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Expanding the biotechnology potential of
lactobacilli through comparative genomics of
213 strains and associated genera
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Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated
with humans, animals, plants and food. They are used widely in biotechnology and food
preservation, and are being explored as therapeutics. Exploiting lactobacilli has been
complicated by metabolic diversity, unclear species identity and uncertain relationships
between them and other commercially important lactic acid bacteria. The capacity for
biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we
report the genome sequences of 213 Lactobacillus strains and associated genera, and their
encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe
broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may
be exploited for genome editing. We rationalize the phylogenomic distribution of host
interaction factors and bacteriocins that affect their natural and industrial environments,
and mechanisms to withstand stress during technological processes. We present a robust
phylogenomic framework of existing species and for classifying new species.
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he genus Lactobacillus comprises over 200 formally

recognized species and subspecies that have been isolated

from a wide range of sources'. Their ability to ferment raw
materials including milk, meat and plants has resulted in their
industrial and artisanal use. Hence, many Lactobacillus species
have a long history of human usage?, including recognition as
Generally Recognized as Safe or a Qualified Presumption of
Safety by the Food and Drug Administration and European Food
Safety Authority, respectively’. Some strains are marketed as
probiotics, meaning they may be beneficial to the consumer
beyond basic nutritional value®>. Products containing lactobacilli
dominate the global probiotics market®. In addition to
fermentative and preservative properties, some lactobacilli
produce exopolysaccharides that contribute to the texture of
foods’, and to intestinal survival of probiotic species®.
Furthermore, lactobacilli are under development as delivery
systems for vaccines’ and therapeutics!®. In recent years, the
relevance of lactobacilli to the chemical industry has considerably
increased because of their capacity to produce enantiomers
of lactic acid used for bioplastics as well as 1,3-propanediol
(a starting ingredient used for biomedicines, cosmetics, adhesives,
plastics and textiles)!!. Thus, lactobacilli are among the
microbes most commonly used for producing lactate from raw
carbohydrates and synthetic media!?.

The lactobacilli were originally grouped taxonomically
according to their major carbohydrate metabolism, as homo-
fermentative (metabolic group A), facultatively heterofermenta-
tive (groug B) or obligately heterofermentative lactobacilli
(group C)'3. The accumulation of 16S rRNA gene sequences'*
and a handful of genome sequences led to the realization that
taxonomic and ]i)hylogenetic groupings of the lactobacilli were
not concordant!>718 " that the genus is unusually diverse
(as recently reviewed ref. 1) and that a revised genome-based
re-classification of the genus was warranted!®.

To provide an extensive resource for comparing, grouping and
functionally exploiting the lactobacilli, we describe here the
sequences of 175 Lactobacillus genomes and 26 genomes from
8 other genera historically associated with or grouped within the
lactobacilli. We complement this analysis by the inclusion of
12 genome sequences from two genera that were already
publically available. In all but one case, we sequenced genomes
of Type Strains sourced from international culture collections
(Supplementary Table 1), to provide taxonomic rigour and to
avoid the problems associated with the genome sequence of a
non-type strain unintentionally becoming the de facto genetic
reference for that species, even when it contravened the published
type-strain phenotype for that species?’. This phenomenon has
added to confusion on strain identification. Three non-type strain
Leuconostoc genomes were downloaded from National Center for
Biotechnology Information (NCBI; JB16, KM20 and 4,882) and
one Pediococcus non-type strain was sequenced (AS1.2696).
The data underline the extraordinary level of genomic difference
across species currently assigned to a single genus, and
they provide the definitive resource for mining Lactobacillus
genes involved in modifying carbohydrates, proteins and other
macromolecules, as well as novel Clustered Regularly Interspaced
Short Palindromic  Repeats (CRISPR)-CRISPR-associated
proteins (Cas) systems.

Results

A genus more diverse than a family. The genomes of the
lactobacilli range in size from 1.23Mb (Lactobacillus
sanfranciscensis) to four times larger (4.91 Mb; L. parakefiri) as
shown in Supplementary Table 1 and Supplementary Fig. 1. The
GC content also varies considerably, from 31.93 to 57.02%

2

(Supplementary Fig. 1). The core genome of the 213 strains
comprises only 73 genes, the majority of which encode essential
proteins for cell growth and replication (Supplementary Table 2
and Supplementary Data, data set 1). Owing to the draft nature of
the genomes, this core gene number would increase if the gen-
omes were closed. The genus Lactobacillus and associated lactic
acid bacteria (LAB) genera have a large open pan-genome whose
size increases continuously with the number of added genomes,
and contains 44,668 gene families (Supplementary Fig. 2).
Exclusion of draft genome assemblies at different fragmentation
levels, namely greater than 20, 50, 100, 200, 300, 400 and 500
contigs, does not lead to largely altered predictions for the pan-
genome curves. Core genome curves were also generated using
the same fragmentation levels and these curves are similar,
especially for higher fragmentation levels. The core gene curves
do show, however, that contig numbers have an effect on the core
genome size (Supplementary Fig. 2). Although niche associations
and described sources for Lactobacillus strains and species are not
all equally robust, there was a clear trend for the genomes of
species isolated from animals to be smaller, consistent with
genome decay in a nutrient-rich environment!® (Supplementary
Fig. 3).

ANI (average nucleotide identity) is the average identity value
calculated from a pair-wise comparison of homologous sequences
between two genomes and is frequently used in the definition of
species?!?2. The frequency distribution of pair-wise ANT values
for Lactobacillus species differs substantially from the distribution
of values for genus and family, overlapping with values for order
and class (Supplementary Fig. 4). TNI (total nucleotide identity)
is an improved method that determines the proportion of
matched nucleotide sequences between pairs of genomes,
providing a higher discriminatory power for the high-level
taxonomy units in this data set>3, The TNI calculations indicate
that the genomic diversity of the genus Lactobacillus is
intermediate between that of the majority of the currently
approved taxonomic units for orders and families (http://
www.bacterio.net/), and the mean value of TNI between all
species in this genus is 13.97% (Supplementary Fig. 4). Thus,
although Lactobacillus has traditionally been defined as a genus,
its genetic diversity is larger than that of a typical family.

A paraphyletic genus intermixed with five other genera. In light
of the extraordinary genomic diversity of the genus Lactobacillus
and its polyphyletic nature, we set out to provide the most
comprehensive phylogenetic study of the genus to date, thereby
removing ambiguities in uncertain classifications and further
validating existing taxonomic relationships. We constructed a
phylogenetic tree with the lactobacilli and representative genomes
of 452 selected genera from 26 phyla (Supplementary Table 3)
using 16 proteins common to all taxa (see Methods section for
details and selection criteria; see Supplementary Table 4 for the
protein list and Supplementary Data, data set 2 for sequences).
The phylogeny revealed that Lactobacillus is paraphyletic and that
all species of Lactobacillus descend from a common ancestor
(Fig. 1; this tree with taxon names and branch lengths is
presented in Supplementary Fig. 5). However, five other
genera, Pediococcus, Weissella, Leuconostoc, Oenococcus and
Fructobacillus, are grouped within the lactobacilli as sub-clades.
This phylogenomic arrangement was confirmed by a maximum
likelihood tree constructed from the 73 core proteins shared by
the 213 genomes of the lactobacilli and 10 associated genera
(Fig. 2). This tree is supported by high bootstrap values,
which supports the 73 core proteins as being reflective of the
evolutionary history of the lactobacilli and associated genera. The
genera Pediococcus, Leuconostoc and Oenococcus have long been
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Figure 1| Cladogram of 452 genera. Cladogram of 452 genera from 26 phyla with the 213 genomes analysed in this study, based on the amino-acid
sequences of 16 marker genes. The tree was built using the maximum likelihood method but visualized by removing the branch length information.
The coloured branches indicate different genera sequenced in this research; grey branches indicate members of genera whose genomes were previously
sequenced. The colours in the outer circle represent the phyla that are indicated in the legend, and the different shapes near branch-tips indicate the
position of genera that are most closely related to Atopobium, Carnobacterium, Kandleria and Lactococcus, separately.

recognized as phylogroups within the genus Lactobacillus based
on both 165 rRNA gene _sequence typing and extensive
phylogenomic analysis®. Our results provide unequivocal
evidence that the genera Fructobacillus and Weissella are
members of the Lactobacillus clade, with Fructobacillus located
between Leuconostoc and Oenococcus and the genus Weissella
located as a sister branch (Fig. 2). As the Lactobacillus clade
includes species from six different genera (Lactobacillus,
Pediococcus, Weissella, Leuconostoc, Oenococcus and Fructobacillus),
we propose to name these six genera as constituting the
Lactobacillus Genus Complex. Interestingly, the Carnobacteria
are external to the Streptococcus/Lactococcus branch in the
16-core phylogeny of 26 phyla (Fig. 1), but they are internal to
this branch in the 73-core tree of the Lactobacillus Genus
Complex and associated genera (Fig. 2). The lower bootstrap
value of 51% (L. lactis) for the 16-core tree, which was built from
an alignment of 3,863 bp, suggests that there was not enough
phylogenetic signal to resolve this branch to a high degree of
confidence. In contrast, the 73-core tree, which was built from an
alignment of 30,780 bp, has a bootstrap value of 100% for this
branch. This places greater confidence in the latter tree topology
and hence it was used in all downstream analyses.

As a complement to the maximum likelihood tree of the
Lactobacillus Genus Complex and associated genera based on 73
core proteins (Fig. 2), we built another tree (Supplementary
Fig. 6) omitting Atopobium, Olsenella, Kandleria and
Carnobacterium genomes and retaining the position of the most
recent common ancestor (MRCA) according to the tree of
bacteria (Fig. 1). In a%reement with previous observations based
on 28 LAB genomes'’, this tree shows that the Lactobacillus
Genus Complex splits into two main branches after diverging
from the MRCA. Branch 1 contains the type species of the genus
Lactobacillus, L. delbrueckii, and a large number of type strains
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that were isolated from dairy products. Branch 2 contains more
species (n=127) than branch 1 (n=77), and all five of the other
genera in the Lactobacillus Genus Complex.

A broad repertoire of carbohydrate-active enzymes (CAZymes).
With interest in their applications in fermentations, some of the
earliest classifications of lactobacilli were based on their carbo-
hydrate utilization patterns'3. Glycolysis occurs in obligately
homofermentative (group A) and facultatively heterofermentative
(group B) lactobacilli, and has been traditionally linked to the
presence of 1,6-biphosphate aldolase?®. A full set of glycolysis
genes were predicted in 49% of the species analysed
(Supplementary Fig. 7) and gene duplication is common,
although not particularly associated with a group or niche. All
Lactobacillus,  Leuconostoc, ~Weissella,  Fructobacillus and
Oenococcus species lacking phosphofructokinase (Pfk) formed a
distinct monophyletic group. This group included the historically
defined L. reuteri, L. brevis, L. buchneri, L. collinoides,
L. vaccinostercus and L. fructivorans groups. Most species (75%)
within this Pfk-negative clade also lacked 1,6-biphosphate
aldolase, although this gene was consistently present in the
Weissella clade as well as in some leuconostocs and species from
the L. reuteri and L. fructivorans groups. Importantly, most
species (87%) within the Ptk-lacking group were classified as
obligatively heterofermentative!, with the rest being facultatively
heterofermentative. The reason for the link between pfk gene loss
and heterofermentative metabolism needs functional genomic
investigation. The average phylogenetic distance (number of
nodes to root) of facultatively heterofermentative lactobacilli (as
defined in Supplementary Fig. 7) to the MRCA (Supplementary
Fig. 6) is considerably lower than that of obligately
heterofermentative or obligately homofermentative species
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Figure 2 | Maximum likelihood phylogeny derived from 73 core genes across 213 strains. The phylogeny was estimated using the PROTCATWAG model
in RAXML and rooted using the branch leading to Atopobium minutum DSM 20586, Olsenella uli DSM 7084 and Atopobium rimae DSM 7090 as the
outgroup. Bootstrapping was carried out using 100 replicates and values are indicated on the nodes. Colours on taxon labels indicated the presence of
CRISPR-Cas systems using blue, red and green for Type |, Il and lll systems, respectively. Undefined systems are represented in orange. Colour
combinations were used when multiple systems from different families were concurrently detected in bacterial genomes.
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(Supplementary Fig. 8), suggesting that the Lactobacillus MRCA
was facultatively heterofermentative. The obligatively hetero-
fermentative species also form a distinct cluster that may be
explained by several evolutionary scenarios that require further
investigation.

Biotransformation of carbohydrates by bacteria can be
exploited for transforming raw materials, for optimizing growth
and for producing valuable metabolites. The 213 genomes
collectively encode 48 of the 133 families of glycoside hydrolases
(GHs) in the CAZy database (http://www.cazy.org), many of
which represent unrecognized and unexploited enzymes for
biotechnology (Fig. 3). Chitin is the second most abundant
natural polysaccharide after cellulose. Among 115 LAB species
previously tested, only Carnobacterium spp. were able to
hydrolyse o chitin®. In this study, three new Carnobacterium
genomes, along with strains of L. delbrueckii, L. nasuensis,
L. agilis, L. fabifermentans and Pediococus, provide the genetic
information to exploit that activity. The GH39 genes are
B-xylosidases that are present in the L. rapi/L. kisonensis
branch as well as two singleton species, L. concavus and
L. secaliphilus. GH49 (dextranase) and GH95 (o-fucosidase) are
harboured only in the L. harbinensis/L. perolens branch with
GH49 being absent from the latter species. Dextranases are
considered to be the most efficient means for hydrolysing
undesirable dextrans at sugar mills?®. Microbial mannanases
hydrolyse complex plant polysaccharides and they have
applications in the paper and pulp industry, for food and feed
technology, coffee extraction, oil drilling and detergent
production; the corresponding GH76 is found only in the
two L. acidipiscis strains. GH101 is found only in L. brantae,
isolated from goose faeces, and L. perolens, which is from a
beverage production environment. This GH is an endo-o-N-
acetylgalactosaminidase, which is thought to play a role
in the degradation and utilization of mucins by probiotic
bifidobacteria?’. Although this explains its presence in the
goose intestine, its association with beverage production may be
due to limited hygiene.

We identified two GH families not previously associated with
the Lactobacillus genus complex. GH67 displays a-glucuronidase
activity?® and is involved in the breakdown of xylan; such
enzymes have an application in the pulp industry for bio-
bleaching, in the paper industry, as food additives in poultry and
in wheat flour for improving dough handling?®. GH95
fucosidases can cleave and remove specific fucosyl residues’’.
Fucose residues are present in oligosaccharides in milk and on
erythrocyte surface antigens. Some GH types appeared to be
common across the genome data set, if not universal, and these
are described in Supplementary Information.

Analysis of the 213 genomes reveals they encode representa-
tives of 22 of the 95 families of glycosyltransferases (GT) in the
CAZy database with a high level of GT-encoding diversity and a
number of surprising findings (Supplementary Fig. 9). Glycogen
is one of five main carbohydrate storage forms used by bacteria,
and a previous analysis of 1,202 diverse bacteria concluded that
bacteria that can synthesize glycogen occupy more diverse
niches®!. GT5 and GT35 are glycogen synthase and glycogen
phosphorlyase, respectively. These GTs are encoded by the
L. casei clade, which includes two species that are currently
exploited heavily as probiotics, L. casei and L. rhamnosus, as well
as the L. plantarum group, some members of the L. salivarius
group (such as L. salivarius itself) and a number of singletons.
It is not clear if the ability to synthesize glycogen contributes to
the biological fitness of these species. Strikingly, among the
sequenced genomes only L. gasseri encodes GT11 (galactoside
o-1,2-L-fucosyltransferase), ~whereas only L. delbrueckii
DSM15996 encodes GT92 (N-glycan core o-1,6-fucoside B-1,4-

galactosyltransferase). Surface fucose is common in pathogens,
including Helicobacter pylori, where it is linked to antigenic
mimicry (with Lewis blood group antigens), immune avoidance
and adhesion®’. According to the CAZy database, the GT11
fucosyltransferase is uncommon in LAB; it is present in
Akkermansia  muciniphila, in a minority of commensal
Bacteroides, in three Roseburia species and in several
Proteobacteria. Interestingly, GT92 is not described in any
prokaryotic organisms in CAZy, but the current study
identified the characteristic GT92 domain in L. delbreuckii. The
production of surface fucose-containing moieties by certain
L. gasseri and L. delbreuckii strains merits biological evaluation.

Interaction factors on the Lactobacillus cell surface. Surface
proteins of lactobacilli include key interaction receptors for pro-
biotics and enzymes for growth in milk. A major class of surface
proteins in Gram-positive bacteria are those anchored by sortase
enzymes that recognize a highly conserved LPXTG sequence
motif*>. We identified 1,628 predicted LPXTG-containing
proteins and 357 sortase enzymes in the 213 genomes
(Supplementary Table 5). The number of sortases and LPXTG
proteins greatly varies between species (Fig. 4), with 0 to 27
LPXTG proteins found. The highest number of LPXTG
proteins (27) occurred in the milk isolate Carnobacterium
maltaromaticum DSM  20342. Other species of the genus
Carnobacterium also showed a large LPXTG protein repertoire,
suggesting extensive interactions within their respective habitats
and associated microbial communities. Among the variety of
LPXTG proteins, we particularly focused on sortase-dependent
pilus gene clusters (PGCs). Common in Gram-positive
pathogens, these proteinaceous fibres are also produced by
commensal bacterial species such as L. rhamnosus®* and the
SpaCBA pili have been shown to contribute to probiotic
properties by mucin binding®® and cellular signalling®. A total
of 67 PGCs were predicted in 51 bacterial strains (Fig. 4), most
strains harbouring a single PGC (Supplementary Fig. 10). Only
about one-third of the piliated strains possessed PGCs similar to
L. rhamnosus strain GG pilus clusters in terms of gene order, that
is, a cluster of three pilin genes and one pilin-specific sortase gene.
The remaining pilus clusters showed the presence of two other
major types and numerous other types that are different in
organization and sequence from that of L. rhamnosus GG (Fig. 4).
Five particular clades were associated with the presence of PGCs.
The ecologically diverse L. casei/L. rhamnosus clade (Fig. 4c,
Clade ii) harboured the greatest number of piliated species.
Some strains, for example, L. equicursoris, W. confusa and
L. parabuchneri (DSM 15352) are distinguished by being the only
piliated species within their respective clades (Fig. 4c), which we
cannot currently explain. The availability from this study of over
50 new PGCs is expected to provide new avenues for addressing
their role in probiotic and other functions.

Differential evolution of cell envelope protease (CEP) genes.
CEPs) are multi-subunit, cell-wall-anchored, subtilase-type pro-
teinases produced by many LAB. They are primarily associated
with cleaving casein as the first stage in releasing peptides and
amino acids during growth in milk, and variations in their
sequence and domain structure contribute to determining the
flavour of cheese®”. In particular, the protease-associated (PA)
domain and the A domain have been shown to impact on the
specificity of the enzyme. The A domain has been subdivided into
three fibronectin domains (Fnl, Fn2 and Fn3) and these are
implicated in substrate binding®. Furthermore, some CEPs of
commensal lactobacilli may act upon inflammatory mediators to
ameliorate inflammatory bowel disease®®, so mining the novel
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Figure 3 | Heat map illustrating the distribution and abundance of glycoside hydrolase (GH) family genes across the Lactobacillus Genus Complex and
associated genera. Gene copy number of each of the 48 represented GH families is indicated by the colour key ranging from black (absent) to green.
Strains are graphed in the same order left to right as they appear top to bottom in the phylogeny (Fig. 2) with the isolation source of each strain indicated
by the colour bar at the top of the heat map.
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In ¢, each black bar indicates strains belonging to the same lineages. (¢) Labels: i, the L. composti clade; ii, the L. casei/rhamnosus clade; iii, the L. ruminis
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S, S-layer type anchor; T, truncated protein.

Lactobacillus genomes for these proteases could identify novel
therapeutics for chemokine-mediated inflammatory diseases. We
identified genes for 60 CEPs in the 213 genomes, ranging from
1,097 to 2,270 amino acids in length (Supplementary Table 6).
Forty-four strains had a single CEP, whereas eight strains
encoded two distinct CEPs (Fig. 4). Four disrupted CEP genes
were detected, two occurring at contig boundaries. Presence of
genes for CEPs exhibited clear clade association, notably with
the L. delbrueckii, L. casei and L. buchneri clades, part of the
L. salivarius clade, and the Carnobacterium clade.

The CEPs are defined as cell associated, and different
anchoring mechanisms have been identified. In all, 17 of the 60
CEPs incorporated a SLAP domain, putatively responsible for
non-covalent interactions with the cell wall, 12 had a canonical
LPXTG motif for covalent linkage to peptidoglycan, and a further
18 had a derivative of the LPXTG motif (Fig. 4). Interestingly,
13 of the CEPs had neither an S-layer-type anchoring domain nor
an LPXTG-type motif. These proteins all terminated precisely
before standard anchoring motifs at a sequence conserved

across all of the 60 identified CEPs, suggesting that this was
non-random. Of these 13 CEPs, 11 are in the L. buchneri clade,
suggesting positive selection for release of protease activity into
the growth medium in this clade. There may be an advantage to
the cell by releasing enzymes away from the cell surface and not
saturating or competing for cell wall anchoring. Twelve of these
thirteen CEPs cluster in a distinct group in a phylogenetic tree
and the multiple alignments indicate the sequences differ from
other CEPs along the entire length of the protein (data not
shown). Putative anchoring by the SLAP domain is notably
associated with the L. delbrueckii sub-clade, whereas CEPs
containing LPXTG motifs occur in the L. casei, L. salivarius,
Pediococcus and Carnobacterium groups.

The pair-wise amino-acid identity values between the 60 CEPS
ranged from 100% down to just 20%, a level of divergence
indicating the likelihood that some of these proteases have novel
specificity. Of the 60 CEPs identified, 23 had the PA domain,
57 the Fnl domain (DUF_1034) and 25 the Fn2 domain
(CHU_C). Interestingly, there is some association between
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anchoring mechanism and domain composition. For the SLAP
domain-containing CEPs, 12 out of 17 do not contain the Fn2
domain, and for the CEPs devoid of SLAP or LPXTG sequences,
11 out of 13 do not contain a PA domain. The differential domain
composition in the CEPs indicates that a diverse range of
substrates and products are likely. These properties may be
exploitable for improvement of food flavour or for enhanced
probiotic capabilities.

CRISPR-Cas systems and mobile genetic elements. CRISPR
in combination with Cas constitute CRISPR-Cas systems, which
provide adaptive immunity against invasive elements in bacteria®”.
Sequences derived from exogenic elements are integrated into
CRISPR loci, transcribed and processed into mature small
interfering RNAs, and the small CRISPR RNAs (crRNAs)
specifically guide Cas effector proteins for sequence-dependent
targeting and endonucleolytic cleavage of DNA sequences
complementary to the spacer sequence’!. CRISPR-Cas systems
have revolutionized genetic engineering and gene theragy by
enabling precise targeted manipulations in prokaryotic** and
eukaryotic genomes*’, and recently in lactobacilli*4,

A total of 137 CRISPR loci were identified in 62.9% of the
genomes analysed, representing all the major phylogenetic groups
of lactobacilli evaluated (Fig. 2). This indicates that these systems
are evolutionarily widespread throughout this genus, and
likely functionally important. This is considerably higher than
the ~46% general occurrence rate in bacterial genomes in
CRISPRAb*. There was overall congruence between the
phylogenomic structure of the lactobacilli (Fig. 2) and CRISPR-
Cas system phylogeny (Supplementary Fig. 11) reflecting
co-evolutionary patterns. For Type allocation, the signature
genes cas3, cas9 and casl0 for Types I, II and III, respectively,
were used, complemented by comparison of CRISPR-repeat
sequences and the universal Casl protein>. Types I, II and III
CRISPR-Cas systems were all detected (66, 68, and 3 systems,
respectively; Supplementary Table 7). Comparative analyses of
defining CRISPR features revealed a diversity of the universal
Casl protein and corresponding CRISPR-repeat sequences, with
consistent clustering in two main families representing Type I
and Type II systems (Supplementary Fig. 11). Strikingly, Type II
systems were detected in 36% of the Lactobacillus Genus
Complex and associated genera, although they occur in only
5% of all bacterial genomes analysed to date®, suggesting these
LAB are a rich resource for Type II CRISPR systems. Beyond the
diversity of CRISPR-Cas systems, we further uncovered dramatic
variability in locus size and spacer content, ranging from 2 to 135
CRISPR spacers (Supplementary Table 7).

Type II CRISPR-Cas systems, which comprise the signature
Cas9 endonuclease have received tremendous interest given their
ability to re-programme Cas9 using customized guide RNAs for
sequence-specific genesis of double-stranded breaks and the
corresponding ability to edit genomes using DNA repair
machinery. Here, we observed a diversity of novel Type II
systems with heterogeneous Cas9 sequences (Supplementary
Fig. 12A) that expands the Cas9 space considerably, and the
corresponding DNA targeting and cleavage features including the
proto-spacer adjacent motif and guiding RNAs*’. Novel Cas9
proteins we discovered include some relatively short Type II-A
and Type II-C Cas9 homologues (1,078-1,174 amino acids) that
have potential for efficient virus-based packaging and delivery
(Fig. 5). Furthermore, we determined corresponding putative
trans-activating crRNAs (tractrRNAs) for Type II-A systems
(Supplementary Fig. 12B), which is instrumental in designing
wild-type crRNA:tracrRNA guides and synthetic single-guide
RNAs for Cas9 (ref. 47). We further characterized the key
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elements of Type II systems for L. jensenii, L. buchneri and
L. mali (Fig. 5), revealing the sequence diversity and structure
conservation for the guide RNAs and their corresponding
proto-spacer adjacent motifs.

Phage and plasmid sequences were detected in 92% and 41% of
the 213 genomes, respectively (Supplementary Figs 13 and 14).
Several synteny-based methods were used for predicting pro-
phages, but the results were inconclusive and subsequent manual
analysis did little to improve this. Prediction of phage-specific
genes was therefore used as an alternative and synteny-based
methods of prophage prediction will be optimized for future
studies. There is a trend towards an inverse correlation between
abundance of CRISPR sequences and phage sequences that does
not reach statistical significance (data now shown). Lactobacilli
can have complex genome architecture?®, and in many genomes
multiple plasmids were detected (for example, six plasmids
predicted in both L. parafarraginis and P. claussenii
Supplementary Fig. 14). The phenomenon of very large
plasmids exemplified by the sole genome sequence harbouring a
megaplasmid in this analysis (the 380kb megaplasmid of
L. salivarius DSM20555 (ref. 49)) substantially increases the
number of plasmid-borne genes that are assigned to cluster of
orthologous groups (COGs) for this genome (Supplementary
Fig. 14). However, the influence of the megaplasmid on COG
abundance is not evident on a genome-wide scale (Supplementary
Fig. 15). These vectors open new avenues for genetic
manipulation of model lactobacilli in the laboratory and for
food-grade strain development. Furthermore, a diversity of
insertion sequence (IS) elements was identified (Supplementary
Fig. 16) including widespread IS families (IS3 is nearly universal),
as well as sequences that selectively occur in particular niches (for
example, IS91 in dairy L. casei and L. paracasei tolerans and 15481
in brewing L. paracollinoides, L. farraginis and P. inopinatus).
Altogether, mobile genetic elements and their occurrence reflect
both the open pan-genome of lactobacilli and evolution by gene
acquisition, and genome simplification and decay. Functionally,
we also show that detected CRISPR spacer sequences can
perfectly match target phage and plasmid sequences (Fig. 5),
which is consistent with sequence-specific targeting of viruses by
CRISPR-Cas adaptive systems. The findings from analysis of
these 213 genomes corroborate previous reports implicating
CRISPR-Cas  systems in adaptive immunity against
bacteriophages and plasmids in lactic acid bacteria used as
starter cultures in food fermentation.

Discussion

This Lactobacillus genome sequencing initiative provides genomic
clarity for a genus bedevilled by phenotypic confusion and
inconsistent phylogeny. We generated a resource data set whose
analysis explained the phenotypic diversity of lactobacilli and
associated genera, and suggested new units for classification.
The 200 genomes sequenced were from organisms spanning 9
genera and 174 species; including available Oenococcus and
Leuconostoc genomes brought this to 11 genera and 185 species.
We sequenced the genomes of L. crustorum, L. parabrevis,
L. pobuzihii and L. selangorensis twice, but from different culture
collections, and their sequence identity validated the sequencing
and analysis pipelines. We elected to produce genomes of high-
quality draft standard®®, which is suitable for mining all relevant
phylogenetic and functional information, and allows easy custom
finishing as desired for genome regions of interest or whole
genomes. Of the 200 type strains sequenced, 179 were previously
unavailable on NCBI, which allows an unprecedented degree of
integration of Lactobacillus genomics into taxonomic discussions
and decisions. As we started the sequencing phase, an additional
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Figure 5 | Comparative analysis of CRISPR sequences. The tree in a is derived from an alignment of the sequence of the universal Cas protein, Casl,
to create a phylogenetic tree based on the relatedness of all CRISPR-Cas systems in lactobacilli and closely related organisms. Types |, Il and Il are

represented in blue, red and green, respectively. The tree in b is derived from an alignment of Cas9, the signature protein for Type Il systems, to create a
phylogenetic tree showing the relatedness of Cas9 proteins from Type II-A and II-C systems identified in lactobacilli and closely related organisms.

A subset of short Type II-A Cas9 proteins is highlighted. In ¢, key guide sequences driving DNA targeting by Cas9 are shown for L. jensenii, L. buchneri and
L. mali. Predicted crRNA and tracrRNA sequences are shown at the top (red). Complementarity between CRISPR spacer sequences and target protospacer
sequences (blue) in target nucleic acids is shown for phages and plasmids. The predicted protospacer-adjacent motif (PAM) sequences flanking the 3’ end

of the protospacer sequence are shown in green.

29 lactobacilli or candidate lactobacilli have been published in the
literature; the definition of core genes and robust phylogeny
described here will make their addition to the phylogenome easy
once their genomes are sequenced.

Uncertainty surrounding species assignment and grouping into
larger taxonomical units is undesirable, and it presents a
considerable challenge for some bacteria such as those we termed
here ‘the Lactobacillus Genus Complex’. Formal re-classification
is the prerogative of systematic committees, but we examined
phylogenomic approaches that might guide such classification.
We first examined the most recent phylogeny!' containing
16 phylogroups, and determined the frequency distribution of
branch distances within phylogroup co-members and non-
members (Supplementary Fig. 17A1) based on the core gene
tree (Fig. 2). We also calculated the frequency distribution of
whole genome-wide genetic distance that is measured by the
1-TNI value (Supplementary Fig. 17B1). The ideal phylogrouping
that would yield non-intersecting curves was clearly not achieved
through measurement of branch lengths or TNI values.
Therefore, we manually edited phylogroup membership
primarily to concord with monophyletic clades, as well as to
minimize the intersection area between curves (Supplementary
Fig. 18). Although the TNI value distribution was still not
discriminatory after optimizing the phylogroups (Supplementary
Fig. 17B2), we achieved superior separation of branch length
distribution (Supplementary Fig. 17A2). However, a stringent
cutoff value for judging whether two strains belong to the same
phylogroup could not be achieved, which may be due to unequal

clock rates or speciation rates throughout the tree (which will
be hard to determine based on current strain information).
Nevertheless, the revised phylogrouping based on core genome
comparison presented here can serve as the basis for discussions
of formal re-classification.

Mobile replicons including bacteriophages and plasmids are a
prominent feature of this group of bacteria, and have historically
attracted attention because of their ability to extend the
phenotype of a strain, or in the case of phage, to lyse starter or
adjunct cultures. The data in this genome resource extend the
knowledge base for exploiting the Lactobacillus mobilome. There
is also a proportional abundance of systems to modulate the
movement of these replicons. Collectively, our data reveal the
widespread occurrence of diverse CRISPR-Cas immune systems
in the genomes of lactobacilli, including a plethora of novel Type
II systems with diverse Cas9 sequences. Of particular interest is
the identification of a variety of Cas9 proteins that can be used in
combination with novel guide sequences and various associated
targeting motifs for flexible DNA targeting and cleavage. We
anticipate that these novel systems will open new biotechnological
avenues for next-generation Cas9-mediated genome editing in
eukaryotes and prokaryotes. The broad occurrence of diverse
CRISPR-Cas immune systems in lactobacilli in general also
provides enormous potential for strain genotyping and enhancing
phage resistance in industrial strains.

The genomic analysis highlights the remarkable diversity of pili
in lactic acid bacteria. This also suggests that the pilus biogenesis,
assembly and also function may differ quite considerably between
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strains. To date, there have been only a few reports describing pili
in Lactobacillus species other than L. rhamnosus. The present
data offer a useful basis for future functional studies of these
potentially piliated species from an environmental and evolu-
tionary perspective.

Our data indicate that the Lactobacillus ancestor was
facultatively heterofermentative, and that selective gene loss
events have fine-tuned glycolysis/hexose/pentose metabolism in
clade-specific patterns, against the back-drop of generalized gene
loss and genome decay that characterizes the evolution of the
Lactobacillales'®. The selective pressures other than in the dairy
environment are not well understood. Further evolutionary
analyses are expected to resolve the presence of exceptions we
described within major groups (characterized by a different
genetic background compared with that of the whole group).

Apart from a pattern driven by genome reduction in animal-
associated strains, we did not identify evidence for strong
association between the niches of particular species and their
genomic content (Supplementary Information), although it must
be recognized that the recorded isolation source of any given
species may not necessarily be where it evolved. The strongly
divergent patterns already illuminated by the current data set for
genes involved in carbohydrate management, proteolysis, surface
protein production and destruction of foreign DNA provide
a rational framework for species selection, trait browsing,
replicon design and process optimization in fermentation and
bioprocessing applications.

Methods

Sequencing and assembly. Whole-genome sequencing was performed using
Ilumina HiSeq 2000 (Illumina) by generating 100 bp paired-end read libraries
following the manufacturer’s instructions. An average of 190 Mb of high-quality
data were generated for each strain, corresponding to a sequencing depth of 16- to
185-fold (Supplementary Table 1).

The paired-end reads were first de novo assembled using SOAPdenovo v1.06,
local inner gaps were then filled and single base errors were corrected using the
software GapCloser (http://sourceforge.net/projects/soapdenovo2/files/GapCloser/).
The individual genome assemblies of 200 strains have been deposited in the NCBI
under the project numbers PRJEB3060 and PRJNA222257 with individual
accession numbers listed in Supplementary Table 1. Raw reads for 200 strains have
been deposited in the sequence read archive under the sample accession IDs listed
in Supplementary Table 1.

Coding sequence (CDS) prediction and annotation. The CDSs of genes were
predicted for each sequenced genome by using Glimmer v3.02 (ref. 51). Partial
genes were predicted by replacing gaps between contigs by a six-frame start/stop
sequence (5'-NNNNNCACACACTTAATTAATTAAGTGTGTGNNNNN-3').
Glimmer3 normally predicts only complete genes, but a partial gene at a contig
boundary with the above sequence at one or both ends will be predicted and given
artificial end(s) (for example, 5-NNNNNCACACACTTAA-3' at the 3’ end). The
number of partial genes along with their status (5" end missing, 3’ end missing,
both ends missing) was determined using these artificial ends. To obtain functional
annotation, the amino-acid sequences of predicted CDS were blasted (BLASTP)
against the nr database with the criterion of e-value < le-5, identity >40% and
length coverage of gene>50%. Additional annotation was obtained from the
COG>? and Kyoto Encyclopaedia of Genes and Genomes (KEGG)™> databases
using BLASTP and the same BLAST thresholds.

Construction of core- and pan-genome families. For identifying the pan-
genome, a pair-wise comparison was performed using L. gasseri ATCC33323 as the
first genome, followed by the random selection of each of the remaining genomes,
without replacement, until all 213 genomes were included. Gene families were
identified where homologous genes were found with BLASTP above the threshold
of 25% identity over 40% of the gene length. Genes that fell below these thresholds
formed new families, all of which were summed to give the pan-genome family set.
A pan-genome family set was also derived after removing the genomes with greater
than 20, 50, 100, 200, 300, 400 and 500 contigs to assess the effect of higher contig
number on pan-genome size (Supplementary Fig. 2).

To identify core genes for phylogenetic analysis, gene predictions for the 213
genomes were translated from nucleotide into amino-acid sequences and used as
the input for QuartetS>*. Quartet$ first predicted orthologues by reciprocal best
BLAST between pairs of genomes using cutoffs of 25% identity and 40% length.
The level of identity was kept above 25% given that below this level we cannot
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assume the shared common ancestry of genes based on sequence data alone””.
An equation that approximates the construction of a quartet gene tree assigned a
confidence value to each reciprocal best blast pair of genes to determine if their
relationship was orthologous or paralogous. Two-stage clustering (Markov cluster
algorithm (MCL) and single linkage clustering (SLC)) was used to cluster
orthologues across all 213 genomes so that a presence and absence distribution
could be determined for all gene families. Gene families with a representative
sequence in all 213 genomes were selected as core genes for the construction of a
phylogenetic tree. This method supported a core of 73 genes (Supplementary
Table 2; Supplementary Data, data set 1 for sequences), which was used in all
phylogenetic inferences. The effect of fragmented genomes on the core genome was
assessed by removing genomes with greater than 20, 50, 100, 200, 300, 400 and 500
contigs and inferring a core genome in each case (Supplementary Fig. 2).

Assessing the robustness of core gene number and tree topology. We tested
for the presence of 114 bacterial core marker genes®® in the gene sequences of each
of the 213 genomes and found that, whereas no genome had a low number of
predicted marker genes (range 96-111), the 4 genomes with fewer than 105 genes
all had contig numbers less than 200. Furthermore, when we correlated the number
of predicted core genes (out of 114) with contig number, the Spearman correlation
value was very low (p value of 0.078; P-value = 0.26). This shows that draft
genomes with larger contig numbers do not have artificially low core gene
numbers.

To investigate the effect of core gene number on robustness of phylogeny,
we omitted some of the more peripherally related LAB from the analysis, namely,
we omitted the Atopobium, Kandleria, Olsenella and Lactococcus species, and this
resulted in a core genome of 121 genes. The resulting phylogeny was highly
congruent with the 73 core gene phylogeny, and was also supported by equally high
bootstrap values. We put back in Lactococcus and removed Carnobacterium,
resulting in a core gene set of 117 genes. Similarly, the resulting phylogeny was
highly congruent with the 73 core gene phylogeny, and was also supported by
equally high bootstrap values.

Calculation of ANI and TNI. The pair-wise ANI and TNI values across newly
sequenced genomes were calculated according to methods proposed by Goris

et al?? and Chen et al.?3, respectively. The frequency distributions of the ANT and
TNI vggues of 3,730 published bacterial genomes were acquired from our previous
report™.

Phylogenetic analysis. To determine the placement of the Lactobacillus Genus
complex and associated genera within the Bacterial kingdom, we used
AMPHORAZ2 (ref. 57), a marker gene database used in the phylogenetic inference
of prokaryotes, to identity 16 marker genes (Supplementary Table 4; data set S2 for
gene sequences), out of a total of 31 possible marker genes, that were shared across
452 representative bacterial species (Supplementary Tables 3 and 4). We aligned
the amino-acid sequences for each gene separately using MUSCLE v3.8.31 (ref. 58)
and then constructed the maximum likelihood tree based on the concatenated
alignment using the software RAXML with the PROTCATWAG model®®.

A Maximum Likelihood phylogeny concentrating on the Lactobacillus Genus
complex and associated genera was inferred from 73 core genes present in all 213
strains. Amino-acid sequences were aligned as above and the phylogeny was
estimated using the PROTCATWAG model in RAXML v8.0.22 (ref. 59) and rooted
using Atopobium minutum DSM 20586, Olsenella uli DSM 7084 and Atopobium
rimae DSM 7090. Bootstrapping was carried out using 100 replicates and values are
indicated on the nodes of the phylogeny.

Prediction of glycolysis-related genes. A matrix with the presence/absence of
the 10 core glycolytic genes across the 213 genomes was built using a combination
of annotation querying and BLAST searching. When a (%ene was absent in one or
more genomes, the result was confirmed with a tblastn® search using L. salivarius
query genes. In cases where a homologue was found using the blast approach, the
sequence was retrieved and aligned with mafft®!. Alignments were inspected to
confirm similarity of the sequences.

We mined the genomes for the presence of phosphoglycerate mutase using the
approach published by Foster et al.®? The query phosphoglycerate mutases from
E. coli GpmA (dPGM; NCBI GI number 50402115) and E. coli GpmM (iPGM,;
586733) were aligned against the six-frame translations of the 213 draft genomes
with tblastn. Hits with a bit score larger than 100 were considered as a PGM match.

Bacteriocin prediction. BAGEL®® was utilized to mine genomes for potential

bacteriocin operons; results were manually verified within Artemis®.

Amino-acid pathway identification. Amino-acid pathways were investigated
through the KEGG suite of tools®”.

CRISPR identification. CRISPR-Cas systems were identified using
CRISPRFinder®> and manual curation of the results.
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Investigation of niche association. The 213 genomes were grouped into six niche
categories in order to test for niche-specific associations in functional gene groups
and genomic characteristics. The six niche categories are food (n=76), animal
(n=56), plant (n = 34), wine product (n = 33), environment (# = 7) and unknown
(n=7). The niche category for each genome is shown in Supplementary Table 1.
We applied Kruskal-Wallis tests and generated boxplots for visualization in order
to determine trends among niches for 104 variables. These variables included all
functional groups analysed in this study, MGEs (plasmids, phages and IS elements)
and the following genomic parameters: genome size, gene number, contig number,
GC content and sequencing depth. Statistics and visualization were carried out in
R v3.1.1 (https://www.r-project.org/).

Profiling of GHs and GTs. The detection and assignment of sequences to families
of CAZymes was carried out using a two-step approach. HMMSCAN (from the
HMMER package v3.1bl1 (http://hmmer.org/)) was used to query hidden Markov
models representing the signature domains of each CAZyme family, to predict
potential GTs and GHs across the 213 genomes below a threshold cutoff of 1e-05.
In a separate approach, genes that have the GH and GT enzyme configuration (EC)
designation EC 3.2.1.X and EC 2.4.X.X, respectively, were pooled into a GT and
GH database. BLASTp searches were used to predict potential GTs and GHs from
the 213 genomes using a cutoff of 40% identity and 50% length with an e-value
cutoff of 1e-05. Results from the Hidden Markov Model (HMM) and the blast
approach were compared to determine if both approaches supported the predicted
gene results. Common genes were retained and genes unique to one approach were
screened against the Pfam 27.0 database to confirm the presence of GT/GH
domains. Copy number of the verified GH/GT family were summarized in

a heat map.

Identifying carbohydrate tranporters. To predict genes involved in carbohydrate
transport, we downloaded the protein database (go_20140614-seqdb.fasta.gz) from
the Gene Ontology Consortium Database (http://archive.geneontology.org).

A subset of this database was created by selecting all sequences that were annotated
as carbohydrate transporters. Predicted genes from our study were blasted against
this smaller database using BLASTP and genes involved in carbohydrate transport
were selected using the thresholds, 40% identity, 50% coverage of query gene
aligned and e-value <1e-05.

General metabolism. To generate an overview of metabolism, we blasted all
predicted genes against the STRING database v9 (ref. 66). The top hit for each gene
(that is, lowest e-value) was used to assign a COG category after applying
thresholds of 40% identity, 50% of query gene length aligned and e-value < 1e-05.
R v3.1.1 was used for reformatting and for generating the COG heat map.

Identifying genes involved in stress response. The KEGG database was mined
for gene products annotated as playing a part in stress responses. These were
categorized into acid stress, oxidative stress, heat/DNA damage, cold stress,
osmotic stress and bile tolerance. These genes were compiled into a database of
61,706 proteins. This database served to query (BLASTp) the predicted proteins
encoded by the 213 genomes. Hits were considered stress response genes if their
gene products displayed greater than 40% identity over 50% of the length of the
KEGG stress response protein below an e-value of 1e-05. Copy number of the
distribution of each of the stress-response proteins was summarized and visualized
using a heat map in the R statistical package v3.1.1.

Identification of ISs. To predict IS elements, Hidden Markov models representing
19 IS transposase families were downloaded from the TnpPred web service (http://
www.mobilomics.cl). HMMSCAN (from the HMMER package v3.1b1) was used to
query amino-acid sequences of predicted genes against the HMMs.

Phage identification. Bacteriophage genes were annotated by BLASTP search
against the NCBI protein database using cutoffs of 40% identity over 50% of the
length with an e-value of <1e-05. To predict phage-specific genes, a string search
of predefined phage functions was carried out on gene annotations. Phage
functions that overlap with non-phage functions such as those involved in
transcription and DNA metabolism are annotated as belonging to prophages and
these genes were also included in the phage results.

Plasmid identification. For each genome, contigs were blasted against an NCBI
reference database of complete plasmid sequences. A group of contigs was
identified as belonging to a plasmid if at least 25% of their combined length aligned
to at least 25% of the plasmid at >70% identity. These thresholds were determined
empirically by adjusting alignment length and identity cutoffs until the strains in
the data set that are known to have plasmids and those that are known to have
no plasmids both gave correct predictions. All predicted genes belonging to
plasmid-associated contigs were then blasted against the STRING database v9.1
(ref. 66) in order to assign COG categories.

Analysis of LPXTG proteins, sortases and PGCs. Interproscan v. 5.44.0 with
TIGRFAM 13.0 database with default parameters was used to search for conserved
domains in the genomes®”%%. Automatic pilus cluster search was performed using
LOCP v. 1.0.0 with parameters -P 1’ and *-P_adj 0.05" (ref. 69). The LOCP output
results were then curated. Both programmes were run on the amino-acid CDSs
data. R v. 3.0.1 was used for managing and parsing the output data’®.

CEP identification and analysis. CEP sequences were identified in the genome
sequences using two strategies. The first strategy involved a BLAST search using
Subtilisin E as the search model. This returned 1,201 putative homologues. The
second strategy used a HMM model for subtilisin as the search model and this
returned 151 hits. Both panels of hits were further interrogated using the following
strategy. First, the presence of the key catalytic residues was confirmed (Asp, His
and Ser, in this order of occurrence) and the proteins binned by number of residues
in the sequence. The panels were further rationalized using a HMM search model
for domains identified in the only solved structure of an active CEP, the ScpA from
Streptococcus pyogenes®®. These searches included the DUF1034, which is
equivalent to the Fnl domain of ScpA; the CHU_C model corresponding to the
Fn2 domain; the PA domain; SLAP, which is an S layer-anchoring domain; and a
manual inspection for LPXTG derivative sequence. This screening identified 60
CEPs across the genome database. Each of these hits was in turn used as a BLAST
search model to confirm no additional CEPs could be identified. These searches
proved to be internally consistent with no additional CEPs identified.
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