
ARTICLE

Received 31 Mar 2015 | Accepted 24 Sep 2015 | Published 27 Oct 2015

Ocean acidification increases the accumulation of
toxic phenolic compounds across trophic levels
Peng Jin1,w, Tifeng Wang1, Nana Liu1, Sam Dupont2, John Beardall3, Philip W. Boyd4,

Ulf Riebesell5 & Kunshan Gao1

Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering

carbonate chemistry with consequences for marine organisms. Here we show that OA

increases by 46–212% the production of phenolic compounds in phytoplankton grown under

the elevated CO2 concentrations projected for the end of this century, compared with the

ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under

elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton

assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages

have significantly higher phenolic compound content, by about 28–48%. The functional

consequences of the increased accumulation of toxic phenolic compounds in primary

and secondary producers have the potential to have profound consequences for marine

ecosystem and seafood quality, with the possibility that fishery industries could be influenced

as a result of progressive ocean changes.
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I
ncreasing atmospheric CO2 levels are continuing to cause
global warming, with increasing oceanic CO2 uptake playing
an important role in the mediation of the extent of this

increase. However, the rapid CO2 dissolution into seawater is also
causing ocean acidification (OA), which progressively alters
marine chemical environments, with consequences for many
organisms. While physiological and ecological effects of ocean
climate change on primary producers have been examined
broadly1,2, little is known about the molecular aspects and/or
metabolic pathways underlying the responses of phytoplankton to
OA3. Moreover, there are growing concerns about the need to
couple the data obtained from monospecific laboratory studies
with that from natural communities, as well as under multiple
stressor conditions4. In addition, the consequences of OA for
energy transfer, food quality and the food web remain poorly
understood.

To address this issue, we here employ a proteomics approach
to investigate the responses of a coccolithophorid, Emiliania
huxleyi (CCMP 1516) to elevated CO2 at the molecular level. On
the basis of the findings of the proteomics study, we hypothesize
that OA could enhance some metabolic pathways, leading to
enhanced production of phenolic compounds. To test this, we
measured the levels of phenolic compounds and mitochondrial
respiration rates in phytoplankton in monospecific laboratory
cultures and in mixed phytoplankton assemblages, grown under
different levels of CO2. Subsequently, zooplankton assemblages
were fed with phytoplankton cells grown under the elevated CO2

concentration to examine possible food chain effects. Our results
show that OA increases the levels of phenolic compounds in
phytoplankton by enhancing b-oxidation, Krebs cycle and
mitochondrial respiration, and the accumulated phenolic com-
pounds are transferred to higher trophic levels (zooplankton).

Results
Proteomic responses of phytoplankton to OA. When the
coccolithophore, E. huxleyi (CCMP 1516), was grown mono-
specifically under low (LC, 395 matm) pCO2 or, high
(HC, 1,000 matm) pCO2, contrasting differences were found in
the proteomics (Supplementary Fig. 1). The enzymes methane/
phenol/toluene hydroxylase, which plays key roles in phenolic
compound biodegradation, propionyl CoA synthase and enoyl
CoA hydratase that function in b-oxidation, adenylate kinase
(ADK), which is a key enzyme in energy metabolism, and
chloroplastic GADPH, were all upregulated in the HC-grown
cells (Supplementary Table 1). However, another key enzyme in
energy metabolism, nucleoside diphosphate kinase, transferring
phosphoryl groups between the adenine and guanine pools
(GDPþATP to GTPþADP)5, was downregulated by about 50%
in the HC-grown cells compared with the LC-grown cells
(Supplementary Table 1), suggesting that relative ATP loss in
cells under HC was slowed down. On the basis of these
differentially expressed proteins and their functions, we
hypothesized that elevated CO2 enhanced the metabolic
pathway, described below, leading to enhanced production of
phenolic compounds and their metabolism (Fig. 1).

The high CO2-induced changes in seawater carbonate
chemistry might enhance the cellular production of phenolic
compounds, but may also accelerate their biodegradation. As a
consequence, enzymes such as phenol hydroxylase would be
required for their biodegradation. The resulting products, cis, cis,
muconic acid or 2-hydroxymuconic semialdehyde, are further
metabolized via b-oxidation and, subsequently, expression of
propionyl CoA synthase and enoyl CoA hydratase would be
enhanced. The resulting product, acetyl CoA, is a key precursor
compound for the Krebs cycle, which functions in oxidizing

acetyl CoA to CO2 and drives the synthesis of ATP. In such
circumstances, the generation of ATP could thus be stimulated in
the HC-grown cells (Fig. 1, Supplementary Table 1). Moreover,
the enzyme chloroplast GADPH associated with glycolysis was
upregulated in the HC-grown cells, indicating that energy
demand under the elevated CO2 level was higher to operate
cellular essential metabolism (Fig. 1, Supplementary Table 1).
Together with this, ADK, a key enzyme in energy metabolism,
catalysing a reversible transphosphorylation reaction intercon-
verting ADP to ATP and AMP showed significantly higher
expression in the HC-grown cells (Fig. 1, Supplementary Table 1).
Hence, at least two lines of evidence have to be provided to
support the above hypothesis: namely, a higher phenolic
compound content and increased mitochondrial respiration rates
in E. huxleyi grown under high CO2 conditions.

Biochemical and physiological tests. To test the above hypoth-
esis, we measured the content of phenolic compounds and
mitochondrial respiration rates in E. huxleyi cells grown under
HC and LC conditions. The phenolic compounds were about 56%
higher in the HC-acclimated cells than in the LC-acclimated cells
(20 generations; analysis of variance (ANOVA) 1, F1,3¼ 119.53,
Po0.001) (Fig. 2a, statistical details in Supplementary Table 2).
When the LC-acclimated cells were transferred to HC conditions,
the phenolic compound content significantly increased by 24%
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Figure 1 | Altered metabolic pathways under ocean acidification.

Metabolic pathways in the coccolithophorid Emiliania huxleyi altered under

ocean acidification (HC, CO2 1,000matm; pHNBS 7.81) based on proteomic,

physiological and biochemical analyses. More phenolic compounds were

biosynthesized, subsequently biodegraded and then metabolized via b-
oxidation and Krebs cycle, generating more ATP in the HC-grown cells by

mitochondrial respiration. This extra energy can be used to counter the

effects of high CO2/low pH stress from the environment. Adenylate kinase

(ADK) was upregulated, and glycolysis was accelerated in the HC-grown

cells. On the other hand, nucleoside diphosphate kinase (NDPK) was

downregulated, reflecting the slower loss of ATP loss in the HC-grown cells.

The novel pathway including b-oxidation and the Krebs cycle becomes

enhanced under ocean acidification to meet the extra energy requirement

for maintaining homoeostasis. The red and green symbols represent up-

and downregulated proteins or processes, respectively.
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after a short period of growth (B10 generations; ANOVA 1,
F1,3¼ 74.33, P¼ 0.01; Fig. 2a, statistical details in Supplementary
Table 2). Mitochondrial respiration rates were about 130% higher
in the HC-grown cells than in the LC-grown cells (ANOVA 1,
F1,3¼ 532.66, Po0.001; Fig. 2b, statistical details in
Supplementary Table 2).

In an attempt to further test our hypothesis at a community
level, we conducted a microcosm-level experiment (30 L) with
natural coastal phytoplankton assemblages (dominated by the
diatoms Skeletonema costatum and Chaetoceros sp.; details in
Supplementary Note 2). We found that phytoplankton assem-
blages under the high (HC, 1,000 matm) pCO2 treatment showed
significantly higher contents of phenolic compounds (by 45.7%)
when compared with that of the low pCO2 assemblages (ANOVA
2, model: F5,6¼ 4.28, P¼ 0.048; CO2: F1,6¼ 18.84, P¼ 0.005)

(Fig. 2c, statistical details in Supplementary Table 2). During a
mesocosm experiment (4,000 L; details in Supplementary Note 2)
using The Facility for Ocean Acidification Impacts Study of
Xiamen University (24.52�N, 117.18�N, Wuyuan Bay, Xiamen,
China, http://mel.xmu.edu.cn/facility.asp?id=33), the phytoplank-
ton assemblages (dominated mainly by diatoms and coccolitho-
phores) also showed elevated, by about 212%, contents of
phenolic compounds under high (HC, 1,000 matm) pCO2

(ANOVA 2, model: F5,12¼ 10.91, Po0.001; CO2: F1,12¼ 54.48,
Po0.001; Fig. 2d, statistical details in Supplementary Table 2),
compared with that of the low pCO2 assemblages. Although the
mean values of mitochondrial respiration were higher by 160% in
the high CO2 mesocosms than in the low CO2 treatments, the
difference was not significant due to a large variation in the data
(ANOVA 1, F1,3¼ 2.78, P¼ 0.171; Fig. 2e, statistical details in
Supplementary Table 2).

Transfer of phenolics to higher trophic level. Since biochemical
compositions altered by OA in phytoplankton may have pro-
found impacts on trophic energy transfer6,7, we therefore tested
whether zooplankton fed with phytoplankton containing higher
levels of phenolic compounds would also have higher
concentrations of these toxic compounds in their bodies. When
the zooplankton (dominated by calanoid copepods (95%),
of which Acartia pacifica accounted for up to B60%,
Supplementary Fig. 2) was fed with HC- and LC-grown
phytoplankton cells under the high (1,000 matm) and low
(395 matm) pCO2 levels, higher contents of phenolic
compounds were detected in their bodies at elevated pCO2,
which was true either in the microcosms (47.5%, ANOVA 2,
model: F5,6¼ 7.19, P¼ 0.016; CO2: F1,6¼ 33.24, P¼ 0.001;
Fig. 3a) or when fed with phytoplankton cells from the
mesocosms (27.8%, ANOVA 2, model: F5,6¼ 8.15, P¼ 0.012;
CO2: F1,6¼ 29.46, P¼ 0.002; Fig. 3b, statistic details in
Supplementary Table 2).

Discussion
On the basis of the outcomes of proteomics in the monospecific
study with E. huxleyi and the physiological results from the
monospecific study, microcosm and mesocosm tests with mixed
phytoplankton species or natural phytoplankton assemblages, the
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Figure 2 | Phenolic compounds contents and respiration rates in

phytoplankton. Contents of phenolic compounds and mitochondrial

respiration rates under high CO2 (HC, 1,000matm, pHNBS 7.81) (black

column), low pCO2 (LC, 395matm, pHNBS 8.16; white column) and LC–HC

conditions (inset, grey column) in different test systems. (a,b) Laboratory

cultures: contents of phenolic compounds of Emiliania huxleyi, mg (mg
chlorophyll a; chl a)� 1 (a); Mitochondrial respiration rates of E. huxleyi, fmol

O2 per cell per h (b); (c,d) Microcosm and mesocosm tests: Phenolic

contents of natural phytoplankton assemblages grown in 30 L microcosms,

mg (mg chl a)� 1 (c); Phenolic contents of phytoplankton assemblages

grown in 4,000 L mesocosms, mg (mg chl a)� 1 (d); (e): Respiratory carbon

loss rates of natural phytoplankton assemblages grown in the mesocosms,

mg C (mg chl a)� 1 d� 1). LC–HC (a, inset) represents LC-acclimated cells

(20 generations) that were transferred to HC conditions for 7 days

(B10 generations). Three independent replicate systems (laboratory

cultures, microcosms or mesocosms) were run for each treatment (details

for statistics are shown in Supplementary Table 2). Vertical lines represent

s.d. of the means. * indicate significance at the Po0.05 level.
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Figure 3 | Phenolic compounds contents in zooplankton. Content of

phenolic compounds (mg per individual) in zooplankton assemblages (body

size 4112mm) that were fed on high CO2 (HC, 1,000 matm, pHNBS 7.81) or

low pCO2 grown (LC, 395matm, pHNBS 8.16) phytoplankton cells collected

from the microcosms (a, triplicate) or mesocosms (b, triplicate). The

feeding tests were carried out in in situ seawater pre-equilibrated with the

high (1,000matm) or low pCO2 (395matm) levels, that is, HC-grown

zooplankton fed with HC-grown phytoplankton (black column) or LC-grown

zooplankton fed with LC-grown phytoplankton (white column). Details of

statistics are shown in Supplementary Table 2. Vertical lines represent the

s.d. of the means. * indicates significance at the Po0.05 level.
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present work suggests that a novel phenolic compound
metabolism pathway, involving b-oxidation and the Krebs cycle,
was enhanced by OA. While there are controversial findings on
the effects of OA on mitochondrial respiration8–10, rising pCO2

and decreasing pH in seawater perturb the cytoplasmic acid–base
balance of phytoplankton11, so that extra energy would be
required to maintain the cell’s homoeostasis or positive Hþ

efflux12. Enhanced photorespiratory carbon loss in high CO2

grown cells9,13 consumes additional energy for photoprotection.
Consequently, an extra energy requirement for maintaining
homoeostasis when phytoplankton cells are perturbed by changed
seawater chemistry can be expected. In this study, we
demonstrated that b-oxidation and the Krebs cycle were
enhanced under OA and could thus meet any extra energetic
demand to allow phytoplankton to tolerate acidic stress. For
coccolithophores, increased phenolic compounds may not only
reflect a way to endure with any extra energetic demand under
OA but may also act as repellents to protect them from grazers as
the cells calcify less under OA1.

It is a well-known phenomenon in higher plants that they
increase the production of phenolic compounds to deter grazers.
Our finding that phytoplankton increased the production of these
compounds under high CO2 thus has implications for grazers,
though the mechanism by which phytoplankton species or
assemblages upregulate phenolic biosynthesis in response to
increased pCO2 is not immediately clear. In contrast to our
results, a recent study showed decreased content of these
compounds in seagrasses exposed to high CO2/low pH condition
near a natural CO2 vent14. OA has been shown to significantly
alter fatty acid content and composition in diatoms6. The
increased cellular phenolic compounds (shown in this work,
Fig. 2a,c), also linked to fatty acid metabolism via b-oxidation,
would further decrease the nutritional value of these organisms.
Since phenolic compounds are highly toxic and are found in
marine systems15,16, an increase in their content in primary
producers would undoubtedly lead to significant consequences
for food webs and carbon cycles. In addition, as phenolics are
known to possess antimicrobial properties17, biogeochemical
cycles in the oceans may be affected as well.

The present work demonstrated that accumulation of phenolic
compounds increased in phytoplankton under OA and that they
were transferred to higher trophic levels (zooplankton). Conse-
quently, accumulation of phenolic compounds in seafood could be
a factor that affects the quality of seafood18 when the organisms
are exposed to OA, which was recently shown to affect the
taste of shrimps19. Different taxa are known to show differential
sensitivities to OA20, which can be altered or amplified under
other forcing from ocean changes, such as warming21 and
ultraviolet-B irradiance22. At the same time, phytoplankton
species can exhibit evolutionary responses to OA23, and the
changes in the profile of phenolic compounds remain unknown
for long-term adaptation to OA. While altered biochemistry of the
diatom Thalassiosira pseudonana grown under OA conditions can
decrease egg production of a copepod6, exposure to phenol can
also decrease egg, faecal pellet production and survival in
copepods24,25 and toxic compounds can be transferred to higher
trophic levels (this work). Therefore, an increase in the content of
phenolic compounds in plankton could have far-reaching impacts
on seafood qualitative and quantitative values and on species
interactions as well as community structures, with consequences
for ecosystem functioning and fishery industries.

Methods
Species and laboratory cultures. E. huxleyi (CCMP 1516), acquired from the
Provasoli-Guillard National Center for Culture of Marine Phytoplankton (CCMP),
was grown semi-continuously in high (HC, 1,000 matm, pHNBS 7.81) or low (LC,

395 matm, pHNBS 8.16) pCO2 (with the HC representing CO2 levels projected for
the end of this century26) pre-equilibrated artificial seawater enriched with Aquil
culture medium. The HC and LC cultures (triplicate independent cultures for each
treatment) were maintained in exponential growth phase by continual dilution
(every 24 h) for 20 generations before being used in the experiments, and the
seawater carbonate system parameters were maintained at stable levels (daily
variation in pHNBS o0.06, seawater carbonate system parameters see
Supplementary Note 1 and Supplementary Table 3) by using freshly prepared
medium equilibrated with the target CO2 levels and by sustaining cell
concentration within a range of 2.0–4.5� 104 cells per ml. The target CO2 levels of
HC and LC medium were achieved by using a CO2 Enrichlor (CE-100B, Wuhan
Ruihua Instrument & Equipment Ltd, China) and bubbling with ambient air,
respectively. The cells were grown under a photon flux density of 100 mmol
photons per m2 s� 1 (12:12 light: dark cycle) in a plant growth chamber (GXZ,
Ruihua, Wuhan, China) at 20 �C.

Proteomics analysis. After acclimation for 20 generations, HC- and LC-grown
E. huxleyi cells were collected for protein extractions, and then analysed for
proteomics by applying a two-dimensional electrophoresis (2-DE) gel and
MALDI-TOF-TOF mass spectrometry (MS) approach27 to identify the
differentially expressed proteins between HC and LC treatments.

Specifically, after the acclimation of E. huxleyi cultures at the relevant treatments
for 20 generations, 3 L samples were collected onto PC filters (Millipore, pore size
0.4mm), re-suspended in pre-prepared medium equilibrated with the target CO2

level (pHNBS 7.81 and 8.16 for the HC- and LC-grown cells, respectively) and then
re-collected by centrifugation at 10,000� g for 30min at 4 �C for protein extraction.
The cell pellets were rinsed twice with precooled sterilized seawater to avoid any
carry-over of culture medium and external proteins. Trizol reagent (1ml) was added
to the cell pellet followed by sonication (a total of 2min with short pulses of 3–5 s)
on ice. Cell lysis was confirmed using light microscopy. Subsequently, 200ml of
chloroform was added to the cell lysate before shaking vigorously for 15 s. The
mixture was allowed to stand for 5min at room temperature before being
centrifuged at 12,000� g for 15min at 4 �C. The top pale yellow or colourless layer
was removed, and then 300ml of ethanol was added to re-suspend the reddish
bottom layer, and the mixture centrifuged at 2,000� g for 5min at 4 �C. The
supernatant was then transferred to a new tube, and 2ml of isopropanol was added.
The mixture was allowed to stand for at least 1 h for precipitation of proteins at
� 20 �C. It was then centrifuged at 14,000� g for 30min at 4 �C. Subsequently, the
pellet was washed with 95% ethanol before being air-dried. To solubilize the protein
pellet, 30ml of rehydration buffer (7M urea, 2M thiourea, 4% w/v 3-[(3-
cholamidopropyl) dimethyl-ammonio]-1-propanesulfonate (CHAPS), 1%
dithiothreitol (DTT) and 0.5% v/v immobilized pH gradient (IPG)) were added. The
resulting solution was centrifuged at 20,000� g for 30min at 4 �C and the
supernatant was collected for 2-DE analysis. The protein content was quantified
using a 2-D Quant kit (GE Healthcare, San Francisco, USA).

Exactly 100 mg of protein sample (duplicates for each CO2 treatment) was
mixed with a rehydration buffer (7M urea, 2M thiourea, 4% w/v 3-[(3-
cholamidopropyl) dimethyl-ammonio]-1-propanesulfonate, 1% DTT, and 0.5% v/v
IPG) before being loaded onto IPG strips with a linear pH gradient of 4–7
(Immobiline Drystrip, pH 4–7, GE Healthcare Life Science, Piscataway, USA). The
sample was subjected to isoelectric focusing using an IPGphor III system with
24 cm IPG strips in the following manner: 6 h at 40V (active rehydration), 6 h at
100V; 0.5 h at 500V; 1 h at 1,000V; 1 h at 2,000V; 1.5 h at 10,000V; and 60,000Vh
at 10,000V. The minimal Vh applied was at least 60,000 units. Subsequently, the
immobilized pH gradient strips were equilibrated for 15min in 10ml of
equilibration buffer containing 6M urea, 2% SDS, 50mM Tris-Cl (pH 8.8), 30%
glycerol and 1% DTT, followed by equilibration for 15min in alkylation buffer
containing 6M urea, 2% SDS, 50mM Tris-Cl (pH 8.8), 30% glycerol and 2.5%
iodoacetamide. Two-dimensional SDS–PAGE (2-DE) gels (12.5%) were run in an
EttanDalt system (GE Healthcare) at 1 w per gel for 30min and then at 15w per gel
for 6 h. The 2-DE gels were visualized using Coomassie Blue staining and digitized
using a gel documentation system on a GS-670 Imaging Densitometer from Bio-
Rad (USA) with 2-DE electrophoretogram-matching software. Image analysis was
performed using DeCyder version 7.0 software (GE Healthcare) following the
manufacturer’s instructions.

MS analyses were conducted using an AB SCIEX MALDI TOF-TOF 5800
Analyser (AB SCIEX, Shanghai, China) equipped with a neodymium: yttrium-
aluminum-garnet laser (laser wavelength was 349 nm), in reflection positive-ion
mode. Protein identification was conducted according to the previously described
method27. Briefly, the MS and MS/MS spectra of each protein spot obtained from
MALDI-TOF-TOF MS were searched against the NCBI non-redundant protein
database using the BLASTX algorithm. If the total ion score confidence interval was
above 95% and the E value was below e� 20 at the amino acid sequence level, the
sequence similarities were considered to be significant. The details of NCBI ID
number, theoretical pI value, theoretical molecular weight, protein score, protein
score confidence interval %, as well as the average relative change are listed in
Supplementary Table 1.

Microcosm test. Microcosms of 30 L (water-jacketed for temperature control)
were run from December 2014 to January 2015 at Wuyuan Bay (Xiamen, China)
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on the mesocosm facility platform (24.52�N, 117.18�N. Surface seawater (0–1m)
was collected at midday, filtered (200 mm) to remove large grazers and dispensed
into the microcosms (triplicate microcosms were run for each CO2 treatment). The
microcosms were made of polymethyl methacrylate, which allowed 91% photo-
synthetically active radiation, 63% ultraviolet-A (315–400 nm) and 6% ultraviolet-B
(280–315 nm) transmissions under the incident solar radiation. The temperature
within the microcosms was controlled to the sea surface temperature (13.0–
15.0 �C) by circulating in situ seawater through the jacket. The seawater carbonate
system in the microcosms was maintained stable by aerating with air of high (HC,
1,000 matm) or low (LC, 395 matm) pCO2 (see CO2 manipulation method in ref. 9).
Samples of 100ml from each microcosm were collected for the determination of
phenolic compounds on day 5, while the microcosms were exposed to solar
irradiance and run until the end of exponential growth phase of the phytoplankton
growth (9 days).

Mesocosm test. The Facility for Ocean Acidification Impacts Study of XMU
consists of eight independently operated mesocosm units, located at 24.52�N,
117.18�N, Wuyuan Bay (Xiamen, China), of which three HC (HC, 1,000 matm
CO2) and three LC (LC, 395matm CO2) units were randomly chosen (for details
see in Supplementary Note 2). Four species of phytoplankton, Phaeodactylum
tricornutum (CCMA 106), T. weissflogii (CCMP 1335), E. huxleyi (CS-369) and
Gephyrocapsa oceanica (NIES-1318) (details about the species are given in
Supplementary Note 2) were then inoculated into each mesocosm at equivalent
chlorophyll a concentrations to give a total final concentration of 50 cells per L on
15 June 2013 (day 0). The pCO2 in the mesocosms was controlled by bubbling air
of high (HC, 1,000 matm) or low (LC, 395matm) pCO2 (details for pCO2 manip-
ulation are provided in the Supplementary Note 2).

Estimation of phenolic compounds. Phenolic content was determined according
to ref. 28. Briefly, the cell pellets of phytoplankton or B300 zooplankton
individuals were placed in 2.5ml of 95% ethanol for a period of 48 h at 47 �C. The
cells were sonicated and the supernatant was separated by centrifugation
(4,500� g) for 10min, 1.0ml of which was transferred to glass test tubes along with
1.0ml 95% ethanol, 5.0ml distilled water and 0.5ml of 50% Folin–Ciocalteu
reagent (Sigma Chemical, USA). The solution was allowed to react for 5min, then
1.0ml of 5% Na2CO3 was added, and the mixture was vortexed and placed in the
darkness for 1 h. Absorbance was determined with a scanning spectrophotometer
(DU800, Beckman, Fullerton, CA, USA) at 725 nm and plotted against a standard
curve obtained from gallic acid.

Measurement of respiration. Mitochondrial respiration rates of laboratory
cultures were determined by a Clark-type oxygen electrode in darkness. The
respiratory carbon loss in phytoplankton assemblages from the mesocosms over
12 h was calculated as the difference in the amount of fixed carbon, using 14C tracer
methods, between the two time spans (carbon fixation 12 h–carbon fixation 24 h;
for details, see the Supplementary Note 3).

Feeding experiments. Zooplankton individuals were obtained at night through
horizontal hauling with a medium plankton net (mesh diameter, 112 mm) from
surface water in Wuyuan Bay. Collected zooplankton samples were nursed in
culture dishes (400ml) in in situ seawater pre-equilibrated with target high
(1,000 matm) or low pCO2 (395 matm) levels for 12 h before using them. Zoo-
plankton in each culture under HC or LC treatment (three independent replicates
for each CO2 treatment) were fed with either HC- or LC-grown phytoplankton
cells collected from the microcosms or mesocosms at about 15 mg chlorophyll a per
L every 12 h. The cultures were maintained under solar radiation by covering with
five neutral density screens (providing 6% of incident solar radiation). After the
feeding procedure (24 h), zooplankton samples were collected for measurements of
phenolic content and sub-samples were collected for microscopic enumeration.
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