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From coherent shocklets to giant collective
incoherent shock waves in nonlocal turbulent flows
G. Xu1, D. Vocke2, D. Faccio2, J. Garnier3,4, T. Roger2, S. Trillo5 & A. Picozzi1

Understanding turbulent flows arising from random dispersive waves that interact strongly

through nonlinearities is a challenging issue in physics. Here we report the observation of a

characteristic transition: strengthening the nonlocal character of the nonlinear response

drives the system from a fully turbulent regime, featuring a sea of coherent small-scale

dispersive shock waves (shocklets) towards the unexpected emergence of a giant collective

incoherent shock wave. The front of such global incoherent shock carries most of the sto-

chastic fluctuations and is responsible for a peculiar folding of the local spectrum. Nonlinear

optics experiments performed in a solution of graphene nano-flakes clearly highlight this

remarkable transition. Our observations shed new light on the role of long-range interactions

in strongly nonlinear wave systems operating far from thermodynamic equilibrium, which

reveals analogies with, for example, gravitational systems, and establishes a new scenario

that can be common to many turbulent flows in photonic quantum fluids, hydrodynamics and

Bose–Einstein condensates.
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T
he statistical description of nonequilibrium behaviour
of random dispersive waves is well developed in the
weak nonlinear limit, for which wave turbulence theory

provides a powerful tool to interpret observations arising
in contexts as different as ocean waves, quantum fluids, plasmas
and nonlinear optics to name a few1–7. However, when
nonlinearities are strong, such an approach breaks down and
no general theory exists. Therefore, novel scenarios that can be
predicted starting from universal models and observed in real
systems are of paramount importance. In this context, we
explore how shock waves (at variance with other coherent
structures such as vortices, quasi-solitons, collapsing wavepackets
or rogue waves1–3,6–16) affect the turbulent flow of a conservative
system of random optical waves (that is, a photon fluid)
interacting through defocusing (or repulsive) nonlinearities.
As a distinguishing feature, we consider the nonlocal
character of the nonlinearity, which is indeed common to a
large variety of nonlinear wave systems17–32. In such defocusing
media, the generic signature of the strongly nonlinear regime
is the formation of expanding undulatory structures known
as dispersive shock waves (DSWs), which originate from
the dispersion (diffraction) acting over steep fronts33

developing via the nonlinearity. These fascinating DSW
structures34 have been observed from the small scales as in
optics24,35–38 or in Bose–Einstein condensates39–43 to
intermediate hydrodynamic scales44–46, or even long astro-
physical spatial scales47.

In this paper, we report a remarkable transition of the
turbulent flow that occurs in our photon fluid system when
the characteristic range of nonlocality is increased. In the quasi-
local regime, the field evolution is ruled by the stochastic
formation of small-scale DSW structures that we naturally denote
as dispersive ‘shocklets’ (the term shocklet was introduced
to designate sporadic steep fronts reported in high-speed
compressible turbulence48 and as flank formations associated
with planetary-scale shocks in space49). In this regime, wave
breaking occurs at random positions in the turbulent field,
predominantly around high-amplitude fluctuations, leading to a
gas of coherent dispersive shocklets in the midst of turbulent
fluctuations. In marked contrast with such regime, a remarkable
self-organized regime emerges when the nonlinearity becomes
highly nonlocal (long-range interaction). In this case, the
turbulent flow follows an unexpected global collective behaviour
that manifests itself in the formation of a giant shock singularity
that emerges from the fluctuating field as a whole. Such a
phenomenon is characterized by a strong non-homogeneous
redistribution of the spatial fluctuations, whose description is
provided in terms of a hydrodynamic-like model derived from
singular solutions of a long-range Vlasov equation (LRVE).
Our analysis reveals that (i) in marked contrast with coherent
DSWs in conservative (Hamiltonian) systems, the regularization
of the global incoherent shock does not require the formation of a
regular oscillating DSW structure; and (ii) the self-organization
of the turbulent wave ensemble into such a global shock
structure is intimately related to the long-range character of
the interaction, thus revealing interesting links with gravitational-
like systems50,51. We emphasize that this regime is fundamentally
different from other forms of turbulence that are dominated
by inverse or direct cascades1,2,6–8,12, vortex dynamics13, acoustic
turbulence52,53 or from the incoherent undulatory shocks
that manifest solely in frequency domain in the weak Langmuir
turbulent regime54. We directly observe the emergence of
the giant collective incoherent shock phenomenon in an
optical experiment that involves a graphene-based thermal
medium, which allows for a tunable degree of nonlocality in
the system.

Results
Nonlinear Schrödinger model. A nonlocal nonlinearity is found
in several systems (dipolar Bose–Einstein condensates26, roton
excitations in superfluids28, atomic vapours23, nematic liquid
crystals12,18, thermal media24, glasses19–21,25, plasmas27 or
plasmonic metamaterials32) and can be modelled by the
following universal two-dimensional (2D) nonlinear Schrödinger
equation (NLSE):

i@zc ¼ � b
2
r2cþ gc

Z
Uð jr� r0j Þ jc j 2 ðr0; zÞ dr0; ð1Þ

where the dynamics occurs in the transverse plane r¼ (x, y) and z
plays the role of time. The parameters b ¼ 1=kL and g refer to the
linear (dispersive) and nonlinear coefficients, kL being the
laser wave number. We denote by s the spatial extension of
the nonlocal response function U(r), that is, the range of nonlocal
interaction. Equation (1) conserves two important quantities
during the propagation, the ‘power’ N ¼

R
jc j 2 dr, and the

‘energy’ (Hamiltonian) H ¼ E þU ¼ const, where EðzÞ and UðzÞ
denote the evolutions of the linear and nonlinear energy
contributions (see Methods section). The dynamics is ruled
by the comparison of s with the coherence length of the field lc,
and the ‘healing length’ L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ð2 jg jrÞ

p
, where r is

the intensity. The healing length denotes the typical length
scale for which linear and nonlinear effects are of the same
order, for example, the typical size of a soliton or a vortex. In the
following, we focus the presentation on the more interesting 2D
defocusing regime, g40, while the analysis can easily be
transposed to the focusing regime or to one spatial dimension
(Supplementary Note 3).

Local versus nonlocal regimes. The formation of shock waves is
known to require a strong nonlinear interaction24,33–45, that is, the
initial random wave, c0ðrÞ, is such that U0 � E0, where U0 and
E0 refer to the initial values of the energies at z¼ 0 (Fig. 1a). Note
that this condition is analogous to l0c � L, l0c being the initial
coherence length of the random wave, c0ðrÞ. Considering this
strong nonlinear regime, we now contrast the case of a quasi-local
(short-range) interaction, s � L, with a highly nonlocal (long-
range) interaction, s � L. For s � L, the incoherent wave leads
to the formation of several coherent DSWs, which develop within
each individual fluctuation of c0ðrÞ as shown in Fig. 1c,d,f. Since
the range of the nonlocal response is smaller than the coherence
length s � L � l0c

� �
, every individual fluctuation evolves

independently of each other. Hence, in this quasi-local (strong)
turbulent regime, the incoherent wave develops singularities that
are in essence coherent DSWs. These dispersive shocklets can be
regarded as the conservative counterpart of viscous shocklets
considered in high-speed turbulent flows48. Note that the
development of a sea of DSWs manifests itself by a spectral
filamentation process in frequency k-space (Fig. 1e). This is
associated with the strong interaction among DSWs that
emanate from different fluctuations and whose compression
against each other leads to polygon-like patterns featured by
effective one-dimensional (1D) DSW sides (Fig. 1d,f). Also note
that although this shocklets regime occurs in the presence of
wave dispersion (oðkÞ ¼ bk2 from the linearized NLSE), it exhibits
some interesting connections with a long-standing challenging
issue of weakly dispersive acoustic-like wave turbulence52,53

(see Discussion section and Supplementary Note 4).
This physical picture changes in a dramatic way in the highly

nonlocal regime, s � L. This is illustrated in Fig. 1g–l, which
shows the evolution of the field starting from the same initial
condition c0ðrÞð Þ as in the quasi-local regime. In the highly
nonlocal regime, the fluctuations of the incoherent wave exhibit a
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global collective behaviour, which is responsible for the formation
of a large-scale incoherent shock wave of a fundamental different
nature. It is now the incoherent wave as a whole that develops a
shock: the momentum of the speckled beam is radially outgoing
(pNLSðr; zÞ � Iðc�rcÞ oriented along r as illustrated by the
arrows in Fig. 1k) and exhibits a shock-like singularity, while the
envelope of the intensity of the beam experiences an annular
(ring-shaped) collapse-like behaviour (Fig. 1g–l). The fluctuations
of the incoherent wave then result to be pushed towards the
annular shock front, which leaves behind itself an internal region
of the beam with a high degree of coherence. In other terms, the
dynamics is featured by a dramatic degradation of the coherence
properties on the annular boundary of the beam (lc decreases
with z), while its internal region exhibits a significant coherence
enhancement (lc increases with z) (Fig. 1g–l).

We study this peculiar phenomenon through the analysis of
the ‘local spectrum’ (or spectrogram) of the random wave, that is,
a spectrum that depends on the spatial position (r) because the
random wave is characterized by fluctuations that are

inhomogeneous in space. As illustrated in Fig. 1m–o, the
evolution of the spectrogram exhibits a peculiar Z-shaped
distortion, which contrasts with the regular deformation observed
for E0 � U0 (Supplementary Note 1 and Supplementary Fig. 2).
In the strong nonlinear regime, U0 � E0, the spectrogram
exhibits a pronounced self-steepening that leads, nearby the
overtaking point, to a dramatic spectral broadening on the
annular boundary of the incoherent beam, where the coherence
length decreases down to the healing length, lc � L ðE � UÞ.
Here the increase in the linear energy E up to U shown in Fig. 1p
is due indeed to such peculiar process of coherence degradation.
This is in marked contrast to coherent DSWs in Hamiltonian
systems in which such a balance between linear and nonlinear
energies stems from the well-known formation of regular DSW
oscillations24,33–36,38–45.

Singular solutions. We describe theoretically the phenomenon of
large-scale incoherent shock within the general framework of the
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Figure 1 | Dispersive shocklets versus giant incoherent shock. (a,b) Numerical simulations of the NLSE (1) starting from the incoherent wave j c0 j 2 ðrÞ
(a) in the strong nonlinear regime, U0 � E0; (b) the spectrogram corresponding to this initial condition. (c–f) In the quasi-local regime s ¼ 2L, the
incoherent wave intensity develops a sea of dispersive shocklets (c,d), as evidenced by the formation of several DSWs (see zoom (f) of the red box in

d, and the spectral filamentation in e). (g–o) Starting from the same initial condition (a), in the highly nonlocal regime s ¼ 100L, the random wave as a

whole develops a giant collective incoherent shock (j–l); the corresponding intensity lineouts y¼0 (g–i) indicate an annular collapse-like behaviour.

(m–o) Corresponding spectrogram evolutions of the incoherent shock: the Z-shaped distortion reveals a dramatic coherence degradation on the annular

boundaries of the beam (the correlation length decreases at the shock front, lc;shock � 1=Dkshock), while a significant coherence enhancement occurs in the

internal region of the beam (lc;inner � 1=Dkinner increases). (p) Evolutions during the propagation of the linear (E, green) and nonlinear (U , red)
contributions to the total energy (constant Hamiltonian, H, dashed blue): The incoherent shock develops in the strongly nonlinear regime U � Eð Þ. The
propagation length in the sample, z, is in units of the nonlinear length, L0 ¼ 1=ðgrÞ.
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wave turbulence formalism. The wave turbulence theory has been
shown to provide a natural asymptotic closure of the hierarchy
of moment equations for a system of weakly nonlinear dispersive
waves3–5. On the basis of a generalized wave turbulence approach
of the problem, we show that the appropriate statistical
description of the large-scale incoherent shocks is provided by a
collisionless LRVE14,55. Note in this respect that resonant four-
wave interactions described by a collision term are still present in
the long-term evolution of the system, although in the long-range
regime their influence on the dynamics results of higher order
with respect to the LRVE dynamics, see Methods section.

The long-range Vlasov formalism discussed here differs from
the traditional Vlasov equation describing random waves in
hydrodynamics8,15,16, plasmas27 or optics, such as, for example,
incoherent modulational instabilities14,56, or the collective
clustering of incoherent solitons with inertial nonlinearities57.
On the other hand, the structure of the LRVE is analogous to that
describing systems of particles with long-range, for example,
gravitational, interactions50,51. Contrary to conventional
weak-turbulence approaches1,2,6,7,58, we show that the LRVE is
valid beyond the weakly nonlinear regime of interaction:
Simulations of incoherent shocks in the strong nonlinear
regime U0 � E0ð Þ reveal a quantitative agreement between
LRVE and NLSE models without adjustable parameters (Fig. 2
and Supplementary Fig. 6).

We show in the Supplementary Note 2 that, if the initial
condition is strongly nonlinear U0 � E0ð Þ, the momentum of the
incoherent wave results to be radially outgoing, so that the 2D
LRVE remarkably reduces to an effective 1D equation:

@z ňkðr; zÞþbk@r ňkðr; zÞ� @rV@k ňkðr; zÞ ¼ 0; ð2Þ
where ňk(r, z) is the local averaged spectrum of the field at radial
position r¼ |r|, Vðr; zÞ ¼ g

�
ð2pÞ2

R1
0

~Uðr; r0ÞŇðr0; zÞdr0, with

~Uðr; r0Þ ¼
R 2p
0 Uððr2 þ r02 � 2rr0cosyÞ

1
2Þdy an effective radial

response function and Ňðr; zÞ ¼
R1
0 ňkðr; zÞdk ¼ rNðr; zÞ,

see Methods section. A simulation of equation (2) is reported
in Fig. 2a–d, which confirms the peculiar folding of the
spectrogram discussed above through NLSE simulations in
Fig. 1m–o. Physical insight into the strongly nonlinear regime
can be obtained through solutions of equation (2) with extremely
narrow spectral distribution, ňk(r,z)¼ Ň(r, z)d(k–K(r, z)), where
the ‘particle density’ Ň(r, z) and ‘momentum’ K(r, z) satisfy the
following hydrodynamic-like model.

@zK þ bK@rK þ @rV ¼ 0; ð3Þ

@zŇ þ b@rðŇKÞ ¼ 0: ð4Þ
We remark that, from a broader perspective, the general
class of singular solution considered here are sometimes called
‘mono-kinetic’ (or single speed), in the sense that to each
spatial position (r, z) corresponds a unique well-defined spectral
(velocity) component (k, z) (ref. 51). This special form of singular
solutions introduced in ref. 59 are important in that they make a
direct correspondence with a generic hydrodynamic formalism,
a property that found fundamental implications in a large variety
of long-range interacting systems, for example, self-gravitating
systems, 2D geophysical fluids, collisionless plasma or more
generally wave–particle interactions50,51.

Numerical simulations of equations (3) and (4) are found in
quantitative agreement with those of NLSE and LRVE equations,
without using any adjustable parameter, as remarkably illustrated
in Fig. 2e–n. Starting from K(r,z¼ 0)¼ 0, the ‘spectrogram’
K(r, z) is first driven by the last nonlinear term in equation (3),
while the Burgers-like (second) term of equation (3) subsequently
leads to the gradient catastrophe of K(r, z). Quite remarkably, the
finite ‘time’ (distance, z) shock singularity of K(r, z) is responsible
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Figure 2 | Incoherent shock and annular collapse singular behaviours. (a–d) Evolution during the propagation of the spectrogram ~nkðr; zÞ ¼ ňkðr; zÞ=ðrkÞ
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maxr(@rK(r, z)) (n), are in agreement with the power law predicted by the theory B(zN� z)� 1, where zN denotes the blow-up propagation length, see

equation (5) (dark-dashed). The propagation length z is in units of L0. The NLSE simulation in e–n refers to the radial averaging of the results reported in

Fig. 1j–l. The quantitative agreement between NLSE, LRVE and hydrodynamic models in e–n is obtained without using adjustable parameters (see Methods

section).
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for an annular blow-up singularity of the intensity envelope
Ň(r, z) on the circular boundary of the incoherent beam. These
singular behaviours can be described theoretically by solving
equations (3) and (4) by the method of the characteristics, which
shows that the gradient of the spectrogram and the intensity
envelope along a characteristic R(z) exhibit a blow-up singularity
at the finite ‘time’ zN (see Methods section):

@rKðRðzÞ; zÞ � � 1
z1 � z

; ŇðRðzÞ; zÞ � 1
z1 � z

: ð5Þ

The tendency to diverge as Bz� 1 occurs regardless of the
dimensionality of the problem that is, also in 1D (Supplementary
Note 3 and Supplementary Figs 5 and 6), and has been confirmed
by the simulations shown in Fig. 2i,n. Such dynamics becomes
regularized by the NLSE and LRVE models, although an accurate
description of the underlying regularization mechanism is
hindered by a long-standing mathematical problem, namely,
achieving a closure of the infinite hierarchy of k-moments
equation for kinetic theories, see Methods section(Supplementary
Note 3 and Supplementary Fig. 7).

We emphasize that the ‘hydrodynamic’ model equations (3)
and (4) recovers the 1D shallow-water equations under the
substitution V(r, z)-Ň(r, z) (refs 33,40). Note that, in the optical
context, this limit is relevant to the description of incoherent
wave propagation in inertial nonlinear media14,56,57. However,
shallow-water equations are hyperbolic equations that are known
to not exhibit collapse singularities: the annular collapse
singularity of the field intensity in equations (3) and (4)
originates into the nontrivial nonlocal coupling between the
effective potential, ~Uðr; r0Þ and the ‘particle density’, Ň(r, z) (see
the expression of V(r, z) below equation (2)). Note that, in one
spatial dimension, such a coupling reduces to a convolution, and
the system still develops finite-time collapse and shock
singularities (Supplementary Note 3 and Supplementary Figs 5
and 6).

Experiments. We performed a series of experiments that provide
evidence of both regimes of incoherent shocks and dispersive
shocklets by varying the effective range of nonlocality in the
nonlinear material. As illustrated in the experimental set-up in
Fig. 3, the beam from a continuous wave laser (532 nm) is sent
through a 4-f telescope. A ground-glass plate is placed in the
focus of the first lens of the telescope, which creates a speckle
pattern at the input of the sample. Notice that this initial speckle
beam does not need to satisfy specific (for example, Gaussian)
statistics because the incoherent shock phenomenon occurs
irrespective of the wave statistics—a property justified by the
fact that the LRVE formalism accurately describes the strongly
nonlinear regime of interaction. The beam radius in the absence
of the ground plate, and at the sample input window is 2.3mm.
The size of the speckles (that is, the coherence length of the
random speckle pattern) at the sample input can be controlled by
changing the beam size on the ground-glass plate, for example, by
changing the beam size at the telescope input with an iris or,
more simply, by shifting the position of the ground-glass plate
along the beam propagation axis (Supplementary Note 1 and
Supplementary Fig. 4). After the sample, the beam is imaged onto
a CCD camera.

The liquid in the sample exhibits a thermal nonlocal
nonlinearity that originates from a laser-induced heating of the
liquid. The nonlinearity is intrinsically nonlocal due to heat
diffusion and usually defocusing as a result of the negative
thermo-optic coefficient (dn/dTo0). The nonlinear coefficient
can be enhanced by including a highly absorbing dye (rhoda-
mine24 or iodine). In our experiments, we chose a dilute solution
of graphene nanoscale flakes that provides optimal conversion of

absorbed laser energy into heat because of the absence of any
fluoresence mechanisms. The medium exhibits very low
absorption, which entails a highly nonlocal (long range)
interaction, a property that has been exploited to study the
incoherent shock phenomenon. The measured absorption
coefficient is a¼ 0.013 cm� 1, so that the nonlocal length is in
the range sB400 mm (ref. 24), an estimate that should be
considered as lower bound, since in extended media, such as ours,
the nonlocal length may be significantly larger, sB900mm
(Supplementary Note 1; ref. 22). Note that, despite the presence
of absorption, the nonlinear system behaves essentially as a
conservative (Hamiltonian) system, since the characteristic
absorption length (C76.9 cm) is much larger than the sample
length (15 cm) and the nonlinear length (C0.04 cm). The
corresponding measured refractive index change is
DnC� 2� 10� 4 at maximum input power (2.5W) of the
laser, which gives LB5 mm. Considering typical values of the
correlation length of the speckle beam, l0c � 200mm, we obtain
the scale separation required for the observation of incoherent
shocks, s4l0c � L (see Methods section and Supplementary
Note 1 for more details).

Figure 4a–f reports typically measured output intensity
patterns of the optical beam. As the input power is increased,
we clearly see an annular reshaping of the speckled beam, with
high-frequency components piling up on the boundaries, whereas
low-frequency components dominate the internal region of
the beam. This is confirmed by the corresponding y¼ 0 lineouts
in Fig. 4a–c, which evidence the formation of two lateral
high-intensity peaks, as predicted by the collapse behaviour.
The corresponding spectrogram measurements reported in
Fig. 4j–l were obtained by measuring the far-field of the optical
beam for several different x-positions. The singular distortion of
the spectrograms provides a clear experimental signature of the
phenomenon of incoherent shock. We also performed experi-
ments in other liquids (for example, ethanol) and obtained
similar results. Moreover, reducing the initial coherence length
l0c
� �

leads to a substantial different dynamics with no evidence of
incoherent shock formation (Supplementary Figs 1 and 2).

The simulations of NLSE (1) have been performed by following
the model developed in ref. 24, in which an effective 2D reduction
of the three-dimensional (3D) heat equation is used to describe
the thermal nonlinearity (Supplementary Note 1). Several
works highlighted the role of remote boundary conditions of
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continuous wave (532 nm) laser is sent into the nonlinear material through
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the thermal nonlinear sample in the dynamics of soliton
propagation by considering the complete 3D heat equation19–21.
In this respect, despite the fact that the nonlinear response
function is in principle ‘infinite range’, the analysis revealed that
in actual experiments the response function can be accurately
characterized by an effective well-defined finite range22. The 2D
reduction of the heat equation considered here precisely accounts
for such an effective finite nonlocal range, s (refs 18,24). In this
way, we model the experiment by the universal form of the NLSE
(1), in which the nonlocal response function does not depend on
the propagation (time) variable, z, in the present case,
U(r)¼K0(r/s)/(2ps2), where K0( � ) refers to the modified
Bessel function of the second kind (Supplementary Note 1).
It is interesting to note that, in spite of the simplicity of
the 2D NLSE model (1) (for example, it does not account for
heat-induced convection of the liquid, which is responsible for
the up–down asymmetry in Figs 4 and 5), this model captures the
essential phenomenological behaviour observed experimentally,
as revealed by the qualitative agreement between the simulated
intensity patterns (Fig. 4g–i and Fig. 5e–h) and spectrograms
(Fig. 4m–o) with the experimental results.

In order to demonstrate that the emergence of such collective
incoherent structure is ultimately linked to the long-range regime
of interaction, we have made a second series of experiments to
investigate the development of dispersive shocklets from a
speckled beam. To this end, we significantly increased the
concentration of graphene nano-flakes so as to increase the

absorption (aC1.7 cm� 1), and thus reduce the nonlocal range of
interaction by one order of magnitude, see Methods section. In
order to inhibit long-range collective effects, the correlation
length of the input speckle beam has to be chosen much larger
than the nonlocal range, l0cð� 250mmÞ � sð� 70mmÞ. As
illustrated in Fig. 5a–d, each individual speckle of the incoherent
beam develops its own DSW, which leads to the formation of
regular undular patterns, whose typical spatial period has been
found in good agreement with the corresponding NLSE (1)
simulations. As expected from the previous analysis, experiments
realized with a smaller correlation length lead to an effective
global behaviour characterized by a strong interaction among the
different speckles, which strongly reduces the development of
DSWs within each individual speckle of the input beam
(Supplementary Fig. 3). For more details on the experimental
results, in both short- and long-range regimes, and the
corresponding NLSE simulations, see Supplementary Note 1.

Discussion
We have reported a novel scenario of strongly nonlinear
turbulent flows characterized by the emergence of a large-scale
incoherent shock, which is inherently a collective phenomenon of
the turbulent field as a whole. This strongly nonlinear turbulent
regime is of a fundamental different nature than other forms of
turbulence, which are dominated by nonequilibrium stationary
cascades1,2,6–8,12, or deeply affected by localized nonlinear
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Figure 4 | Experimental observation of incoherent shock waves (long-range regime). (a–f) Beam profiles of the output intensity taken at low power

P¼0.05W (d), P¼ 1.25W (e) and P¼ 2.5W (f); corresponding intensity lineouts (at y¼0) (a–c). Note that negligible linear diffraction occurs within the

sample, so that the output profile in d in the linear regime (low power) also corresponds to the input profile at z¼0. The asymmetry in the lower part of

the beam is due to convection within the sample. (g–i) Numerical simulations of NLSE (equation (1)) performed with the experimental parameters

(l0c � 200 mm, L¼4mm, s ¼ 590 mm). (j–o) Spectrogram signature of incoherent shocks: Experimental (j–l) and numerical (m–o), spectrograms

retrieved from the lineouts y¼0 (see Methods section). As the pump power increases, the spectrogram evidences the development of a shock singularity

on the annular boundary of the beam, as predicted by the hydrodynamic model (3–4) (Fig. 2e–n).
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structures, such as solitonic turbulence7,12, or entangled vortices
in superfluid turbulence13. By varying the range of the nonlocal
thermal nonlinearity over one order of magnitude, a remarkable
qualitative agreement has been obtained between the
experimental results and the simulations of the NLSE model
based on a 2D reduction of the heat equation. Despite such a
qualitative agreement, it would be interesting to generalize the
theory by considering the whole 3D Poisson equation describing
heat diffusion also along the optical propagation axis20,21. This
would lead to the unusual and interesting situation in which the
long-range potential in the Vlasov formalism would depend itself
on the ‘temporal’ z variable, a property that would introduce
intriguing unexplored collective behaviours of the turbulent flow.

We also briefly comment an interesting connection between
the coherent shocklets regime reported here and a long-standing
challenging issue inherent to weakly dispersive turbulent
systems52,53. At variance with strongly dispersive wave systems
that can be accurately described by the wave turbulence theory1–7,
a proper kinetic formulation of random nonlinear waves that
exhibit weak acoustic-like dispersion constitutes a difficult
problem that has been the subject of important developments
in the past1,2,52,53. The first serious attempt of an analytical
description of a ‘semi-dispersive’ wave turbulence was reported
in ref. 52. Basically, the theory accurately describes how energy
is shared along ‘rays’ in the frequency domain, that is, between
wave vectors with the same orientation in k-space; however, it
does not describe how energy is redistributed between distinct
neighbouring rays. The foundation for an evaluation of the
contribution to energy exchange that occurs at higher orders was
formulated theoretically in ref. 53. This leaves unanswered an
open challenging issue2,53: Given an initial anisotropic spectral
distribution of the weakly dispersive random wave, one may
wonder whether the nonlinear interactions of the next order lead
to a spectral isotropic redistribution or to condensation along
specific rays in k-space. In the light of this problem, we have
performed NLSE simulations in the presence of weak dispersion
(Bogoliubov regime), which reveal that, locally, the spectrum can
exhibit some remarkable effects of spectral star formation and ray

condensation in k-space, although their properties and
underlying mechanisms depend on the nature of the random
fluctuations as well as the dispersive properties of the waves
(Supplementary Note 4 and Supplementary Figs 8–13). These
preliminary simulations open an array of interesting questions,
which will be considered in future works specifically devoted to
this important issue of acoustic turbulence.

From a broader perspective, our photon fluid system can be
viewed as a general platform for the experimental study of this
acoustic turbulent regime. Furthermore, thanks to its widely
tunable degree of nonlocality, it also opens the door to the
experimental study of a variety of collective incoherent wave
phenomena. We briefly comment here the applicability to
extreme wave events, also called rogue, killer or freak
waves15,46,60. Although these phenomena have been shown to
emerge from a turbulent state, so far, the rogue wave itself has
been always considered as being inherently a coherent localized
entity. Here, by considering the shock and collapse singularities in
the focusing regime go0ð Þ, we may expect that the incoherent
wave as a whole would lead to the formation of an extreme
high-amplitude event, a feature that would be interpreted in
analogy with an incoherent rogue wave phenomenon. Works are
in progress in order to study the existence and the spontaneous
emergence of this novel form of extreme events from a turbulent
state of the field. The experimental study requires a highly
nonlocal focusing nonlinearity, while usual pure liquids exhibit a
defocusing thermal nonlinearity. Interestingly, however, a
focusing thermal nonlinearity can be achieved by exploiting the
Sôret effect in nanoparticle suspensions, which would thus couple
the nonequilibrium behaviour of the turbulent field with the
thermophoretic motion of the particles in the liquid30,31. Along
these general lines, it would also be interesting to consider the
relevance of the global collective phenomenological behaviours
reported here within the general framework of opto-fluidics61. In
this respect, while optical manipulation in strongly scattering
densely packed (for example, biological) suspensions is usually
considered impossible, a recent work demonstrated that some
controlled manipulation of opaque suspensions can be achieved
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Figure 5 | Observation of dispersive shocklets from a speckled beam (short-range regime). (a,b) Experimental beam profiles of the output intensity

recorded at low power P¼0.05W (linear propagation) (a) and P¼ 2.5W (b). (c,d) Zooms on details of b that evidence the development of several DSW

patterns. (e,f) Numerical simulations of NLSE equation (1) performed with the experimental parameters (l0c � 250 mm, L¼ 3 mm, s ¼ 59 mm), and

corresponding zooms (g,h). As revealed by the zooms, a qualitative agreement is obtained between the experimental and numerical DSW periodic

patterns. Note that simulations with s4150 mm do not reveal the formation of DSWs, which confirms the effective short-range regime of interaction in the

experiment (Supplementary Note 1).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9131 ARTICLE

NATURE COMMUNICATIONS | 6:8131 | DOI: 10.1038/ncomms9131 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


through the formation of a large-scale shock of nanoparticle
concentration62. The long-range kinetic formalism developed
here could be relevant to shed new light on the complex nonlinear
mechanisms, which underlie this interesting example of highly
nonlocal and diffusive opto-fluidic system.

Furthermore, considering the universality of the NLSE, these
collective nonequilibrium behaviours find applications in a
multitude of disciplines in nonlinear science. Moreover, such
large-scale incoherent singularities can also develop in the
temporal domain, thanks to a noninstantaneous (instead of
nonlocal) response function. At variance with spatial nonlocality,
temporal nonlocality is characterized by a response function that
is constrained by the causality condition14,63, which breaks the
Hamiltonian structure, and thus introduces collective incoherent
shocks and collapses phenomena of a different nature than
those reported here. Then in addition to nonlocal wave
systems discussed above through (refs 17–20,23–27), our
work is also relevant to many physical systems involving a
radiation–matter interaction featured by a finite-time nonlinear
response.

Methods
Formalisms. The NLSE (1) conserves the power N ¼

R
jcj2 dr, and the Hamil-

tonian, H ¼ E þU , which has a linear contribution EðzÞ ¼ b
2

R
j rcðr; zÞ j2 dr, and

a nonlinear contribution, UðzÞ ¼ g=2
R R

jcðr; zÞ j 2 Uðj r� r0 jÞ j cðr0; zÞ j2 drdr0 .
The LRVE describes the evolution of the averaged local spectrum of the
wave: In two dimensions (D¼ 2) it reads, @znkðrÞþ @k ~okðr; zÞ � @rnkðrÞ�
@r ~okðr; zÞ � @knkðrÞ ¼ 0, where the local spectrum, nk(r, z), is the Wigner-like
transform of the correlation function, nkðr; zÞ ¼

R
Bðr; n; zÞexpð� ik � nÞdn with

Bðr; n; zÞ ¼ cðrþ n=2; zÞc�ðr� n=2; zÞh i and �h i denotes an average over the
realizations14. The generalized dispersion relation is ~okðr; zÞ ¼ oðkÞþVðr; zÞ,
where Vðr; zÞ ¼ g

�
ð2pÞ2

R
Uðj r� r0 jÞNðr0; zÞdr0 is the effective potential,

Nðr; zÞ ¼
R
nkðr; zÞdk is the envelope intensity, and oðkÞ ¼ bk2=2.

Assuming initial radial symmetry, the general solution of the LRVE depends
on r¼ |r|, k¼ |k| and the angle cosy¼ k � r/(kr), namely, nk(r, z)¼ nk(r, y, z).
However, we show in Supplementary Note 2 that, if the initial condition is
strongly nonlinear U0 � E0ð Þ, the solution of the 2D LRVE takes the form
nkðr; y; zÞ ¼ ~nkðr; zÞdðyÞ for z40, that is, the local momentum is radially
outgoing, pðr; zÞ ¼

R
knkðr; zÞdk=Nðr; zÞ ¼ pðr; zÞr=r. It turns out that the

dynamics is described by the effective 1D LRVE (2) for the local spectrum
ňkðr; zÞ ¼ kr ~nkðr; zÞ, where Vðr; zÞ ¼ g

ð2pÞ2
R1
0

~Uðr; r0ÞŇðr0; zÞdr0 , with

~Uðr; r0Þ ¼
R 2p
0 Uððr2 þ r02 � 2rr0cosyÞ

1
2Þdy, Ň ¼

R1
0 ňkðr; zÞdk ¼ rNðr; zÞ, and

Nðr; zÞ ¼
R1
0 ~nkðr; zÞkdk (Supplementary Note 2).

The momentum, K(r, z), in Fig. 2j–n has been calculated as follows: for the
NLSE, KNLS(r, z)¼ pNLS(r, z) � r/r, where pNLSðr; zÞ ¼ ð2pÞ2Iðc�rcÞ=Nðr; zÞ
refers to the local momentum of the stochastic field cðr; zÞ; for the
LRVE, KVlasðr; zÞ ¼

R
kňkðr; zÞdk=Ňðr; zÞ. The simulations in Figs 1 and

2 have been performed with a Gaussian-shaped response function,
UðrÞ ¼ expð� r2=ð2s2ÞÞ=ð2ps2Þ.

In order to compare the simulations of the NLSE and LRVE models, we
normalized the fields with respect to the size of the numerical window (L¼ 1,200L
in Figs 1 and 2). As discussed in the main text, a quantitative agreement has been
obtained between NLSE and Vlasov simulations even in the strongly nonlinear
regime. As far as we know, there is no rigorous proof of the validity of the LRVE in
the strongly nonlinear regime. This fact may be qualitatively interpreted by using
arguments similar to those of refs 55,64, in which it was shown that Gaussian
statistics is preserved during the nonlinear evolution of the system.

Influence of the collision term on LRVE. The simulations reveal that in the
highly nonlocal (that is, long range) regime of interaction, s=L � 1, the
dynamics of a random wave characterized by a non-homogeneous statistics is
dominated by the LRVE, which indicates that the wave turbulence collision term
is of higher order. This can be interpreted by considering the following
collision term in the rhs of the LRVE, Coll½nk 	 ¼ g2=b

R R R
Qðnk ; nk1 ; nk2 ; nk3 Þ

T2
k123 dðk1 þ k2 � k3 � kÞdðk21 þ k22 � k23 � k2Þdk1dk2dk3 where Qðnk ; nk1 ;

nk2 ; nk3 Þ ¼ nk1nk2nk3nk ðn� 1
k þ n� 1

k3
� n� 1

k2
� n� 1

k1
Þ while the tensor Tk123

accounts for the nonlocal interaction1,6,14, Tk123 ¼ 1
4 ð~Uk1 þ ~Uk2 þ ~U31 þ ~U32Þ, with

~Uij ¼ ~Uðki � kjÞ, and ~UðkÞ the Fourier transform of the response function U(r). A
qualitative analysis of the LRVE reveals that the typical nonlinear propagation
length scale is of the order lVlas � L0ðs=LÞ (ref. 65). On the other hand, the
collision term slows down the dynamics by a factor of order equal to or larger than
ðs=LÞ2 : lnonlocColl \llocCollðs=LÞ

2 (ref. 14), where llocColl is the nonlinear propagation
length scale of the local collision term (U(x)-d(x), and thus Tk123¼ 1).

Considering a mode of the order kB1/L, we have typically llocColl � L0, so that
lnonlocColl \lVlasðs=LÞ. Then in the long-range regime, s=L441, the collision term is
of higher order with respect to LRVE (note that llocColl � L0 should be considered as
a lower bound, since llocColl increases for higher modes k441/L required to verify
the weakly nonlinear regime of interaction, onl=olin ¼ 1=ðk2llocCollÞoo1 (ref. 3)). In
the highly nonlocal configuration of the experiment, we have s=LI2�102 (Fig. 4),
which indicates the irrelevance of the collision term to describe the experimental
results in the long-range regime. Note that in the limit of a local interaction, the
generalized collisional Vlasov equation recovers the form of the kinetic equation
recently considered in ref. 8 to study the stability of Kolmogorov–Zakharov spectra
of turbulence.

Finite ‘time’ singularities. We made use of the method of the characteristics to
solve analytically the ‘hydrodynamic’ model (3–4). The quantities w(z)¼K(R(z), z),
tðzÞ ¼ @zKðRðzÞ; zÞ, xðzÞ ¼ @rKðRðzÞ; zÞ, and fðzÞ ¼ ŇðRðzÞ; zÞ can be shown to
satisfy: @zRðzÞ ¼ bwðzÞ with R(0)¼ r0; @zwðzÞ ¼ tðzÞþ bwðzÞxðzÞ with w(0)¼ 0,
while

@ztðzÞ ¼ � @2
zrVðRðzÞ; zÞ� bxðzÞtðzÞ; tð0Þ ¼ � @rVðr0; 0Þ; ð6Þ

@zxðzÞ ¼ � @2
r VðRðzÞ; zÞ� bx2ðzÞ; xð0Þ ¼ 0: ð7Þ

@zfðzÞ ¼ � bxðzÞfðzÞ; fð0Þ ¼ Ňðr0; 0Þ: ð8Þ
We note that V(r, z) and its r-derivatives are uniformly bounded:
c� 
 @2

r Vðr; zÞ 
 cþ , where c� ¼ gNm�with mþ ¼ maxð@2
r
~Uðr; r0ÞÞ and

m� ¼ minð@2
r
~Uðr; r0ÞÞ. If c_Z0, then dx=dz 
 �bx2 and xðzÞ blows up in finite

‘time’. If c_o0, then dx=dz 
 � c� � bx2, so that whenever xðzÞ reaches
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� c� =b

p
, then xðzÞ also blows up in finite ‘time’. Remarking furthermore that

fðzÞ ¼ Ňðr0; 0Þexpð�b
R z
0 xðsÞdsÞ from equation (8), we obtain the singular

behaviours of xðzÞ and fðzÞ given in equation (5) just before z¼ zN:
@rKðRðzÞ; zÞ ’ � 1=ðbðz1 � zÞÞ, N(R(z), z)Cr0N(r0, 0)/(RN(zN–z)), while w(z)
and R(z) converge to some finite limits, w(z)-wN, R(z)-RN. Note that the
analysis can be extended to the focusing regime go0ð Þ, where the singularity occurs
at the centre of the beam (r¼ 0).

Regularization and closure. The finite ‘time’ singularities (5) described by the
hydrodynamic model (3–4) are regularized by the NLSE and LRVE equations. The
spectrogram ňkðr; zÞ evolves in the 2D phase-space (r, k) and can thus become
‘multi-valued’ (Fig. 2 and Supplementary Fig. 7). However, the derivation of
reduced equations describing the regularization of the singularities (5) is a difficult
task fundamentally related to a long-standing mathematical problem, namely
achieving a closure of the infinite hierarchy of equations that govern the evolutions
of k-moments in transport kinetic equations. Note that the wave turbulence closure
is justified in the weakly nonlinear regime1,2,6,7, while the closure considered here
concerns the opposite strongly nonlinear regime. We address this problem of
regularization in the Supplementary Note 3 through the analysis of higher-order
truncations of the hierarchy (Supplementary Fig. 7). Our study reveals that all
higher-order k-moments suddenly become of the same order of magnitude nearby
the singularities (5), which prevents a closure of the infinite hierarchy and thus a
reduced description of the dynamics beyond the incoherent shock point. Also note
that in the context of self-gravitating systems, a weak diffusive effect has been
introduced in a pure phenomenological way in order to regularize the wave
breaking shock singularity described by the inviscid Burgers equation, thus leading
to the so-called ‘adhesion model’66. To our knowledge, no rigorous theory has been
developed to justify such an heuristic approach51.

Experiments. For the incoherent shock experiment, Fig. 4, the sample is a 15-cm-
long, 2-cm-diameter cylindrical tube, with anti-reflection (at 532 nm)-coated
windows, and is filled with a solution of methanol and graphene nano-flakes. The
graphene flakes have strongly subwavelength dimension (an average thickness of
7 nm, Graphene Supermarket) and thus do not induce significant scattering of
light. They do, however, induce additional absorption and then release the
absorbed energy to the surrounding liquid in the form of heat—less than 20%
measured absorption over the whole sample length has been measured
a ¼ 0:013cm� 1ð Þ. For the dispersive shocklets experiment (Fig. 5), the con-
centration of graphene flakes has been increased (DnC� 4� 10� 4) so as to
increase absorption a ¼ 1:7cm� 1ð Þ, and thus reduce the nonlocal range. Note that,
due to such a strong absorption, the optical power transmitted through the sample
is significantly reduced in the dispersive shocklets experiment, so that the sample
length has been reduced to 1 cm. Although light absorption during propagation is
no longer negligible, its impact on the dynamics is still perturbative with respect to
nonlinear effects, Lnlð’ 0:02cmÞ � Lað’ 0:58cmÞ. According to the scaling s /
1=

ffiffiffi
a

p
(ref. 24), the nonlocal range has been reduced by one order of magnitude in

the coherent shocklets experiment as compared with the incoherent shock
experiment. This important reduction of the nonlocal range has been confirmed by
a direct comparison between the experiments and the NLSE simulations, in which
the precise value of s has been adjusted to reproduce the experimental results: A
minimum value of s4500mm is required in order to simulate the collective
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behaviour of the incoherent shock experiments, while accurate simulations of the
dispersive shocklets experiments require a significant reduction of the nonlocal
length, typically s480 mm (Supplementary Note 1 and Supplementary Figs 1–3).
The measurement of the experimental spectrogram (x–kx) in Fig. 4j–l has been
performed by recording the far-field spectrum of the optical beam for several
different x-positions and by keeping fixed the y-position and the pump power. For
more details on the experimental results and corresponding numerical NLSE
simulations, see Supplementary Note 1.

Data availability. All relevant experimental data present in this publication can be
accessed at doi: 10.17861/fd97bbaa-af4f-4ce2–818c-dfb032b5229c.
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