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Abnormal splicing switch of DMD’s penultimate
exon compromises muscle fibre maintenance in
myotonic dystrophy
Frédérique Rau1, Jeanne Lainé1,2, Laetitita Ramanoudjame1, Arnaud Ferry1, Ludovic Arandel1, Olivier Delalande3,

Arnaud Jollet1, Florent Dingli4, Kuang-Yung Lee5,6, Cécile Peccate1, Stéphanie Lorain1, Edor Kabashi7,

Takis Athanasopoulos8, Taeyoung Koo8, Damarys Loew4, Maurice S. Swanson5, Elisabeth Le Rumeur3,

George Dickson8, Valérie Allamand1, Joëlle Marie1 & Denis Furling1

Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-

retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of

RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction.

Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of

DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an

embryonic dystrophin in place of the adult isoform. Forced expression of embryonic

dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and

muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces

muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarco-

plasmic masses or Z-band disorganization, which are characteristic features of dystrophic

DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78

compromises muscle fibre maintenance and contributes to the progressive dystrophic

process in DM1.
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M
yotonic Dystrophy type 1 (DM1), one of the most
common neuromuscular disorders in adults, is
characterized at the skeletal muscle level by progressive

weakness, wasting and myotonia. DM1 is an autosomal
dominant disorder caused by an expanded CTG repeat in the
30-untranslated region of the DMPK gene1–3, in which the
expression of pathogenic RNA leads to muscular dysfunction. It
has been shown that CUG-expanded RNAs (CUGexp-RNAs)
are retained in nuclear aggregates and alter the activities of
Muscleblind-like (MBNL) and CELF1 RNA-binding factors
involved in the regulation of alternative splicing during
development4–10. Notably, functional loss of MBNL proteins
due to their sequestration by nuclear CUGexp-RNA results in the
abnormal embryonic splicing pattern of a subset of pre-mRNAs
in DM1. Among them, missplicing of CLCN1, INR, PKM,
CACNA1S and BIN1 pre-mRNAs have been associated with
myotonia, insulin resistance, perturbed glucose metabolism and
muscle weakness, respectively, all symptoms of DM1 (refs 11–16).
Additional splicing misregulation events have been described in
skeletal muscles of DM1 patients; however, their consequences
on muscle function remain largely unknown. For instance,
abnormal splicing regulation of DMD exon 78 that leads to the
re-expression of an embryonic dystrophin isoform and strongly
correlates with muscle disease severity in DM1 patients17,18, has
not been investigated yet. The DMD gene is composed of 79
exons encoding a 427-kDa subsarcolemmal dystrophin protein in
skeletal muscle. Dystrophin is part of a large dystrophin-
associated glycoprotein complex (DGC) that stabilizes the
membrane of muscle fibres and provides a scaffold for force
transmission during muscle contraction, as well as transduction
of extracellular-mediated signals to the muscle cytoskeleton19,20.
Moreover, muscle degeneration resulting from the expression of
truncated dystrophin in Becker muscular dystrophy or its loss in
Duchenne muscular dystrophy highlights the importance of this
subsarcolemmal protein for muscle function21,22.

The switch from embryonic to adult isoforms of dystrophin
during muscle development involves fine-tuning coordinated
alternative splicing transitions of two regions of the gene. The
first concerns exons 71–74 that are all in-frame and may each be
excluded leading to shorter dystrophin isoforms in embryonic
muscles23–25. This splicing switch is also altered in muscle
samples of DM1 patients, although it does not perturb dystrophin
activity since mice deleted for Dmd exons 71–74 do not exhibit
skeletal muscle abnormalities26. The second developmental
splicing switch concerns the penultimate exon 78 (of 32 bp)
that modifies the C-terminal (C-ter) tail of dystrophin24–27.
Exclusion of exon 78 from DMD transcripts changes the open-
reading-frame (ORF) of the last exon 79. The new ORF has a
more downstream stop codon, producing a dystrophin with a 31
amino acids (aa) tail instead of a shorter 13aa tail when exon 78 is
included (Supplementary Fig. 1a).

In this work, we investigate the consequences of DMD exon 78
splicing misregulation on muscle function. We show that DMD
exon 78 splicing is regulated by MBNL1 during skeletal muscle
development and modifies dystrophin C-terminus structure
leading to a b-sheet C-terminus in the adult isoform in place of
an amphipathic a-helix C-terminus in the embryonic isoform. This
developmental transition is required for muscle function since
forced exclusion of dmd exon 78 using an exon-skipping approach
in zebrafish severely impairs the mobility and muscle architecture.
Moreover, the expression of micro-dystrophin constructs in
dystrophin-deficient mice demonstrates that the presence of the
amphipathic a-helix C-terminus is not able to improve muscle
function in contrast to the b-sheet C-terminus. Finally, we show
that forced Dmd exon 78 skipping and subsequent embryonic
dystrophin re-expression in wild-type (WT) mice leads to muscle

fibre remodelling and ultrastructural abnormalities. Similar
changes have been described in affected muscles of DM1 patients
suggesting that abnormal splicing of DMD exon 78 could
contribute to the progressive dystrophic process in this disease.

Results
DMD exon 78 splicing changes dystrophin C-terminus structure.
To assess whether the splicing of DMD exon 78 affects the
C-terminal structure of dystrophin, we modelled in silico the
dystrophin C-ter tail primary sequence containing either 13aa
(þ 78 C-ter) or 31aa (D78 C-ter). As illustrated in Fig. 1a, the
modification of exon 79 ORF due to DMD exon 78 exclusion
results in a complete reorganization of the dystrophin C-terminus
molecular structure. The predicted fold of the þ 78 C-ter tail is a
b-sheet with 16±1% of hydrophobic residues at the surface and a
global positive charge (Fig. 1b and Supplementary Fig. 1b,c). In
contrast, the D78 C-ter tail forms an amphipathic a-helix,
containing 34±3% of hydrophobic residues and a global
negative charge suggesting different biophysical and functional
properties. It is noteworthy that the 31aa sequence corresponding
to the embryonic dystrophin C-ter tail is highly conserved
from worm to human supporting a critical function for this
developmental-regulated domain28.

Splicing switch of DMD exon 78 is regulated by MBNL1.
In human, the splicing transition of DMD exon 78 occurs
between 11 and 18 weeks of development, with its almost com-
plete inclusion after 20 weeks of development, corresponding to
the formation of the second generation of muscle fibres (Fig. 1c).
In contrast this splicing switch is impaired after 20 weeks of
development in fetal skeletal muscles of DM1 patients suffering
from the severe congenital form. A significant 55% exclusion of
DMD exon 78 was detected in skeletal muscles of congenital DM1
patients carrying large (41,000) CTG expansions (Fig. 1d), as
previously observed in affected muscles of adult DM1 patients18.
To determine whether the pathogenic CTG expansion can
interfere with the regulation of DMD exon 78 alternative
splicing, we artificially expressed large expanded CUG repeats
in differentiated control muscle cells29. We showed that the
conditional expression of CUGexp-RNAs that form nuclear
aggregates leads to the misregulation of DMD exon 78 alternative
splicing (Fig. 1e, left panel). We then asked whether the MBNL
splicing regulators, which are sequestered by CUGexp-RNA
aggregates could regulate DMD exon 78 splicing. We focused on
MBNL1 and MBNL2 knowing that MBNL1 is the major MBNL
proteins expressed in adult skeletal muscle. We performed
siRNA-mediated silencing of MBNL1 or both MBNL1 and
MBNL2 in differentiated human muscle cells to mimic the
functional loss of MBNL proteins in DM1 and showed that the
silencing of MBNL1 is sufficient to promote an exclusion of
DMD exon 78 (Fig. 1e, right panel). We further investigated the
regulation of Dmd exon 78 in Mbnl-deficient mouse models.
Alternative splicing of Dmd exon 78 was not altered in skeletal
muscle of Mbnl1-deficient mice due to a functional compensatory
elevation of Mbnl2 in this mouse model30. However, a significant
exclusion of Dmd exon 78 in skeletal muscle of muscle-specific
Mbnl1: Mbnl2 double knockout (Myo-Cre DKO) mice (Fig. 1f)
demonstrated that MBNL proteins regulate the developmental
splicing switch of DMD exon 78. In addition, CELF1 that is
upregulated in the presence of CUGexp-RNAs was excluded as a
regulator because its overexpression in mice does not recapitulate
Dmd exon 78 exclusion31. Altogether, these results indicate
that DMD exon 78 missplicing in DM1 skeletal muscle is
a direct consequence of MBNL1 loss-of-function caused by its
sequestration in CUGexp-RNA aggregates.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8205

2 NATURE COMMUNICATIONS | 6:7205 | DOI: 10.1038/ncomms8205 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Dmd exon 78 exclusion impairs zebrafish muscle development.
To assess whether the splicing transition of DMD exon 78 is
essential for muscle development, we developed an exon-skipping

strategy to block the switch from the embryonic to the adult
isoform without affecting the total amount of dystrophin. We
used the zebrafish model because the 31aa C-ter tail is conserved
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Figure 1 | DMD exon 78 MBNL-regulated splicing switch changes dystrophin C-ter tail. (a) PEP-fold analysis of dystrophin þ 78 and dystrophin D78
C-ter structures. (b) Surface properties of PEP-fold models of dystrophin þ 78 and dystrophin D78 C-ter. Electrostatic potentials (upper panel) are shown

in blue for electropositive and red for electronegative. Hydrophobic and hydrophilic surface potentials (lower panel) are coloured in yellow and green,

respectively. (c) RT–PCR analysis of DMD exon 78 alternative splicing in human skeletal muscle samples from control (CTL) and congenital DM1 (cDM1)

fetuses. (d) Quantification of DMD exon 78 inclusion in skeletal muscle samples from cDM1 compared with control fetuses aged between 20 and 37 weeks

of development (n¼ 3). (e) Upper left panel: RT–PCR analysis of endogenous DMD exon 78 inclusion in control differentiated human muscle cells with or

without the expression of conditional 960 CTG repeats. Upper right panel: RT–PCR analysis of endogenous DMD exon 78 mRNA in control differentiated

human muscle cells transfected with siRNAs against MBNL1 or both MBNL1 and MBNL2. Lower panel: quantification of DMD exon 78 inclusion (n¼ 6 from

three independent experiments). (f) RT–PCR analysis and quantification of endogenous Dmd mRNA in skeletal muscle samples from WT, Mbnl1� /�

Knockout, Mbnl1� /� , Mbnl2þ /� Knockout and myo-CRE muscle-specific Mbnl1� /� , Mbnl2� /� double Knockout (myo-CRE DKO) (n¼ 3). Bars

indicates s.e.m. and ** indicates Po0.01; *** indicates Po0.001; Student’s t-test).
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in embryonic zebrafish dystrophin and exon 78 inclusion in
zebrafish orthologous dmd transcripts also occurs during muscle
formation, with a complete inclusion between 24 and 48 h post-
fertilization (hpf)27,32. To prevent the developmental splicing
switch of dmd exon 78, antisense morpholinos (AMO)
complementary to the 30 splicing site region were injected into
one-cell-stage embryos to force the skipping of dmd exon 78,
thereby maintaining the expression of embryonic dystrophin. A
dose-dependent skipping of dmd exon 78 was measured in AMO-
treated morphants (Fig. 2a) with no effect on total dmd mRNA
level (P40.05, n¼ 3 independent pools of injected zebrafish,
Student’s t-test, Supplementary Fig. 2a). At the macroscopic level,
abnormal splicing of dmd exon 78 in zebrafish led to major

morphological abnormalities at 24 and 48 hpf. Caudal defects
including shorter and twisted tails were observed in dmd D78
morphants and the severity of the phenotype (from moderate at
low AMO concentration to severe at high AMO dose) correlated
with the level of dmd exon 78 skipping (Fig. 2b). Touch-evoked
escape tests revealed that dmd D78 morphants exhibited
mobility impairments characterized by a disorganized movement
pattern in moderately affected morphants to an abnormal
‘trembling’ pattern in severely affected morphants (Fig. 2c and
Supplementary Video). Regarding skeletal muscle organization,
the shape of the myoseptum was altered, changing from the
classic V-shape in WT embryos to a U-shape in dmd D78
morphants (Fig. 2d). Dystrophin immunostaining showed that
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Figure 2 | Exclusion of dmd exon 78 in zebrafish impairs skeletal muscle development. (a) RT–PCR of dmd exon 78 performed on total RNA extracts

isolated from whole control and dmd D78 embryos (48 hpf). (b) Dose-dependant phenotype of dmd D78 embryos: control embryos (CTL) compared with

moderate and severe affected dmd D78 morphants at 48 hpf (scale bar, 1mm). (c) Touch-evoked escape test of control embryos compared with moderate

and severe dmd D78 morphants (1 image/0.2 s; scale bar, 1mm). (d) Abnormal myoseptum U-shape in dmd D78 morphants compared with V-shape in

control embryos at 48 hpf (scale bar, 250 and 100mm). (e) Dystrophin immunostaining (MANDRA1 antibody) of control embryos compared with dmd D78
morphants at 48 hpf. (f) Slow myosin immunostaining of control embryos compared with moderate and severe affected dmd D78 morphants at 48 hpf

(scale bar, 50 and 10mm).
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dystrophin D78 was correctly localized at the myosepta and
confirmed the abnormal ‘U’ myoseptum shape in dmd D78
morphants (Fig. 2e). Immunostaining of slow myosin showed a
disorganization of the muscle fibres in dmd D78 morphants with
a marked perturbation of muscle fibre alignment and attachment/
detachment to the myosepta in the severely affected morphants
(Fig. 2f). These results are in agreement with the role of
dystrophin in the formation of a stable muscle attachment to
myosepta in zebrafish embryos33,34 and demonstrate that the
developmental splicing transition of dmd exon 78 resulting in the
removal of the 31aa C-ter tail of dystrophin is required to
establish functional muscle structure during development. The
31aa C-ter tail renders the embryonic dystrophin unable to
functionally replace adult dystrophin.

The C-ter tail modulates dystrophin activity in muscle. To test
whether the 31aa C-ter tail modulates dystrophin activity, we
compared the efficiency of two micro-dystrophin (mDys) con-
structs containing either a 13aa tail (control micro-dystrophin
mDys-CTL, due to the inclusion of exon 78) or a 31aa tail (mDys-
D78 due to the lack of exon 78) in restoring muscle function of
dystrophin-deficient (mdx4cv) mice. Adeno-associated virus
(AAV2/9) vectors expressing mDys-CTL or mDys-D78 were
injected locally in Tibialis Anterior (TA) muscles of mdx4cv mice.
Muscles transduced with each construct expressed similar levels
of mDys transcripts (P40.05, n¼ 5, Student’s t-test,
Supplementary Fig. 2b,c) as well as comparable numbers of mDys-
positive fibres (P40.05, n¼ 5, Student’s t-test, Supplementary
Fig. 2d) and showed the expected localization of mDys at the
sarcolemma (Fig. 3a). Of note, the Dys2 antibody directed against
a C-ter dystrophin epitope encoded by DMD exons 78–79 con-
firmed the modification of the mDys-D78 C-ter tail (Fig. 3a). As
described by others for functional mDys constructs35–41, mdx4cv

muscles injected with mDys-CTL showed a significant reduction
in TA muscle weight (Fig. 3b) and a significant improvement of
the specific maximal force (Fig. 3c) when compared with the
saline-injected contralateral muscles. We then determined the
ability of mDys to protect skeletal muscle from injury by testing its
resistance to eccentric contractions. A partial but significant
improvement of resistance to eccentric contraction was observed
in mDys-CTL injected muscles compared with saline-injected
muscles (Po0.05; Fig. 3d). In contrast, mdx4cv muscles injected
with mDys-D78 did not exhibit a reduction in TA muscle weight
when compared with saline-injected contralateral muscles
(Fig. 3e). Moreover, the expression of mDys-D78 did not
improve the specific maximal force (Fig. 3f) and muscle
resistance to eccentric contractions in mdx4cv mice (Fig. 3g).
Because mDys-D78 was not able to ameliorate mdx4cv muscle
function, we evaluated whether the presence of a 31aa C-ter tail in
the mDys-D78 compromised the recruitment of the DGC, which
is not localized at the membrane in control mdx4cv muscle fibres
(Fig. 3a). We found that DGC partners such as a-sarcoglycan but
also a-syntrophin and a-dystrobrevin that have binding sites
localized near the C-ter domain encoded by exon 78 (refs 42,43)
are correctly localized at the sarcolemma in both mDys-CTL- and
mDys-D78-injected muscles (Fig. 3a). However, in contrast to
mDys-CTL, mDys-D78 does not improve mdx4cv muscle function
indicating that the 31aa C-ter tail perturbs the functions of
dystrophin related to the protection of muscle performance from
mechanical stresses induced by repeated contractions.

DMD exon 78 is required for muscle fibre maintenance. To
further determine whether the re-expression of the endogenous
embryonic dystrophin isoform having a 31aa C-ter tail instead of
a 13aa tail is sufficient to affect muscle homeostasis, we artificially

skipped Dmd exon 78 in skeletal muscles of adult WT mice using
an antisense strategy. For this purpose, an engineered AAV2/9
vectors expressing optimized U7-snRNAs-antisense targeting
Dmd exon 78 splicing sites were injected in TA muscles of adult
WT mice. Reverse transcription PCR (RT–PCR) analysis
demonstrated that the continuous expression of U7-Dmd-ex78
antisense induces a near-complete exclusion of Dmd exon 78
(Fig. 4a) without affecting the total Dmd mRNA level (P40.05,
n¼ 10, paired t-test, Supplementary Fig. 3a). Mass-spectrometry
analysis confirmed the switch of the dystrophin C-ter tail from
13aa to the expected 31aa in U7-Dmd-ex78 injected muscles
(Supplementary Fig. 3b). As observed with the mDys-D78 con-
struct, dystrophin D78 and DGC partners such as a-syntrophin
and a-dystrobrevin were correctly localized at the sarcolemma
(Supplementary Fig. 3c). Six months post-injection, evaluation of
muscle contractile properties showed that U7-Dmd-ex78 injected
muscles have a significant reduction of absolute maximal force
(Po0.01, n¼ 10, paired t-test; Supplementary Fig. 3d) that is
related to a decrease in muscle weight (Po0.05 n¼ 10, paired
t-test; Supplementary Fig. 3e) since specific maximal force remains
unchanged (PZ0.05, n¼ 10, paired t-test; Supplementary Fig. 3f)
when compared with saline-injected contralateral muscles. His-
tological analysis of U7-Dmd-ex78 injected muscles revealed fibre
size heterogeneity as well as structure reminiscent of ringed fibres
(Fig. 4b) and a significant reduction of maximal muscle cross-
section area (CSA) compared with the saline-injected contralateral
muscles (Po0.01 n¼ 10, paired t-test; Supplementary Fig. 3g).
Muscle fibre composition of U7-Dmd-ex78 injected TA muscles
was also altered with a reduced CSA of oxidative type 2a fibres,
which is associated with an increase in their number and an
increased CSA of glycolytic type 2b fibres (Fig. 4c). Quantitative
RT–PCR analysis of myosin heavy chain (MyHC) mRNA levels
confirmed the significant increase of the more oxidative type 2a
fibres in the U7-Dmd-ex78 injected muscles (Fig. 4d). No centrally
located nuclei were observed in U7-Dmd-ex78 injected muscles
indicating that the associated muscle remodelling was not
due to an active degeneration/regeneration process as observed in
dystrophin-deficient muscles.

Next, we performed electron microscopy analyses of U7-Dmd-
ex78 injected muscles to determine whether the modification of
the dystrophin C-ter tail impacts the structure of the muscle fibre.
Six months post injection, we observed that the 13aa C-ter tail
replacement by the 31aa C-ter tail in dystrophin leads to distinct
ultrastructural abnormalities: (i) myofibril disorganization show-
ing myofilaments perpendicularly orientated at the periphery of,
or across, oxidative fibres, which is characteristic of ringed fibres
(Fig. 4e, upper panels and Supplementary Fig. 4, upper panels),
(ii) sarcoplasmic masses displaying large areas of sarcoplasm at
the fibre periphery with a complete absence of myofibrils but
numerous vacuoles (Fig. 4e, lower panels), (iii) focal internal
disorganization of the Z-band (Fig. 4e, arrows) (iv) and
finally, dilated sarcoplasmic reticulum in glycolytic fibres
(Supplementary Fig. 4, lower panels). These findings showed
that the 31aa C-ter tail switch mediated by the exclusion of exon
78 in Dmd transcripts did not allow dystrophin to maintain
correct myofibril architecture and ultrastructural organization of
muscle fibres. Altogether these results indicate that the dystro-
phin function involved in the maintenance of muscle fibre
organization during muscle contraction is impaired by the
aberrant expression of the 31aa C-ter a-helix.

Discussion
In this study we demonstrate that the developmental splicing
transition of DMD exon 78, which is regulated by MBNL1
splicing factor, is essential for skeletal muscle development and
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muscle fibre organization. During muscle development, the
sequence and structure of the dystrophin C-ter tail is switched
from a 31aa residues amphipathic a-helix in the embryonic
dystrophin isoform to a 13aa residues b-sheet fold in the adult
dystrophin isoform. Developmental alternative splicing of the
penultimate exon 78 is highly conserved throughout vertebrates
and the 31aa C-ter tail of the embryonic dystrophin isoform is
more conserved than the adult C-ter tail44 suggesting a critical
role for this domain. Indeed, we show that the prolonged
expression of the embryonic dystrophin isoform carrying a 31aa
C-ter tail during zebrafish development, by forced dmd exon 78
skipping, leads to muscle architecture and mobility impairment.

Of note, partial skipping of dmd exon 78 in zebrafish is sufficient
to produce moderate defects. Whether it is the expression of the
embryonic dystrophin isoform or the absence of the adult isoform
that is more likely to cause this phenotype remains to be
determined. Nevertheless, our results indicate that the 31aa C-ter
a-helix impacts dystrophin activity. Indeed, the embryonic
dystrophin isoform is not able to replace adult dystrophin
function as shown by mDys experiments in dystrophin-deficient
mice. Because the aberrant expression of dystrophin C-ter a-helix
tail could have different consequences on skeletal muscle
behaviour depending on whether it occurs during the
developmental stages or the post-natal period, we mimicked
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muscles of mdx4cv mice (n¼ 8) injected with saline (mdx4cv) or AAV2/9-mDys-CTL (b) or AAV2/9-mDys-Dex78 (e). (c,f) Specific maximal force (sP0) of

TA muscles of C57BL/6 control mice (C57, n¼8) compared with TA muscles of mdx4cv mice (n¼8) injected with saline (mdx4cv) or

AAV2/9-mDys-CTL (c) or AAV2/9-mDys-Dex78 (f). (d,g) Resistance to eccentric contractions. Absolute maximal force (P0) following lengthening

contractions of TA muscles of C57BL/6 control mice (C57, n¼8) compared with TA muscles of mdx4cv mice (n¼8) injected with saline (mdx4cv) or

AAV2/9-mDys-CTL (d) or AAV2/9-mDys-Dex78 (g). Bars indicate s.e.m. and ‘NS’ indicates not significant; * indicates Po0.05; ** indicates Po0.01

compared to mdx4cv condition; one-way analysis of variance with Tukey’s multiple comparisons test.
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Dmd exon 78 splicing misregulation in adult mouse muscles.
Forced Dmd exon 78 skipping does not compromise membrane
integrity or lead to continuous cycles of fibre degeneration/
regeneration as observed in dystrophin-deficient muscles, but
alters muscle fibre size and composition as well as its organization
as shown by the formation of ringed fibres, sarcoplasmic masses

or Z-band disorganization. This modification of the dystrophin
C-ter tail does not affect dystrophin localization in the muscle
fibre but prevents the protection of the sarcomeric apparatus
from contraction-induced stress. Altogether, these results show
that dystrophin function involved in the maintenance of muscle
fibre organization during muscle contraction is impaired by DMD
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Figure 4 | Dystrophin exon 78 is required for muscle structure maintenance. (a) RT–PCR analysis and quantification of Dmd exon 78 inclusion in TA

muscles (n¼ 10) injected with AAV-U7-Dmd-ex78 compared with contralateral TA muscles injected with saline (CTL). (b) Hematoxylin and eosin staining

in TA muscles injected either with saline (CTL) or AAV-U7-Dmd-ex78 (scale bar, 50mm). Inset: higher magnification (� 2.5) of a structure reminiscent of

ringed fibre shown by the arrow. (c) Fibre types in TA muscles injected either with saline (CTL) or AAV-U7-Dmd-ex78 were determined by MyHC

immunostaining: MyHC-IIa in red, MyHC-IIx in blue, MyHC-IIb dark, laminin in green. Purple fibres correspond to MyHC-IIa and MyHC-IIx positive fibres

(scale bar, 100 mm). (d) Quantification of MyHC mRNA levels by quantitative RT–PCR (n¼ 10). Bars indicate s.e.m. and ‘NS’ indicates not significant;

*** indicates Po0.001; Student’s t-test). (e) Ultrastructure of representative, longitudinally cut, fibres in AAV-U7-Dmd-ex78-injected TA. Upper panel:

‘ringed fibre’. Sarcomeres are mainly longitudinally oriented, but just under the sarcolemma, a band of myofibrils (pseudo-coloured in green) is transversally

oriented as evidenced in the enlarged zone (N, nucleus; M, mitochondria). Lower panel: sarcoplasmic mass. The sarcoplasm beneath its sarcolemma

appears nearly devoid of myofilaments and the higher magnification shows some electrodense remnants of Z line material and vacuoles of swollen

sarcoplasmic reticulum. In addition focal zones with Z line streaming are also observed in fibres of AAV-U7-Dmd-ex78-injected muscles (arrows in left

panels). Left panels scale bars, 5 mm and rigth panels scale bars, 1 mm.
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exon 78 missplicing, in particular the aberrant re-expression of
the 31aa C-ter a-helix.

Misregulation of alternative splicing events in DM1 disease is
caused by the expression of mutant RNA containing expanded
CUG repeats that alter the activities of the splicing factors. Our
results show that the functional loss of MBNL1 splicing regulator
due to its sequestration in nuclear-retained CUGexp-RNAs is
responsible for abnormal DMD exon 78 splicing in DM1 skeletal
muscle cells. Among the altered splice events confirmed in
skeletal muscles of DM1 patients, changes of DMD exon 78
splicing strongly correlated with disease severity18. Up to 50% of
abnormal splicing switch of DMD exon 78 was reported in
affected muscle biopsies of DM1 patients17,18, however, it is
unclear whether the percentage of embryonic dystrophin
re-expression varies among muscle fibres leading to higher level
of splicing changes in certain fibres. Remarkably, ultrastructure
abnormalities such as ringed fibres, sarcoplasmic masses or
Z-band disorganization observed in muscle fibres of mice
expressing skipped Dmd exon 78 isoform were also described
in skeletal muscle biopsies of DM1 patients45–47. Although
similar muscle fibre abnormalities have also been reported in
other muscular dystrophies, these ultrastructure changes are
commonly found and represent characteristic features of DM1
skeletal muscles. Moreover, adult mouse muscles re-expressing
embryonic dystrophin isoform present a typical combination of
fibre type changes that is also observed in affected skeletal muscle
of DM1 patients: increased number of oxidative slow-twitch
fibres with a selective atrophy of these fibres and a hypertrophy of
the fast-twitch fibres. As abnormal splicing switch of Dmd exon
78 compromises muscle fibre maintenance in adult mouse muscle
with phenotypic changes that correlate with abnormalities
described in skeletal muscle biopsies of DM1 patients, we
suggest that the inappropriate re-expression of the embryonic
dystrophin isoform carrying a 31aa C-ter tail could contribute to
the progressive muscle fibre deterioration in DM1.

In conclusion, our work underlines the critical MBNL1-
dependent regulation of DMD exon 78 splicing for both skeletal
muscle development and muscle fibre maintenance. It also
proposes that the splicing misregulation of DMD exon 78 induced
by the expression of expanded CTG repeats participates to the
progressive dystrophy in DM1. These results are of utmost
importance for our understanding of the characteristic dystrophic
process in myotonic dystrophy but also in the context of
therapeutic development of functional mDys or truncated
dystrophins generated by exon-skipping technologies in Duch-
enne muscular dystrophy.

Methods
Molecular modelling. Molecular models were produced by using the de novo
PEP-fold method48 through the dedicated webserver (http://bioserv.rpbs.univ-
paris-diderot.fr/services/PEP-FOLD/), given no homology sequence were found for
the exon 78 and exon 79 of dystrophin. Submitted primary sequences were
SRGRNTPGKPMREDTM and SRGHNVGSLFHMADDLGRAMESLVSVMTDEE
GAE, respectively, for the þ 78 C-ter (adult ORF) and D78 C-ter (fetal ORF).
Secondary structure analyses from the PEP-Fold calculations are shown as
diagrams indicating a probability (in %) to adopt a coil (green), sheet (blue) or
helix (red) fold. Electrostatic potentials were computed by using the APBS
program49 and hydrophobic potentials and molecular surfaces were provided by
the Platinum webserver (http://model.nmr.ru/platinum/)50.

Zebrafish embryos microinjection and whole-mount immunolabelling.
Injections of zebrafish were performed in 1–4 cell stage blastulae. Antisense mor-
pholino oligonucleotide (AMO; 50-GTCCGCCTCCTTAGACAGAGGAAAA-30)
was design and manufactured by Gene Tools to bind and inhibit specifically dmd
exon 78 inclusion. Dose-dependence curves of AMO were performed (0.1–0.7mM)
and AMOs were injected at a concentration of 0.1 and 0.3mM to minimize mor-
pholino-induced developmental delay and toxicity and to yield a consistent motor
phenotype. After harvesting at 48 hpf developmental stages, zebrafish embryos were
fixed with paraformaldehyde 4% for 2 h and dehydrated with MetOH 50% during

5min followed by MetOH 100% for 5min. After permeabilization with 70% EtOH,
20% acetic acid in PBS and blocking with 5% goat serum, 0.5% triton X-100 (Sigma-
Aldrich), embryos were incubated overnight at 4 �C with mouse monoclonal anti-
dystrophin (MANDRA1, Sigma 1:1,000) or mouse monoclonal F59 anti-slow-twitch
myosin (1:10) in a 5% goat serum, 0.5% triton X-100 solution. Then the embryos
were washed in PBS containing 0.1% Tween-20, incubated overnight at 4 �C with
cy3-conjugated goat anti-mouse secondary antibody (Life Technologies; 1:400),
washed with PBS containing 0.1% Tween-20 and mounted in glass slides.

Touch-evoked escape response. Morphology and behavioural touch responses
were assessed. Only fish with no obvious developmental deficits were selected to
determine the touch-evoked escape response. For escape swimming at 48 hpf,
embryos were touched lightly at the level of the tail with a pincer. Fish that were
unable to escape were touched several times (3–4 times) to ascertain their failure to
respond.

Human muscle samples and muscle cells cultures. Skeletal muscle samples were
obtained from autopsies, in accordance with the French legislation on ethical rules.
Control and cDM1 muscle samples were from aborted fetuses showing, respec-
tively, no sign of neuromuscular disease (control) and clinical symptoms of con-
genital DM1 form with large CTGn41,000 repeats. Muscle cell cultures were
derived from primary human satellite cells as previously described51. In brief,
myoblasts were grown in DMEM/199 (ratio 4/1) medium (Gibco/Life
Technologies) supplemented with 20% fetal bovine serum and antibiotics. For
differentiation, growth medium was removed from confluent cultures and replaced
by DMEM medium. All cultures were incubated at 37 �C in a humid atmosphere
containing 5% CO2. For conditional expression of CTG repeats, myoblasts were
transduced with lentiviral vectors expressing a 960 CTG Tet-on construct29. For
in vitro MBNL silencing experiments, muscle cells were transfected with siRNAs
(50 nM) directed against MBNL1 (50-CAGACAGACUUGAGGUAUGdTdT-30;
Eurogentec) and/or MBNL2 (50-GAAGAGUAAUUGCCUGCUUUUdTdT-30 ;
Eurogentec) using Lipofectamine RNAiMAX reagent (Life Technologies) according
to the manufacturer’s protocol.

In vivo gene transfer. All the mouse procedures were done according to protocol
approved by the Committee on Animal Resources at the Centre d’ Experimentation
Fonctionnelle of Pitie-Salpetriere animal facility and under appropriate biological
containment. AAV2/9 vectors were produced using three-plasmid constructs
protocol. For mDys expression, 2-month-old mdx4CV mice were injected into the
TA with 50ml of AAV2/9-mDys vectors containing 2.5� 109 viral genomes (vg).
The murine optimized mDys-CTL construct incorporates deletion of spectrin-like
repeat domain 4–23 and the mDys D78 construct contains an additional deletion of
exon 78. For optimized U7-snRNA-antisense expression, U7-Dmd-ex78 construct
was done as previously described12 and adult C57BL/6 WT mice were injected into
the TA with 40 ml of AAV2/9-U7-Dmd-ex78 containing 1� 1011 vg. For each
mouse, the left TA muscle was injected with AAV and the contralateral muscle was
injected with vehicle alone (PBS). Animals were sacrificed 2 months after AAV-
mDys injection or 6 months after AAV-U7-Dmd-ex78 injection and muscles were
collected, snap-frozen in liquid nitrogen-cooled isopentane and stored at � 80 �C.

RNA extraction and RT–PCR analysis. RNAs were isolated using Tri Reagent
(Sigma) according to the manufacturer’s protocol. 1 mg of RNA was reverse tran-
scribed using M-MLV first-strand synthesis system according to the manu-
facturer’s instructions (Invitrogen) in a total of 20 ml. One microlitre of cDNA
preparation was subsequently used in a semi-quantitative PCR analysis according
to standard protocol (ReddyMix, Thermo Scientific). PCR amplification was car-
ried out for 20–35 cycles within the linear range of amplification for each gene.
PCR products were resolved on 1% agarose or 5% non-denaturing polyacrylamide
(for splicing) gels, BET stained and quantified with ImageJ software. The ratios of
exon inclusion/exclusion were quantified as a percentage of inclusion/exclusion
relative to total intensity of isoform signals. To quantify the mRNA expression,
real-time PCR was performed using a Lightcycler 480 (Roche). Reactions were
performed with SYBR Green kit (Roche) according to the manufacturer’s
instructions. PCR cycles were a 15-min denaturation step followed by 50 cycles
with a 94 �C denaturation for 15 s, 58 �C annealing for 20 s and 72 �C extension for
20 s. Mouse Rrlp0 mRNA or zebrafish elfa (elongation factor alpha) mRNA were
used as standard. Data were analysed with the Lightcycler 480 analysis software.
PCR primer sequences are listed in Supplementary Table S1.

Immunohistochemistry and histology. Hematoxylin and eosin staining was used
to examine the overall muscle morphology of 10 mm TA muscle sections. For
immunohistochemistry, muscle cryo-sections were stained using Mouse on Mouse
(M.O.M) kit (Vector Labs). Primary antibodies were incubated overnight at 4 �C
followed by three washes with PBS-0.1% Tween and incubated with goat anti-
mouse or goat anti-rabbit secondary antibodies (Life Technologies; 1:400) con-
jugated to Alexa 488, Alexa 555 or Alexa 647. Antibodies against dystrophin
(Manex1011B, 1:100, mouse monoclonal, gift from Dr Glenn Morris; Dys1 and
Dys2, 1:100, mouse monoclonal, Novocastra; MANDRA1, 1:1,000, Mouse
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monoclonal, Sigma-Aldrich), a-syntrophin (rabbit polyclonal, 1:200, Abcam),
a-dystrobrevin (mouse monoclonal, 1:200, BD Biosciences); anti-MHCIIa (SC71,
1:3, mouse monoclonal IgG1; Hybridoma DSHB), anti-MHCIIX (6H1, 1:2,
mouse monoclonal IgM; Hybridoma DHSB), laminin (1:300, rabbit polyclonal,
Chemicon) were used.

Electron microscopy. TA muscles were dissected, cut into small pieces and
immediately fixed in 2% glutaraldehyde, 2% paraformaldehyde, 0.1M phosphate
buffer. After abundant washes and 2% OsO4 post-fixation samples were dehy-
drated at 4 �C in graded acetone including a 1% uranyl acetate in 70� acetone step
and were finally embedded in Epon resin. Thin (70 nm) sections were stained with
uranyl acetate and lead citrate, observed using a Philips CM120 electron micro-
scope (Philips Electronics NV) and photographed with a digital SIS Morada
camera.

In situ force measurement. The isometric contractile properties of TA muscle
were studied in situ. Mice were anaesthetized with pentobarbital (60mg kg� 1

intraperitoneally). The knee and foot were fixed with clamps and pins. The distal
tendon of the TA muscle was attached to a lever arm of a servomotor system (305B,
Dual-Mode Lever). Data were recorded and analysed on a microcomputer using
PowerLab system (4SP, ADInstruments) and software (Chart 4, ADInstruments).
The sciatic nerve (proximally crushed) was stimulated by a bipolar silver electrode
using a supramaximal (10-V) square wave pulse of 0.1-ms duration. All contrac-
tions were made at an initial length L0 (length at which maximal tension was first
obtained during tetanic contractions). Absolute maximal isometric tetanic force
was measured during isometric contractions in response to electrical stimulation
(frequency of 25–150Hz, train of stimulation of 500ms). Maximal specific iso-
metric force was calculated by dividing absolute maximal isometric force by muscle
weight.

Resistance to eccentric (lengthening) contractions of TA muscles was then
evaluated by measuring the force drop following eccentric contractions. A maximal
isomeric contraction of the TA muscle was initiated during the first 500ms. Then,
muscle lengthening (1.1mm, 10% L0) at a velocity of 0.5mm s� 1 (B0.5 L0 s� 1)
was imposed during the last 200ms. Nine lengthening contractions of the TA
muscles were performed, each separated by a 60-s rest period. Maximal isometric
force was measured after each eccentric contraction and expressed as a percentage
of the initial maximal isometric force.

Dystrophin immunoprecipitation and LC-MS/MS analysis. TA muscles of mice
were homogenized in ice-cold lysis buffer (150mM NaCl, 1% Triton, 0.1% SDS, 1%
sodium deoxycholate, 150mM Tris-HCl, pH 8) containing Complete Protease
Inhibitors and PhosSTOP cocktails (Roche Diagnostics). After 30-min incubation
on ice, the samples were centrifuged at 14,000g for 15min to pellet cell debris and
protein concentration of the supernantant fraction was determinated by Pierce
BCA Protein assay kit (Thermo Scientific). Immunprecipitation was performed
using 1mg of protein extract and Pierce Crosslink Immunprecipitation kit
(Thermo Scientific) according to the manufacturer’s instructions using 25 mg of
MANEX1011B antibody. Proteins were eluted in Laemmli Reducing Sample Buffer
and separated on SDS–polyacrylamide gel electrophoresis.

Excised gel slices were washed and proteins were reduced with 10mM DTT
before alkylation with 55mM iodoacetamide. After washing and shrinking of the
gel pieces with 100% acetonitrile, in-gel digestion was performed using trypsin
(Sequencing Grade, Promega) overnight in 25mM ammonium bicarbonate at
30 �C. The extracted peptides were analysed by nano-LC-MS/MS using an Ultimate
3,000 system (Dionex S.A.) coupled to an linear trap (LTQ)-Orbitrap XL mass
spectrometer (Thermo Fisher Scientific, Bremen, Germany). Samples were loaded
on a C18 precolumn (300 mm inner diameter� 5mm; Dionex) at 20 ml min� 1 in
5% acetonitrile, 0.1% TFA. After 3min of desalting, the precolumn was switched
on line with the analytical C18 column (75mm inner diameter� 50 cm; C18
PepMap, Dionex) equilibrated in solvent A (2% acetonitrile, 0.1% formic acid).
Bound peptides were eluted using a two-step linear gradient of 157min (from 0 to
30% (v/v)) and 20min (from 30 to 50%) of solvent B (80% acetonitrile, 0.085%
formic acid) at a 150 nlmin� 1 flow rate and an oven temperature of 40 �C. Data-
dependent acquisition was performed on the LTQ-Orbitrap mass spectrometer
in the positive ion mode. Survey MS scans were acquired in the Orbitrap on the
350–1,000m/z range with the resolution set to a value of 100,000. Each scan was
recalibrated in real time by co-injecting an internal standard from ambient air
into the C-trap (‘lock mass option’). The five most intense ions per survey scan
were selected for collision-induced dissociation fragmentation and the resulting
fragments were analysed in the LTQ. Target ions already selected for MS/MS were
dynamically excluded for 30 s.

Data were acquired using the Xcalibur software (version 2.2) and the resulting
spectra where then analysed via the Sequest HT Software created with Proteome
Discoverer (version 1.4, Thermo Scientific) using the SwissProt Mus musculus
database, containing 16,620 protein and Dystrophin 31aa Cter tail sequence
(HNVGSLFHMADDLGRAMESLVSVMTDEEGAE). Carbamidomethylation of
cysteines, oxidation of methionine, protein amino-terminal acetylation were set as
variable modifications for all Sequest searches. Specificity of trypsin digestion was
set and two missed cleavage site were allowed. The mass tolerances in MS and MS/

MS were set to 5 p.p.m. and 0.5Da, respectively. false discovery rate was set to 1%
at the peptide level for all the searches.

Statistical analysis. For statistical analysis, either Student’s t-test or one-way
analyses of variance were used as appropriate using GraphPad Prism software
(Version 6, GraphPad Software Inc.).
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