattices of 2,0483
points and two different box sizes, all starting at redshift z = 100.
Four simulations had a box size of (2,048Mpc/h)3, the other four
were (512Mpc/h)3. In the regime where it can be trusted we find
excellent agreement with second-order perturbation theory, which
demonstrates that our code produces valid results. At late times and
on small scales, perturbation theory breaks down. Nonlinearities
enhance the frame dragging by more than an order of magnitude
at redshifts z = 1 and z = 0 and on scales k& 1h/Mpc. In this
regime its power spectrum is only a factor 10−4 times smaller
than the one of the Newtonian potential. This means that frame
dragging is potentially an order 1% effect. Tensor perturbations
on the other hand, even though they are enhanced by more than
three orders of magnitude, remain a feeble contribution. Of course
these power spectra are not directly observable: when comparing
calculationswith observations a projection onto the light cone has to
be performed. This has been studied within perturbation theory23,
and one could implement this procedure also in our N -body code,
for example, by ray-tracing photons through the simulation box.

It should finally be noted that our framework jointly solves for
background and perturbations in a self-consistent way. Therefore,
we confirm that clustering has only a small effect on the expansion
rate of the Universe. The non-Newtonian effects which we have
quantified in the nonlinear regime of structure formation remain
small within a 3CDM Universe, but they may nevertheless be
measurable in the future. The vorticity, which is related to frame
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Figure 2 | Power spectra. Power spectra of the gravitational potentialΦ (top, violet), the frame-dragging potential B (second from top, blue), the di�erence
between the relativistic potentialsΦ−Ψ (third from top, red) and the tensor perturbation hij (bottom, green) at redshifts z= 10, 1, 0. The black lines
(dashed, dot-dashed, dot-dot-dashed, and dotted) indicate the corresponding results from second-order perturbation theory. As expected, the numerical
results deviate from these perturbative extrapolations at low redshift and small scales. All perturbation variables are significantly enhanced on scales
k& 1h/Mpc at redshift z= 1 and below. Error bars indicate the random fluctuations from di�erent realizations.

dragging, is substantial on small scales and remains at the per cent
level relative to the gradient velocity field even on large scales. This
can lead to observable corrections in redshift–space distortions. A
detailed analysis of this possibility is still missing.

For the first time, general relativity has been implemented as
the theory of gravity in a cosmological N -body code, making it
possible to feed these effects back into the dynamics. Our numerical
framework will be particularly useful in scenarios where relativistic
sources are present, such as models of dynamical dark energy,
topological defects, or with relativistic particles such as neutrinos
or warm dark matter. Such scenarios are expected to exhibit larger
relativistic effects. Contrary to Newtonian schemes, we are also able
to solve the full geodesic equation for arbitrary velocities, allowing
for a realistic propagation of radiation or high-velocity particles.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
A weak-field expansion is useful in situations where the metric perturbation
variablesΦ , Ψ , Bi, hij defined in equation (1) are small, as is the case on
cosmological scales. To get a tractable set of equations, we retain all terms which
are linear in metric perturbations, but of the quadratic terms we keep only the most
relevant ones. These are built from the scalar perturbationsΦ and Ψ only, and
contain the highest possible number of spatial derivatives (two in this case, as all
the partial differential equations are second order). This is enough to ensure that all
six metric degrees of freedom are treated correctly at leading order, even in cases
where some of them are strongly suppressed.

The implementation in gevolution adopts a particle-mesh scheme where the
metric field is represented on a regular cubic lattice whereas matter takes the form
of an N -body ensemble of particles that samples the six-dimensional phase space.
The stress-energy tensor on the lattice is obtained by a particle-to-mesh projection
and is used in Einstein’s equations to solve for the metric perturbations. Finally, the
particles are evolved by interpolating the metric to the particle positions and
integrating the geodesic equation. gevolution is built on top of the LATfield2 C++
framework17. LATfield2 distributes the fields and the particles over a
two-dimensional process grid (using MPI). It also provides the Fast Fourier
Transform which gevolution needs for solving equations (2) and (3).

Einstein’s equations.We determine the metric perturbations using the time–time
as well as the traceless space–space part of Einstein’s equations given in
equations (2) and (3). The remaining four equations are redundant, but we can use
them as consistency check. The stress-energy tensor is constructed in the perturbed
geometry and may hence also contain some terms which are linear in the metric
perturbations—these terms have to be taken into account to maintain consistency.
For a3CDM cosmology, such as the one studied here, the stress-energy tensor is
obtained numerically by appropriate particle-to-mesh projections which are
‘dressed’ by these geometric corrections.

We then solve for the metric variables by treating the quadratic terms in
equations (2) and (3) as small perturbations. To this end, we simply estimate their
value using the solutions taken from the previous time step and move them to the
right-hand side. As the equations are then approximated as linear in the metric
perturbations, we use Fourier methods16 to obtain the new solutions. This is
convenient in particular as the gauge conditions can easily be implemented in
Fourier space, where they reduce to local projection operations. One can check that
the new solutions are stable by reinserting them into the quadratic terms and
iterating the procedure.

Particle trajectories. As dark matter is assumed to be collisionless, the particles
move along geodesics. For non-relativistic velocities v=dx/dτ , the geodesic
equation reads

v′+Hv+∇Ψ −HB−B′+v×(∇×B)=0 (4)

where the B-dependent terms account for frame dragging. The integration of this
equation can be simplified by writing v= ṽ+B, which transforms equation (4) to

ṽ′+Hṽ+∇Ψ + ṽ i
∇Bi=0 (5)

This new equation actually describes the acceleration as seen in a Gaussian
orthonormal coordinate frame. Frame dragging, characterized by the last term, has

to compete with the ‘Newtonian’ force ∇Ψ . We measure both forces individually in
our simulations.

Supplementary Fig. 1 shows the mass-weighted r.m.s. value of the frame
dragging acceleration (ṽ ·∂iB) for simulations with different spatial resolutions. The
simulation volume was (512Mpc/h)3 in all cases, but we used lattice sizes from
5123 to 40963 points, reaching a best resolution of 125 kpc/h. The r.m.s.
acceleration depends on the scale probed and therefore also on resolution—the
frame-dragging acceleration is larger on smaller scales, but the main contribution
comes from large scales. Supplementary Fig. 2 shows a more detailed stream plot of
the spin-1 perturbation, revealing its long-range correlation and its correlation
with the distribution of matter. At our best resolution we remain slightly above
galactic scales. At smaller scales we expect baryonic effects to become important.

Power spectra. In Fig. 2 we show the power spectra of the metric perturbations
which are defined by

4πk3〈Ψ (k,z)Ψ (k′,z)〉=(2π)3δ(3)(k+k′)PΨ (k,z) (6)

4πk3〈Bi(k,z)Bj(k′,z)〉=(2π)3δ(3)(k+k′)PijPB(k,z) (7)

4πk3〈hij(k,z)hlm(k′,z)〉=(2π)3δ(3)(k+k′)MijlmPh(k,z) (8)

Here Pij=δij−kikj/k2 is the transverse projector and the spin-2 projection operator
is given byMijlm=PilPjm+PimPjl−PijPlm. These dimensionless power spectra
measure the amplitude square of the metric perturbations at scale k per logk
interval. To suppress finite-volume and resolution effects we measure only scales
which are at least five times smaller than the box size and have a wavenumber
which is at least five times smaller than the Nyquist frequency.

The second-order power spectra ofΦ−Ψ and of B decay as∼k−3.7 on small
scales, whereas the tensor spectrum decays as∼k−7.3. Nonlinear evolution
considerably flattens all the spectra around k∼1h/Mpc to slopes between
−2 and−3.

Initial conditions. Initial data is generated using a linear input power spectrum at
initial redshift (we start at z=100) which can be obtained by running a Boltzmann
code24,25 for the model. We use CLASS with the default cosmological parameters
which describe a3CDMmodel (Ωm=Ωc+Ωb=0.312, our code at present has no
special treatment for baryonic matter). The initial displacement of the particles is
also computed at linear order, taking into account our choice of gauge15.

Code availability. The gevolution code is available on a public Git repository:
https://github.com/gevolution-code/gevolution-1.0.git. The required extension of
the LATfield2 library is developed independently and is available on the repository:
https://github.com/daverio/LATfield2.git.
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