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Sparsity-based super-resolved coherent diffraction
imaging of one-dimensional objects
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Phase-retrieval problems of one-dimensional (1D) signals are known to suffer from ambiguity

that hampers their recovery from measurements of their Fourier magnitude, even when their

support (a region that confines the signal) is known. Here we demonstrate sparsity-based

coherent diffraction imaging of 1D objects using extreme-ultraviolet radiation produced from

high harmonic generation. Using sparsity as prior information removes the ambiguity in many

cases and enhances the resolution beyond the physical limit of the microscope. Our approach

may be used in a variety of problems, such as diagnostics of defects in microelectronic chips.

Importantly, this is the first demonstration of sparsity-based 1D phase retrieval from actual

experiments, hence it paves the way for greatly improving the performance of Fourier-based

measurement systems where 1D signals are inherent, such as diagnostics of ultrashort

laser pulses, deciphering the complex time-dependent response functions (for example,

time-dependent permittivity and permeability) from spectral measurements and vice versa.
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P
hase-retrieval algorithms, aimed at reconstructing
signals from the magnitude of their Fourier transform,
are used in many fields of science and engineering1–13,

including radar7, astrophysics8, nuclear magnetic resonance9,
electron microscopy10, diagnostics of short pulses11,12 and
spectroscopy13. A prime example and an important application
for phase retrieval is coherent diffraction imaging (CDI)1–6 where
an object is algorithmically reconstructed from measurements of
the freely diffracting intensity pattern image that corresponds to
the spatial spectrum (that is, the square of the Fourier amplitude)
of the object. Generally, measuring only the Fourier magnitude
lacks significant portion of the information and
leads to an underdetermined system of equations. To try and
compensate for this, additional information is necessary.
A standard approach since 1982 is to use the advance
knowledge about the support of the imaged object, that is,
knowing the boundaries within which the object is confined14.
Over the years, CDI evolved into an important lens-less imaging
method, which is especially attractive for microscopy with
coherent extreme-ultraviolet and x-ray radiation1–6 because
optical components (lenses and mirrors) in these spectral
regions are much less available than in the visible spectral region.

A key issue in CDI, and more generally in all phase-retrieval
methods, is the uniqueness (or ambiguity) of the solutions15.
Namely, is there only one object that corresponds to the
measured spectrum and the prior information at hand (up to
trivial ambiguities including global phase shift, conjugate
inversion and spatial shift)? How is uniqueness affected by
noise, which is always present in measurements? CDI had become
a popular technique because uniqueness can often be achieved
using prior knowledge about the support of two-dimensional
(2D) and 3D objects1–6,14. Even so, finding this unique solution is
often challenging because there is no general and robust method
guaranteed to find the solution in a stable manner. In sharp
contradistinction with 2D and 3D objects, the situation with 1D
objects is far worse: constraints on the support of the sought
signal are known not to guarantee uniqueness16–18. It was also
shown that reconstruction using maximum entropy algorithms
fails to remove the ambiguity19 and direct phase-retrieval
approaches are highly sensitive to noise20. Thus, instead of
strictly-algorithmic methods, hardware-based approaches
(multiple measurements) have been used for reliable recovery
of 1D signals from their Fourier magnitude measurements11,21–
23. Clearly, hardware-based methods increase the complexity of
the measurement apparatus. For example, Frequency Resolved
Optical Gating (FROG), a popular technique for diagnostics of
ultrashort laser pulses, transforms the 1D phase-retrieval problem
into a 2D problem11. In another example, a 1D (line) x-ray field
was retrieved from multiple far-field intensity patterns obtained
by moving an aperture at the beam’s focus24. Other examples
include vectorial phase retrieval22 and CDI with multiple
structured illumination patterns23, both relying on transforming
the original 1D problem into a 2D counterpart. Distinct from
these hardware approaches, it was recently shown (in theory and
simulations) that using a sparsity prior (that is, using the prior
information that the sought signal can be represented in a
compact form in a known mathematical basis) can give rise to
uniqueness in phase retrieval of 1D signals under certain
conditions25. This article presents the first experimental
demonstration of sparsity-based phase retrieval of sparse 1D
signals. Specifically, we demonstrate sparsity-based 1D CDI.
Moreover, we show that employing the sparsity prior often
enables super-resolution, recovering the 1D object beyond the
physical resolution limit of the imaging system.

Essentially, the sparsity prior corresponds to having advance
knowledge that the unknown signal has some characteristic

structure. The simplest case occurs when the ‘sparsity basis’
(a mathematical basis in which the object is represented
compactly) is known in advance. But even more generally, the
sparsity basis can be extracted (learned), under certain conditions,
from the measurements themselves or from data with similar
features that is often available from other sources26. Using
sparsity as a ‘prior’ is very powerful because, on one hand it is
general (it does not limit the signal to a specific form), and on the
other hand it can remove ambiguities. The sparsity prior has been
used extensively in many fields of engineering (for example, data
and image compression), statistics and mathematics27, and it
leads to robust recovery even in the presence of significant
noise27–30. In the context of optics, sparsity has been employed
in various applications ranging from single pixel camera31,
compressive holography32, compressive ghost imaging33,
diagnostics of coherent modes34 and un-mixing using spectral
measurements35 to super-resolution and sub-wavelength
imaging36. It was also proposed37 and demonstrated in
simulations38 that the use of sparsity can enhance
Ankylography, and make it possible to recover the 3D structure
of complex molecules. Importantly, recent work has
demonstrated sparsity-based super-resolution in phase retrieval
of 2D objects by CDI29,39. The resolution of CDI is set by the
highest measured spatial frequency, which is determined by the
ratio between the size of the detector array (typically a CCD
camera) and the distance from object to measurement plane, and
by the signal-to-noise ratio. However, beyond such signal-to-
noise and the geometrical issues, the free-space transfer-function
of electromagnetic waves is essentially a low-pass filter with a
cutoff at 1/l, leading to the well-known ‘diffraction limit’ (that is,
the fundamental limit on imaging resolution is Bl/2, l being
the wavelength of the light). Our recent work on CDI has
demonstrated, theoretically and experimentally, that employing
sparsity can facilitate enhanced resolution even far beyond the
fundamental diffraction limit29. However, in that experiment we
used visible radiation: a spectral region which is incompatible
with the most important CDI applications, such as measuring
the structures of bio-molecules using x-ray laser pulses and
semiconductors mask metrology using extreme-ultraviolet (EUV)
radiation.

Here we present sparsity-based super-resolved phase retrieval
of 1D signals. We show that the sparsity prior can often remove
the ambiguity associated with the loss of phase in 1D information
and in parallel also yield super-resolution: the recovery of high
spatial frequencies considerably beyond the measurement range
in Fourier space. We demonstrate experimentally that sparsity
can be utilized for super-resolution in CDI of 1D objects.
Specifically, we demonstrate resolution enhancement up to
B4.5 times beyond the inherent resolution limit of our CDI
microscope. Notably, some of the CDI microscopy experiments
presented here uses EUV radiation, thus our observation extends
the concept of sparsity-based super-resolution imaging into the
range of very short-wavelengths. Utilizing the sparsity prior to
recover the structure of 1D information from the measurement of
its Fourier magnitude also paves the way to sparsity-based phase
retrieval in other applications, including complete diagnostics of
ultrashort pulses, spectroscopy and more.

Results
Simulations. In CDI, the image is algorithmically reconstructed
from the intensity diffraction pattern and some prior information
about the object1–6,40. As we have shown recently, using sparsity
as the prior can be very powerful in CDI29,39. Indeed, it was
proposed in numerical simulations that sparsity can remove the
ambiguity associated with 1D phase retrieval (but without super-
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resolution)25,28,30,41. Moreover, ref. 30, developed a new sparsity-
based phase-retrieval algorithm termed GESPAR (greedy sparse
phase retrieval), which is based on utilizing a fast local search
method42 and optimization of a sparsity-constrained nonlinear
objective function. Here we use GESPAR in CDI.

We first present a simulated example of sparsity-based super-
resolution 1D CDI. Figure 1a shows a signal (which we term the
‘original object’) consisting of seven rectangles with 3-mm width
and different amplitudes and centres (notice that some of the
rectangles overlap). The amplitudes correspond to the optical
transmission function through structured holes made in an
opaque mask. When the mask in illuminated by a plane wave
(or a broad collimated beam), the phase is uniform, hence the
amplitudes have real values (up to some unimportant global
phase). The power spectrum of the original object is shown
in Fig. 1b. As shown in the Supplementary Note 1 and
Supplementary Figs 1–2, the problem of reconstructing the
original 1D object from the power spectrum suffers from
ambiguity that cannot be removed by prior information about
the support of the object. We demonstrate below that sparsity
removes the ambiguity and at the same time facilitates super-
resolution. To demonstrate super-resolution, we truncate the
power spectrum and add 40 dB of white Gaussian noise to obtain
the ‘truncated power spectrum’ emulating a physical measure-
ment in a typical CDI system (Fig. 1c). Reconstruction requires
retrieval of the phase of the spatial spectral field. Figure 1d
displays the object that corresponds to the truncated power
spectrum of Fig. 1c, while assuming that the spectral phase is
known (in this example, the correct phase is simply calculated by
a Fourier transform of the original object (Fig. 1a)). Naturally,
this reconstructed object (Fig. 1d) is a blurred version of the
original object. That is, the incomplete power spectrum leads to
considerable loss of resolution even if the spectral phase is known.
Next, we implement sparsity-based reconstruction on the
truncated spatial power spectrum, without assuming any knowl-
edge on the spectral phase. As a model, we assume that the object
is constructed from a small (unknown) number of the following
basis functions: rectangles of 3-mm width, at positions that are

limited to a particular grid of 1,024 points. The sparsity-based
GESPAR reconstruction algorithm30 finds the number of
rectangles, their locations and their amplitudes from the
truncated power spectrum (Fig. 1c). The reconstructed object is
shown in Fig. 1e by the dashed red curve. Its power spectrum and
spectral phase are displayed in Fig. 1f,g, respectively (dashed red).
To enable comparison, Fig. 1e,f also shows the original object
(solid blue curves). Clearly, the reconstructed object, its complete
power spectrum and its reconstructed spectral phase match the
original object very well, despite the fact that our ‘measured data’
is the noisy, truncated, power spectrum that also lacks any
knowledge on the spectral phase.

Figure 1 demonstrates that sparsity-based super-resolution 1D
CDI is possible. However, it is important to evaluate its
performance. To do that, we test our method on many objects
comprised of random distributions of the rectangles and varying
levels of truncation of the power spectrum (the truncation level, Z,
is defined by the ratio between the maximal ‘measured’ frequency
and the highest frequency of the sampled signal, 1.28 mm� 1).
Figure 2 shows the probability of successful recovery versus
sparsity level, s (number of rectangles), in the original object, for
different truncation levels. Each point in this graph is obtained by
running our reconstruction algorithm over 100 random signals
on a grid of 128 points. We define the reconstruction as successful
if the relative error (defined as RE ¼ x� x̂k k2

xk k2
, where x and x̂ are the

original and recovered signals, respectively), between the original
and reconstructed objects is o0.01. It is important to note that
the upper sparsity limit for successful reconstruction can be
increased by increasing the oversampling30. This plot clearly
shows that the sparsity prior can remove the ambiguity (inherent
to 1D phase-retrieval problems) even if only part of the spectrum
is detected. Moreover, the plot shows that there is a large range of
parameters (sparsity and truncation level) within which GESPAR
reconstruction is reliable.

Experimental example with a binary object. Next, we demon-
strate the concept of sparsity-based super-resolution in 1D CDI in
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Figure 1 | Numerical demonstration of super-resolved 1D CDI. (a) The ‘original’ 1D object which consists of seven rectangular functions of 3-mm width,

with different amplitudes and centres (some rectangles overlap). (b) Power spectrum of the original object. (c) Truncated power spectrum corresponding

to the part used to simulate the measured data, with 40dB noise added. (d) The blurred reconstruction calculated by inverse Fourier transform of the

‘measured’ power spectrum presented in c assuming complete knowledge of the spectral phase. (e) Sparsity-based reconstruction (dashed red) compared

with the original object (solid blue). The reconstruction uses the ‘measured’ power spectrum (of c) and the prior information that the original object is

sparse in the basis of shifted rectangular functions. Extrapolated power spectrum (f) and recovered spectral phase (g) calculated via sparsity-based

reconstruction (dashed red) compared with the original object (solid blue).
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imaging experiments. The experimental set-up is shown in
Fig. 3a. The EUV light is generated using high harmonic
generation. A train of 40-fs-long pulses with central wavelength

of 0.8 mm and 1.5mJ per pulse emerging from a Ti:Sapphire laser
amplifier system at rep rate of 1 kHz is focused into a hollow
planar waveguide (200 mm inner diameter) filled with argon at
22 torr. In this regime, the gas emits a comb of coherent high-
order odd harmonics that can be used for CDI43. A 200-nm-thick
Al film blocks the infrared driving laser. An EUV
monochromator selects a single harmonic-order at lB35 nm.
The imaged object is a 200-nm-thick Zirconium mask, where
5 bars of 2 mm were etched out (see scanning electron microscope
image in Fig. 3a). Zirconium is opaque for this wavelength so the
EUV light is transmitted only through the bars. Hence, the optical
image is made up of the EUV light transmitted through this
mask, which consists of these five stripes. Our EUV source is
spatially coherent and located about 2.5m before the mask,
therefore the assumption of plane wave illumination is valid. The
far-field diffracted light is recoded (25-min exposure time) by an
x-ray CCD camera (1,024� 256 pixels) placed 72 cm after the
mask. The sought information in our object is practically 1D;
hence we integrate the detected intensity pattern along the
uniform (horizontal) dimension (256 pixels). Figure 3b shows the
one-dimensional real-space information calculated by integrating
the scanning electron microscope (SEM) image along the
horizontal axis. Thus, in our experiment, the plot in Fig. 3b
corresponds to the original object. The calculated absolute value
squared of the Fourier transform of the 1D object is shown in
Fig. 3c. Physically, this represents the spatial power spectrum of
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Figure 3 | Experimental demonstration of super-resolution CDI of an effectively one-dimensional object. (a) Experimental Set-up. The imaged

object consists of five stripes, each of 2-mm width, as shown by the scanning electron microscope (SEM) image zoomed-in expanded from the mask.

(b) The real-space 1D object and (c) its spatial power spectrum, that conform to the mask SEM image (shown in a) playing the role of the ‘original’ object.

(d) Measured intensity pattern which approximately corresponds to a truncated power spectrum of c. (e) The blurred object calculated by inverse Fourier

transform of the product: square root of the measured intensity times the correct phase. (f) Sparsity-based reconstruction (dashed red) compared with the

original object (solid blue). (g) Recovered power spectrum and (h) spectral phase calculated through sparsity-based reconstruction (dash red) compared

with these functions calculated by a Fourier transform of the original object.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9209

4 NATURE COMMUNICATIONS | 6:8209 | DOI: 10.1038/ncomms9209 |www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


the 1D object of Fig. 3b. In the experiment, however, we measure
only a fraction of the entire power spectrum, as the far-field
diffraction pattern of the mask is limited by the dimensions of our
CCD camera. The measured truncated spatial power spectrum is
shown in Fig. 3d. Comparing Fig. 3d with Fig. 3c reveals that a
significant part of the spatial power spectrum is lost. Namely, not
only do we detect only the far-field intensity (while completely
missing the Fourier phase information), but in addition our
measured power spectrum is severely truncated. Expectedly, the
object corresponding to the detected (highly truncated) power
spectrum is considerably blurred, even if we assume we do know
the correct spectral phase (Fig. 3e). Indeed, the theoretical
resolution of this image, according to the Nyquist–Shannon
sampling theorem44, is B10mm, while in reality the features (the
bars) are five times narrower: 2-mm wide. Thus, to reconstruct the
original object from the detected spatial spectrum, we need to
retrieve both the lost part of the spectrum and the phase
distribution over the entire spectral span. Our algorithmic
reconstruction, using GESPAR, is displayed in Fig. 3f,g.
Here we assume that the image consists of a small number of
2-mm-wide rectangles that are spanned on a grid with 1,024
points. Clearly, we are able to recover the correct number of bars,
their positions, their amplitudes, the missing part of the spectrum
and the correct phase in both the measured and the absent parts
of the spectrum (the original and reconstructed phase differ
significantly only in the region in which the power spectrum
diminishes). Consequently, while we measured the power

spectrum of the object up to spatial frequency 0.13 mm� 1, we
reconstructed its spatial spectral amplitude and phase with good
fidelity up to 0.46 mm� 1. That is, we increased the bandwidth and
resolution by 3.5 times. This experiment shows that our sparsity-
based super-resolved phase-retrieval reconstruction is robust and
can be implemented under experimental conditions typical in
optical CDI settings. A second experimental demonstration of
super-resolution in our EUV CDI microscope, in this case of a
symmetric object consisting of 7 bars, is shown in the
Supplementary Note 2 and Supplementary Fig. 3.

Figure 3 presents an example of sparsity-based super-
resolution 1D CDI of an object that is sparse in a basis of
rectangles with a known fixed width. One may therefore question
what happens if the widths of the rectangles are known only
approximately. Such a problem can arise in searching and
characterizing defects in microelectronic chips. To this end, we
introduce a second stage in our reconstruction algorithm.
Namely, the first stage corresponds to the algorithm used in
Figs 1–3, which assumes rectangles with constant widths, while
the second stage is more general: it finds the deviations in the
widths of the rectangles from the initially assumed width. For a
detailed description of the second-stage algorithm see the
Supplementary Note 3. Using simulations, we verify that our
algorithm works very well when the uncertainty in the width of
the rectangles (the bars in Fig. 3) is up to 20%. A numerical
example is presented in Fig. 4. The ‘original object’ (Fig. 4a) is
based on the object in Fig. 3, but this time we introduced
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deviations in the widths of the bars. The widths in this specific
example are, from left to right in Fig, 4a—2.4, 1.6, 2.4, 2 and
1.6 mm. The full power spectrum of the original object is shown in
Fig. 4b. Figure 4c displays the truncated power spectrum with
added 35 dB of white Gaussian noise, emulating the CDI
measurement. Figure 4d displays the object that corresponds to
the truncated power spectrum of Fig. 4c (that is, a blurred version
of the original object), while assuming that the correct spectral
phase is known. In this example, since the widths of the bars are
not the same, we expect that the first stage algorithmic
reconstruction would not be able to recover the information
accurately. Indeed, applying our first-stage reconstruction
algorithm (which assumes that the object consists of a small
(unknown) number of rectangles of constant known width of
2 mm), yields the incomplete recovery presented in Fig. 4e–g.
More specifically, the first-stage reconstruction finds the correct
number of rectangles and their approximate positions, but their
amplitudes and, of course, their widths are clearly wrong.
However, when we apply the second-stage algorithm we obtain
the excellent reconstruction show in Fig. 4h–j. The tiny residual
errors in the amplitudes (in Fig. 4h) are due to the noise we added
to the truncated power spectrum.

Experimental example with a smooth signal. Figures 1–4
present examples of sparsity-based super-resolution 1D CDI of

objects that are sparse in a basis of rectangles. Another example,
presented in the Supplementary Note 4 and Supplementary Fig 4,
extends the rectangular basis to a frame that includes rectangles
with several different widths. In principle, our sparsity-based
method works as well with triangles or other choices of localized
waveforms (as demonstrated in the Supplementary Information
of ref. 30). The rectangle basis is appropriate for piecewise-con-
stant objects, but it is not an imperative part of our method. In
fact, our methodology can be used to reconstruct a large variety of
objects, given that the objects have structure and hence they can
be represented compactly in some (rather general) mathematical
basis. This point is highlighted in the next experiment, which
demonstrates super-resolved 1D CDI of a continuous object.
Here we use a frame of shifted Gaussians with different widths:
the basis functions are cn;m ¼ expð� ðx� xnÞ2=DxmÞ, where xn
and Dxm are centres and widths of Gaussians, respectively. This
frame is useful for compact representation of smooth objects with
exponential decay. In the current example, we use xn¼ � 100
þ 20n for n¼ 1, 2, 3,y 20 and Dxm¼ 5þ 5m for m¼ 1, 2, 3,y
10 hence our frame consisted of 200 functions. In this experi-
ment, we use a CDI microscope that uses light from a
He–Ne laser (l¼ 632.8 nm). In addition to the power spectrum,
the microscope also records the real-space image of the object
(a partially transparent film). The experimental set-up and the
recorded real-space image and spatial power spectrum of the
object are shown in Fig. 5a. The sought information in our object
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Figure 5 | Experimental demonstration of sparsity-based super-resolved 1D CDI of a continuous image. (a) Experimental set-up. He–Ne laser is spatially

filtered and collimated by the objective, pinhole and lens L1. The spatially coherent beam illuminates a transmission mask. The spatial power spectrum of

the light going through the mask is measured by a CCD camera positioned at the focal plane of the lens L2 with 100mm focal length. The mask is also

imaged directly using a lens with L3¼ 200mm focal length. (b) 1D object obtained by integrating the real-space image along the uniform direction,

which plays the role of the ‘original’ image. (c) The power spectrum of the original image. (d) The measured power spectrum. The vertical dashed lines

mark a stepwise low-pass filter (LPF) at Kj jr0.0083mm� 1. The ‘measured low-resolution power spectrum’ corresponds to the measured filtered power

spectrum with the LPF. (e) The blurred reconstruction calculated by inverse Fourier transform of ‘measured low-resolution power spectrum’, assuming

complete knowledge of the spectral phase. (f) Sparsity-based reconstruction (dashed red) compared with the original object (solid blue). The

reconstruction uses the ‘measured low-resolution power spectrum’ and the prior information that the original object is sparse in the basis of shifted

Gaussian functions. Extrapolated power spectrum (g) and recovered spectral phase (h) calculated via sparsity-based reconstruction (dashed red)

compared with the original object (solid blue).
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is 1D; hence we integrate the detected intensity patterns along the
uniform (vertical) dimension in the object and Fourier planes
(that is, along y and ky in Fig. 5a). The resulted integration of the
real-space image is shown in Fig. 5b. In our experiment it plays
the role of the original object. The calculated absolute value
squared of the Fourier transform of the original object (which
represents the calculated spatial power spectrum of the original
object) is shown in Fig. 5c. The measured spatial power spectrum
is shown in Fig. 5d. As shown, the measured power spectrum at
very high spatial frequencies is dominated by noise. Thus, the
bandwidth of the measured power spectrum is practically trun-
cated by the noise. To highlight the strength of our technique, we
further truncate the measured power spectrum, by numerically
applying a step function low-pass filter with a cutoff spatial
frequency at 0.0083 mm� 1 (green dashed lines in Fig. 5d).
Figure 5e displays the blurred object that corresponds to the
truncated power spectrum of Fig. 5d, while assuming that the
spectral phase is known (in this example, the correct phase is
simply calculated by a Fourier transform of the original object
(Fig. 5b)). Next, we apply our sparsity-based reconstruction
algorithm (GESPAR) which searches for an object that is repre-
sented most compactly in the Gaussian frame among all the
objects conforming to the measured power spectrum (after the
additional numerical truncation). Our algorithm finds such an
object that is (most compactly) represented by seven functions in
the Gaussian frame. The reconstructed object, along with its
reconstructed power spectrum and spectral phase are shown
in Fig. 5f–h. These results clearly show that sparsity-based
reconstruction works very well despite the fact that the object is a
1D smooth function and that the measured data is noisy,
truncated and lacks any knowledge on the spectral phase. The
spectra of the reconstructed and original objects coincide within a
bandwidth of ±0.037 mm� 1, which corresponds to 4.5 times the
bandwidth of the low pass filter. In other words, Fig. 5 presents
� 4.5 super-resolved 1D CDI.

Summary and outlook. We presented numerical and experi-
mental phase retrieval of 1D signals combined with bandwidth
extrapolation (super-resolution), by employing prior knowledge
that the sought information is sparse in a known basis or in a
mathematical frame. More generally, the sparsity basis should be
selected, or potentially learned, from the actual measured data or
from other available sources, according to the type of objects that
are imaged. Thus, we believe that sparsity-based CDI (for 1D, 2D
and 3D objects) can be very general, as most imaged objects can
be represented compactly in an appropriate basis. In fact, this is
also the logic behind many popular image compression techni-
ques, such as JPEG45. This work paves the way to significant
progress in many other ill-posed problems where 1D signals are
inherent, such as deciphering the complex time-dependent
response functions of materials and structures from spectral
measurements and vice versa.
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