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Fracture mechanics determine the lengths of
interface ruptures that mediate frictional motion
Elsa Bayart, Ilya Svetlizky and Jay Fineberg*
The transition from static to sliding friction is mediated by
rapid interfacial ruptures1–5 propagating through the solid
contacts forming a frictional interface6. While propagating,
these ruptures correspond to true shear cracks7. Frictional
sliding is initiated only when a rupture traverses the entire
interface1; however, arrested ruptures can occur at applied
shears far below the transition to frictional motion8–17. Here
we show, by measuring the real contact area and strain
fields near rough frictional interfaces, that fracture mechanics
quantitatively describe rupture arrest and therefore determine
the onset of overall frictional sliding.Ourmeasurements reveal
both the local dissipationand theglobal elastic energy released
by the rupture. The balance of these quantities entirely deter-
mines rupture lengths, whether finite or system-wide. These
results confirm a fracture-mechanics-based paradigm7,15,18 for
describing frictional motion and shed light on the selection18–21

of an earthquake’s magnitude.
A frictional interface is formed by the interlocked solid asperities

of rough surfaces in contact, whose area is much smaller than
the nominal one6. Failure of the asperities via rupture fronts is
the fundamental mechanism responsible for the transition from
static to sliding frictional motion1,4. Ruptures can propagate well
before the onset of global sliding, and then arrest before spanning
the entire interface. Rupture arrest can, for example, result from
inhomogeneous stress distributions along the interface8–10. As no
overall motion of the contacting bodies is induced by such events,
they are often called precursors to sliding motion. Arrested events
are analogous to earthquakes, which are dynamic ruptures of finite
extent within pre-existing natural faults; the boundary between
contacting tectonic plates22,23. Predicting the length of precursory
ruptures is, therefore, closely related to the question of what
determines the size of an earthquake18–21.

Since their initial discovery8, a rich variety of models has been
dedicated to the dynamics of precursory ruptures in frictional
systems. Aimed at reproducing nucleation and arrest, these include
minimalistic one-dimensional (1D) models9, discrete contacts
descriptions11,13,16, rate-and-state friction laws17 and fracture
mechanics12. These models are able to reproduce the existence
of arrested ruptures but they provide no explicit predictions of
where and how arrest occurs in real systems. Recent theoretical
work15 explained the available data8 by explicitly demonstrating
how fracture mechanics can be used to predict rupture arrest.
Here we describe new experiments that confirm these theoretical
predictions and show that this general framework indeed enables
us to understand the selection of rupture length for any system
geometries and loading conditions.

Recent experiments have shown that the strain fields driving
ruptures along frictional interfaces are described7 by the linear
elastic fracture mechanics (LEFM; ref. 24). In this context, a

precursory event is an arrested crack12,15,18. In fracture mechanics,
crack arrest is defined by the Griffith criterion24, a crack arrests
when the amount of energy flowing to its tip becomes smaller
than the fracture energy Γ , the dissipated energy per unit crack
advance. Following the theoretical approach outlined in earlier
studies15,18 wewill experimentally verify that this criterion is fulfilled
by spontaneously arrested frictional ruptures. These results provide
new insights into the predictability of both frictional processes and
earthquake dynamics.

We examine the frictional sliding of two poly(methyl-
methacrylate) (PMMA) blocks whose contact interface is flat
to within a few µm.We define x ,y and z as, respectively, the rupture
propagation, normal loading and sample thickness directions. We
use two different sample geometries (Fig. 1a). The asymmetric
geometry is formed by blocks of different thicknesses (6mm top
block, 30mm bottom block) and dimensions with a 3 µm r.m.s.
surface roughness along the interface. The symmetric geometry
is made of blocks having the same dimensions whose interface
is formed by two optically flat surfaces. PMMA has a strain-
rate-dependent Young’s modulus 3 < E < 5.6GPa and Poisson
ratio v= 1/3. The Rayleigh wave speeds are cR= 1,237± 10m s−1
(plane stress) and cR= 1,255± 10m s−1 (plane strain) (Methods).
The blocks are pressed together with an externally imposed
normal force FN, ranging from 1,500–7,000N. After applying
FN, shear forces FS are applied either at a single point or more
uniformly via a sliding stage (Fig. 1a), giving rise to a variety
of inhomogeneous distributions of normal and shear stresses
along the interface (see examples in Fig. 1b). Throughout each
experiment, continuous parallel measurements of the 2D strain
tensor εij(t) are performed at 15 to 18 locations along and 3.5mm
above the interface at a rate of 106 samples per second (Fig. 1a).
From the strain measurements we obtain stresses, while taking
into account material viscoelasticity (Methods). At the same time,
we measured the real contact area A(x , t) at 1,280×8 (x×y)
spatial locations along the interface at 580,000 frames per second
by an optical method based on total internal reflection1,4,7. Under
these stress conditions, we observe a succession of arrested
ruptures of increasing length (Fig. 1c), well before FS reaches the
threshold for overall stick–slip motion of the blocks (Fig. 1d).
The transition to the overall motion of the contacting blocks
happens only when these ruptures span the entire interface
(event VI).

The variations of the stresses at the tip of each propagating
rupture are quantitatively described by the singular fields predicted
by LEFM for shear (mode II) cracks7 (Fig. 2a). The singular term of
the stress field has the form24:

1σ ij(r ,θ)=
KII(v)
√
2πr

6II
ij (θ ,v) (1)
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Figure 1 | Experimental set-up and the definition of spontaneously arrested interfacial ruptures. a, Asymmetric (top) and symmetric (bottom) system
geometries with respective thicknesses of top and bottom blocks of 6mm and 30mm (asymmetric) and 6mm (symmetric). Shear forces, FS, are applied
homogeneously through a rigid stage (top) or at a single point on the trailing edge of the block (bottom). An immobile stopper that locally fixes the
displacement of the top block was optionally used (dashed pin in figure). An array of between 15 to 18 strain gauge rosettes measures the three
components of the 2D-strain tensor 3.5mm above the interface (Methods). b, Examples of normal stress, σ0

yy , and shear stress, σ0
xy , distributions along the

interface before a sliding (system-wide) event are represented, each corresponding to a di�erent loading configuration: homogeneous loading with a
stopper for the asymmetric set-up (FN=4,200N) (green circle), single-point loading both without (FN=4,500N) (blue square) and with a stopper
(FN=3,500N) (red diamond) for the symmetric set-up. c, Spatio-temporal evolution of the contact area A(x, t) for successive events I–VI in a typical
experiment (blue curve in b). The measurements are normalized by the contact area at the initial time A0=A(x,0) immediately before each event. Time
slices of 0.4ms duration are presented for each event. The presented ruptures propagate at velocities 0.80<v<0.95cR. d, The increase in applied shear
force FS in time for the experiment described in c. The arrows denote the precursory events I–V together with the system-wide event VI.

in polar coordinates with respect to the crack tip, where 6II
ij (θ ,v) is

a known universal angular function and KII is the stress intensity
factor. 1σ ij expresses the stress changes25 between the initially
applied and residual stresses along the frictional crack faces. In the
framework of LEFM no generality is lost by adding constant values,
σ 0
xx ,σ 0

yy and σ res
xy (Fig. 2a) to equation (1) (Methods). For a known

rupture velocity v, the amplitude of the singular term—that is, the
stress intensity factor KII—is related to the energy release rate G,
defined as the flux of elastic energy per unit extension of a crack’s
tip, by:

G=
α

E
fII(v)K 2

II(l ,v)−→v→0
Gstat(l) (2)

where fII(v) is a universal function, whose value is nearly unity
for low rupture velocities v. The coefficient is α= 1 for the plane

stress conditions used in the symmetric system,whereasα=(1−v2)

for the plane strain conditions used in the asymmetric system7.
Following equation (1), fitting the three stress components (see, for
example, Fig. 2a) provides a dynamic measurement7 of KII.

During rupture propagation, G=Γ . Using the value of KII in
equation (2), we can therefore calculate the fracture energy Γ ,
which has been shown to be roughly independent of velocity7. As
Fig. 2b shows, we find that Γ depends linearly on the mean normal
stress, 〈σyy〉. If we assume that the real contact area, A, entirely
determinesΓ , this result is in accordance with both the Bowden and
Tabor picture6 (whereA∝FN) and the suggestion7 that Γ effectively
measures the number of contacts that have to be broken in order for
a crack to propagate.

Can a frictional rupture arrest be described by the fracture-
mechanics-based criterion for crack arrest? If so, according to
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Figure 2 | Determination of fracture energy, pre-stress and residual stress. a, The fracture energy is determined by fitting the measured dynamic stress to
the LEFM predictions of equation (1). A typical shear stress variation σxy(t) for a rupture propagating at velocity v=0.04cR for a normal force of
FN=4,500N at a given location along the interface (x=65.7mm) is shown in red. t=0 corresponds to the time at which the rupture front passes the
measurement point. The corresponding LEFM prediction for1σxy(t) is plotted in black. Blue lines denote the pre-stress, σ0

xy and the residual stress σ res
xy

(see text). The fracture energy Γ = 1 Jm−2 is chosen by the best fit of the three components of the stress field7. b, Fracture energy Γ as a function of the
mean normal stress 〈σyy〉 as determined by fitting the stress field for di�erent experiments as in a. Error bars reflect the uncertainties in the determination
of the best fit of the three stress field components. c,d, Pre-stress σ0

xy(x) (c) and residual shear stress σ res
xy (x) (d) along the interface for the six events (I–VI)

presented in Fig. 1. Note that although the residual stress beyond the arrest location of each precursor is not defined, all measured values are in excellent
agreement with the values of the system-wide event VI.

equation (2), on rupture arrest, G→Gstat(l)= α(KII
2(l ,v=0)/E)

and arrest will occur24 when Gstat(l) ≤ Γ . In general,
KII(l ,v=0)≡K stat

II (l), can be explicitly calculated24 providing
Gstat(l). For our sample geometry15,26 (Methods):

K stat
II (l)=

2
√
πl

∫ l

0

1τ(s)F(s/l)√
1−(s/l)2

ds (3)

where F(s/l)= 1+ 0.3(1− (s/l)5/4) and the stress drop for each
event is defined as 1τ(x)=σ 0

xy(x)−σ res
xy (x); the stress drop from

the initial shear stress σ 0
xy(x) to the residual stress σ res

xy at each
point (Fig. 2a).

To predict the arrest location using equation (3), we need to
measure both σ 0

xy(x) and σ res
xy (x). Figure 2c,d demonstrates that

both quantities vary significantly in space. By definition, σ res
xy (x)

is not defined beyond the rupture arrest location. Except very
near x=0, where applied torques produce measurable effects27, we
find that, within a given experiment, σ res

xy (x) is invariant from one
event to another (Fig. 2d). After accounting for the edge effects
(Methods), we therefore use σ res

xy (x) from the first system-wide
event, as characteristic of the interface. We can nowmeasure1τ(x)
for each event at each point x (Fig. 3a). As stresses are measured
slightly above the interface, we improve the accuracy of 1τ(x) at
the interface by accounting for stress gradients (Methods).

In Fig. 3a we also present the computed value of K stat
II (l) (see

equation (3)) in successive events for the experiment described in
Fig. 1. Predicted arrest locations, `predicted, for each event are the loca-
tions where Gstat=Γ , where Γ is determined by 〈σyy〉, the averaged
value of σyy in the section of the interface where ruptures arrest. In

Fig. 3b we compare `predicted with themeasured arrest length, `measured,
obtained from the contact area measurements. `predicted agrees well
with `measured. The same procedure is applied for 11 other experi-
ments, each includes from 4 to 9 precursory events. We performed
each experiment under different loading conditions for a wide range
of Γ (Fig. 4). It is clear that all of the predicted arrest lengths are in
excellent agreement with the measured lengths. The variety of stress
distributions and values of Γ that are used emphasize the generality
of this result. Note that this framework naturally incorporates the
effects of local stress variations. The dependence of the arrest lo-
cation with a heterogeneous distribution of stresses is not trivial; a
givenmean value of1τ(x) can yield large variations in the predicted
rupture arrest location, as the expression that determines Gstat(l)
generally includes a singular weight function24 (see, for example,
equation (3)). For example, stress fluctuations more strongly affect
the arrest if located near the arrest point.

Our results provide clear evidence that frictional rupture is really
a fracture process that can be quantitatively described by fracture
mechanics. The concepts presented here suggest a completely
different paradigm for understanding friction from that of the
classical picture, which is based on the balance of local forces
(stresses). We have shown that rupture arrest is governed by energy
balance precisely as described by theGriffith criterion; balancing the
global (system-wide) release of elastic energy, which is embodied
in the integral nature of equation (3), and the local dissipative
properties of the interface governed by Γ .

Although in our experiments we considered relatively constant
values of Γ , energy balance is also valid when Γ varies along
the interface. Locally high values of Γ , can, for instance, act as
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Figure 3 | Prediction of rupture arrest locations. a, (Upper panel), Shear stress drop,1τ (x)=σ0
xy(x)−σ res

xy (x), along the interface for each of the rupture
events presented in Fig. 1. Stresses are plotted for y=0mm (Methods). Data are linearly interpolated before integration. (Lower panel), The computed
static stress intensity factor Kstat

II (equation (3)) along x for each event from I to VI. Red circles denote the predicted location of the arrest, x=`predicted, as
determined by Gstat(l)=Γ (dashed line). Note that event VI is not arrested, being the first system-wide sliding event. b, Comparison of the measured
arrested rupture lengths, `measured, as determined from the contact area measurements to the predicted lengths, `predicted computed in a. Examples of
corresponding values of `measured and `predicted are shown by dotted lines and short-dashed line, respectively. The dashed line has a slope of 1.

a barrier to propagation. What can cause spatial variations of Γ ?
We have shown that Γ ∝ σyy as the normal stress governs the
geometrical size of the real contact area. Furthermore, Γ could
be affected by varying interface properties—for example, interfaces

8.2−8.5
5.2−5.8

6

20

180

100

18020 100

〈 yy〉 (MPa)  (J m−2)Γσ

3.5 ± 0.30
2.5 ± 0.30
1.5 ± 0.30

3.8−4 1.1 ± 0.15
3 0.7 ± 0.15
2 0.4 ± 0.10

1.3 0.2 ± 0.05

pr
ed

ic
te

d (
m

m
)

measured (mm)

Figure 4 | Comparison of the predicted and measured rupture lengths.
Predicted precursor lengths, `predicted, are compared to measured rupture
lengths, `measured, for 12 experiments—each with di�erent normal loads and
stress distributions. Three such examples are presented in Fig. 1b. Symbols,
as defined in Fig. 1b, indicate the following loading configurations:
asymmetric geometry (filled circles), symmetric geometry without (open
squares) and with stopper (open diamonds). The dashed line of slope 1 is
given for reference. A typical error bar is shown. As shown in Fig. 2b, the
fracture energy Γ of each experiment is governed by the normal stress.

incorporating different materials, chemical treatments, or pressure-
induced phase transitions.

We have shown that applying fracture mechanics to friction has
fundamental predictive power; knowledge of the prospective stress
release at each point along the interface will tell us where a frictional
rupture will arrest and, moreover, when ruptures will traverse the
entire interface and precipitate frictional sliding. The initial stress
profile along the interface, coupled with knowledge of the residual
stress, entirely determines the eventual rupture length. Two caveats
currently impede making specific predictions: knowledge of the
residual stresses along the interface before an upcoming event and
knowledge of when rupture nucleation will occur. The first of these
might well be addressed by knowledge of the normal stress profile
along the interface. Residual stresses are the manifestation of the
non-broken contacts that sustain the normal load at the frictional
interface. In preliminary work, we observe a strong correlation
between residual shear stress and local normal stress, suggesting a
local dynamic friction coefficient, but additional study is required
to cement this relationship. Rupture nucleation, or the onset of
friction, is a more delicate point. Previous work has shown5,27 that
characteristic static friction coefficients that govern the onset of
frictional motion do not exist. The Griffith criterion could, as in
rupture arrest, predict rupture nucleation. The Griffith criterion,
however, can be applied only when a well-defined crack tip exists.
In the case of rupture arrest, a singular tip obviously exists before
arrest7. Before nucleation, however, no initially sharp crack exists;
a sharp initial crack must either be created or be dynamically
formed. This enigmatic nucleation stage is still the subject of much
active research20,23,28–30.

Although the results described above are generally relevant
to every frictional interface, they are especially important to
the particular question of earthquake arrest. Understanding what
determines an earthquake’s spatial extent is a central unresolved
issue18,19,21; either the rupture size is selected during the nucleation
process or an earthquake arrests only when encountering a
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sufficiently high barrier. We have shown that the selection of the
rupture length is deterministic; balancing the global stress release
with local dissipation. Our results enable us to understand both
viewpoints. When Γ does not vary significantly, the initial stress
profile will wholly govern rupture arrest. For example, a large drop
of stress near the nucleation zone can control the arrest location. On
the other hand, the existence of a sufficiently high local value of Γ
could precipitate rupture arrest by overcoming the dominance of the
stress profile.

To conclude, it is far from trivial that fracture mechanics
necessarily govern rupture arrest in experiments. A text book
shear crack is in many ways different from frictional ruptures
in a real experimental system which include significant normal
stress variations, non-constant initial and residual shear stresses
and effects of frictional dissipation along the crack faces. Despite
these numerous and substantial complexities, fracture mechanics
still provide a fundamental description of friction which is
surprisingly accurate.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Experimental set-up.We used blocks of poly(methyl-methacrylate) (PMMA) with
a Young’s modulus Es=3GPa for low strain rates and Ed=5.6GPa for high strain
rates (see the next section) and a Poisson ratio v=1/3. Measured material wave
speeds are: shear waves cS=1,345±10m s−1, longitudinal waves
cL=2,700±10m s−1. These provide Rayleigh wave speeds cR=1,237±10m s−1 for
plane stress conditions and cR=1,255±10m s−1 for plane strain conditions.

Symmetric set-up. Blocks dimensions are 200mm× 100mm× 5.5mm (x ,y ,z
directions). The contacting surfaces are optically flat. The upper surface of the top
block was fixed, while the bottom block was sheared using a push-rod of
dimensions 3.5mm× 5.5mm (y×z directions), positioned at−3.5mm< y < 0
and x=0mm. In addition, an optional rigid stopper (of cross-section
12mm× 12mm) was pressed against the top block, at x=200mm and y=11mm,
to constrain the motion of this edge and, thereby, impose stress gradients in the x
and y directions while a push-rod applied shear to the opposite edge. Strain field
measurements were performed at 18 locations along the interface for 5.5mm
< x < 158.1mm, and y=3.5mm above the interface. Rosette-type strain gauges
were spaced 7.5mm apart on average (6.5mm< d < 8.5mm).

Asymmetric set-up. The asymmetric set-up was constructed with a bottom
block of dimensions 290mm× 28mm× 30mm and a top block of dimensions
150mm× 100mm× 6mm (x ,y ,z directions). The surface of the bottom block
had a 3 µm r.m.s. roughness whereas the surface of the top block surface was
optically flat. The upper surface of the top block was fixed and the bottom block
was sheared from below by a sliding stage. A stopper, with the same characteristics
as described above, prevented the displacement of the top block. Strain field
measurements were performed at 15 locations along the interface for 4.3mm
< x < 144mm, and y=3.5mm above the interface. Rosette type strain gauges
were spaced 10mm apart on average (7.5mm< d < 15mm). The resolution of
the strain gauges was approximately 20–60 µstrain, leading to a 0.1–0.3MPa
resolution in the computed stress.

Transformation from strain to stress. Boundary conditions are chosen as plane
stress (σzz=0; that is, free material expansion in the z direction) for the symmetric
set-up and plain strain (εzz=0; that is, no material expansion in the z direction) for
the asymmetric set-up7. The poly(methyl-methacrylate) (PMMA) is viscoelastic31.
We take this effect into account while transforming strains into stresses: the static
loading stresses are calculated in terms of the static Young’s modulus Es whereas
the rapid drop of stress due to the rupture propagation is calculated using the
dynamic Young’s modulus Ed. For plane stress conditions, we calculated stresses
from strains as32:

σxy(t)=
1

1+v
[Ed1εxy(t)+Esε

0
xy ]

σxx(t)=−
1

1−v2
[Ed(1εxx(t)+v1εyy(t))+Es(ε

0
xx+vε

0
yy)]

σyy(t)=−
1

1−v2
[Ed(1εyy(t)+v1εxx(t))+Es(ε

0
yy+vε

0
xx)]

Calculation of the static stress intensity factor. Equation (3) is adapted from
equation (8.3) from Tada26. Tada’s solution provides the static stress intensity factor
for a pre-existing crack of length l , in a plate with a free vertical boundary at x=0,
when stresses are applied to the crack’s faces. We obtain equation (3) by
superposition24,26; subtracting the measured pre-stress along the prospective crack’s
path from Tada’s solution. As a result, equation (3) calculates the stress intensity
factor for a virtual crack of length l , as a function of the pre-existing stresses along
the virtual crack’s path. This formulation is conceptually equivalent to the
well-known Eshelby’s integral (Freund’s equation (6.4.31); ref. 24) but incorporates
the free boundary at x=0.

Definition of residual stresses.We have shown that the residual shear stress
following a rupture event is roughly constant for a given experiment (Fig. 2d).
Nevertheless, the top block rotates slightly during the shear loading27 and thereby
induces a variation of the normal and residual stresses. This effect is largest at the
interface corner x=0. To account for this effect, we define the residual stress of a
precursor event n as follows:

σ res
xy ,n(x)=

σ res
xy ,n(x), x1st SG<x<xarrest

σ res
xy ,N (x), xarrest<x<L

where σ res
xy ,n and σ res

xy ,N are respectively the residual stress of the event n and the main
event N (system-wide event); x1st SG is the location of the first strain gauge along the
interface (x1st SG∼5mm for both set-ups). The stress is linearly extrapolated from
x=0 to x=x1st SG. Using this definition, we established the stress that would be
released by a crack for any x along the interface for each nth event,
1τ(x)=σ pre

xy ,n(x)−σ res
xy ,n(x) (Fig. 3a).

Taylor’s expansion of stresses on the interface. As stresses are measured at
y=3.5mm above the interface, and as strong gradients of stresses due to the
inhomogeneous loading may take place, stresses above the interface are not a
perfect measure of the stresses on the interface. To correct for the finite height of
the strain gauge placement, we used a Taylor’s expansion to improve our on-fault
stress measurements. At equilibrium32, ∂σik/∂xk=0⇒∂σxy/∂y=−(∂σxx/∂x). This
leads to σxy(0)=σxy(ySG)+ySG(∂σxx/∂x), where ySG=3.5mm is the position of the
strain gauges and y=0 defines the interface. The correction is typically around
5–10% of the stress nominal value. The use of this correction does not significantly
change the results, but it does reduce their scatter.
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