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The a.c. Josephson effect without
superconductivity
Benoit Gaury1,2, Joseph Weston1,2 & Xavier Waintal1,2

Superconductivity derives its most salient features from the coherence of the associated

macroscopic wave function. The related physical phenomena have now moved from exotic

subjects to fundamental building blocks for quantum circuits such as qubits or single photonic

modes. Here we predict that the a.c. Josephson effect—which transforms a d.c. voltage Vb

into an oscillating signal cos (2eVbt/:)—has a mesoscopic counterpart in normal conductors.

We show that when a d.c. voltage Vb is applied to an electronic interferometer, there exists a

universal transient regime where the current oscillates at frequency eVb/h. This effect is not

limited by a superconducting gap and could, in principle, be used to produce tunable a.c.

signals in the elusive 0.1–10-THz ‘terahertz gap’.
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S
uperconductivity, a macroscopic quantum state, is
described by a wavefunction whose phase is physically
significant. Indeed, quantum mechanical interference effects

are ubiquitous in superconducting systems, similar to those
observed at the microscopic scale in atomic physics. Since the 80s,
such effects have also been observed at the mesoscopic (or nano)
scale in condensed matter. Most of the peculiar effects observed
in superconductors have an analogue in ‘normal’ quantum
nanoelectronics: the d.c. SQUID (superconducting quantum
interference device) corresponds to the Aharonov–Bohm effect1,
supercurrents (at the origin of the Meissner effect) correspond to
the so-called persistent currents2–4. The a.c. Josephson effect in
superconductors is perhaps the most striking manifestation of
these interference effects at a macroscopic scale5; a d.c. voltage
bias Vb applied across a weak link between two superconductors
creates an oscillating current with frequency 2eVb/h. This voltage
to frequency conversion is used in metrology to define the volt in
terms of the second 6, as well as in a wealth of superconducting
devices (radiofrequency (RF)-SQUIDs, quantum bits)7. Its origin
is rather straightforward. The energy of the left superconductor
eVb is higher than the right one, so that its wavefunction gets an
extra oscillating factor e� i2eVbt=‘ . The junction produces an
interference between these two wavefunctions, hence the
oscillations.

The absence of a corresponding mesoscopic effect in normal
conductors is in itself surprising from a theoretical perspective;
superconductivity is well described by the Bogoliubov–De Gennes
equation8, a simple extension of the Schrödinger equation.
Here we report on this missing effect. We find that an oscillating
signal cos (eVbt/:) is generated in the transient regime that
follows an abrupt change in the bias voltage applied to a normal
conductor.

Results
Mach–Zehnder interferometer. Figure 1a sketches a—two
path—electronic Mach–Zehnder interferometer. This device,
implemented in a two-dimensional gas under high magnetic field,
has lately become a rather standard tool of the mesoscopic
physicist9,10. In the quantum Hall regime the bulk of the
electronic gas is insulating and the electronic propagation only
occurs on the edges of the sample. One can realize electronic
beam-splitters with quantum point contacts, and in this way
ensure that only two paths are available for any travelling
electrons. The sample is very asymmetric, the upper arm being
much longer than the lower one, which implies an extra time of
flight tF¼ L/vg (with L the extra length of the upper arm with
respect to the lower one and vg the group velocity of the edge
state). At t¼ 0 one raises the bias voltage applied on contact 0
from V(t o0)¼ 0 to V(t4tP)¼Vb. While the exact manner in
which the voltage is raised is unimportant, the rise time tP must
be sufficiently fast (tPotF) and the voltage drop spatially sharp
enough (compared to L)11,12. Figure 1b shows the transmitted
current I1(t) as a function of time t, and we can discern three
distinct regimes. In the beginning (Fig. 1a left) the voltage pulse
did not have enough time to propagate up to contact 1, and
I1(t)¼ 0. During a transient regime of duration tF (Fig. 1a
middle), the pulse has arrived at contact 1 from the lower arm but
not yet from the upper one. The current increases to a finite
value. Finally (Fig. 1a right), the pulse arrives from the upper arm
and the current increases to its stationary value. The most
noteworthy feature of Fig. 1b lies in the transient regime; the
current oscillates with frequency eVb/h around a d.c. component.
This transient oscillatory regime is the mesoscopic analogue of
the a.c. Josephson effect. It is to the a.c. Josephson effect what
persistent currents2 are to supercurrents.

Let us start by discussing this transient oscillatory regime at the
qualitative level. At equilibrium there is no net current flowing in
the system. However, a crucial point is to recognize that in
conductors this is due to the compensation between the current
coming from the various electrodes, not to the absence of motion
altogether. In other words, before we switch on the voltage bias
there already are electronic waves in the system, which consist of
the coherent superposition of the lower and upper path. This is in
sharp contrast with, say, an optical experiment where one would
suddenly switch on a laser beam. Raising the bias voltage should
be understood as a modification of the energy of an existing wave
(rather than the sudden injection of electrons in vacuum). This
‘modification’ of the energy propagates through the system
ballistically. In the transient regime (where the corresponding
front has travelled through the lower path but not yet through the
upper one), the amplitude of the lower path acquires an extra
e� ieVbt=‘ phase with respect to the upper one. As a result, the
current (which is proportional to the probability associated to the
total amplitude) oscillates in time.

The theory required to describe the transient oscillatory regime
follows naturally from the above picture. Within the time-
dependent scattering approach11, one finds that the wavefunction
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Figure 1 | Raising the d.c. voltage bias on a Mach–Zehnder

interferometer in the quantum Hall regime. (a) Colour plot of the local

electronic charge density in unit of 1011 cm� 2 (measured from equilibrium)

in a three terminal Mach–Zehnder interferometer in the quantum Hall

regime. The simulation was performed considering a two-dimensional

electron gas of density ns¼ 1011 cm� 2, corresponding to a Fermi energy

EF¼ 3.47meV or equivalently to a Fermi wavelength lF¼ 79 nm. At t¼0,

the voltage bias is raised from V(to0)¼0 to Vb¼ 20h/(etF). The three

colour plots correspond to three snapshots for different times as indicated

by the arrows. A two-dimensional electron gas (yellow) is connected to the

three electrodes, the semi-transparent quantum point contacts A and B act

as beam-splitters. Insets: schematics of the propagation of the voltage bias

along the two arms of the interferometer. (b) Transmitted current at contact

1. Upper inset: schematic of the raising of the bias voltage. Lower inset:

zoom on the oscillations of the current.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7524

2 NATURE COMMUNICATIONS | 6:6524 |DOI: 10.1038/ncomms7524 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


close to contact 0 is a plane wave that acquires an additional
phase when the bias voltage is raised,

C0ðx; tÞ ¼
1ffiffiffi
k

p eikx� iEt=‘ � ieVbtyðt� x=vgÞ=‘ ð1Þ

where y(x) is the Heaviside function, E is the incident energy of
the electron, k the corresponding momentum and the curved
coordinate x follows the edge of the sample. We have assumed for
simplicity a linear dispersion relation E(k)¼ :vgk and the
condition tP�tF. We see from equation (1) that raising the
voltage induces an oscillating phase difference eieVbt=‘ between
the front and the rear of the wave. One can consider this phase
difference as the time-dependent extension of the stationary case
that was discussed in refs 12,13. The device uses the delay time tF
between the two arms to create an interference between the rear
and the front of the wavefunction, generating the oscillatory
behaviour. In the transient regime, the wavefunction close to
contact 1 is the superposition of the contributions from the two
paths and one finds,

C1ðx; tÞ ¼
eikx� iEt=‘ffiffiffi

k
p d1ðt; EÞ ð2Þ

with the total time-dependent transmission amplitude d1(t, E)
given by,

d1ðt; EÞ ¼ duðEÞe� iEtF=‘ þ dlðEþ eVbÞe� ieVbt=‘ ð3Þ
The amplitudes du/l for the upper/lower arm are given in terms
of the transmission probabilities TA/B of the quantum point
contacts, du ¼

ffiffiffiffiffiffiffiffiffiffiffi
TATB

p
and d1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�TAÞ ð1�TBÞ

p
. Using the

time-dependent generalization of the Landauer formula11,

I1ðtÞ ¼ ðe=hÞ
Z

dE d1ðt; EÞj j2f ðEÞ ð4Þ

[f(E) is the Fermi function, equation (4) includes the equilibrium
current injected from contact 0 which needs to be subtracted], we
finally get the current at contact 1 during the transient regime,

I1ðtÞ ¼
e2Vb

h
TATB

þ e
ptF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TATBð1�TAÞð1�TBÞ

p
cos

eVbt
‘

þf
� � ð5Þ

Equation (5) is the main result of this article and agrees with the
direct microscopic numerical calculations presented above. While
the precise coefficients depend on the particular interferometer
considered, its structure is totally general. It contains a d.c. term
plus an a.c. term at frequency eVb/h; the amplitude of the a.c.
current is of the order of e/tF. For a typical micrometre sized
Mach–Zehnder interferometer, the amplitude of the a.c. current is
of the order of a few nA.

Fabry–Perot cavity. The Mach–Zehnder interferometer is simple
conceptually, but challenging experimentally in terms of the
lithography (for the central electrode 2), low temperature and
high magnetic field. Fabry–Perot cavities, in contrast, are ubi-
quitous and occur every time two barriers are put in series.
Examples include carbon nanotubes14, quantum Hall systems15

and semi-conducting nanowires16. Figure 2 shows a sketch of the
Fabry–Perot geometry together with a numerical calculation of
the measured current as a function of time. The It(t) curve now
features many steps that correspond to the arrival of the path with
direct transmission (0), the path with one reflection on B and A
(1), two reflections (2) and so on. Again, each of these steps is
accompanied by oscillations at the frequency eVb/h. On
decreasing the transparencies of the barriers, TA and TB, the
Fabry–Perot resonances gradually become true bound states and

the duration of the transient regime increases accordingly. This
situation is very close, mathematically, to the true Andreev bound
states that occur in a Josephson junction17.

Discussion
Although the practical analytical and numerical calculations
performed above have been made for specific geometries, one
immediately realizes that the existence of transient a.c. oscilla-
tions is universal; it must be present in any coherent system
where 41 path contributes to transport. Examples include
electronic interferometers (Mach–Zehnder, Fabry–Perot,
Aharonov–Bohm) but also disordered systems (universal con-
ductance fluctuations) or in fact any electronic resonance in a
wide spectrum of devices and materials. Although its magnitude
and duration will strongly depend on the particular geometry
studied, its frequency—eVb/h—will not, providing a unique
signature for its presence. Let us note that the terminology of
‘(mesoscopic) a.c. Josephson effect without superconductivity’ has
been used in the past18 but with a very different meaning. In ref.
18, the frequency of the oscillation is proportional to the rate at
which one varies a magnetic field through a loop. In contrast,
here the raising time of the voltage can be arbitrarily slow
compared with the oscillating frequency. In particular, in
opposition to its superconducting counterpart, the a.c.
frequency predicted here is not limited by a superconducting
gap, meaning that high frequencies can be obtained. The effect
could possibly be used to make tunable radiofrequency sources
that reach the THz regime and beyond.

Experimentally, the field of ultrafast quantum transport is
developing at an ever-increasing pace. Recent examples include
the demonstration of single-electron sources resolved in energy19

or time20 and measurements in the THz range21. At the same
time, important progress has been made in optics in the far
infrared down to frequencies of a few THz, so that the ‘terahertz
gap’ is rapidly shrinking22. Being able to manipulate electrons in
the THz range will open a wealth of new possibilities:
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Figure 2 | Raising the d.c. voltage bias on a Fabry–Perot interferometer.

(a) Schematic of the Fabry–Perot cavity (TA¼TB¼0.1). (b) Transmitted

current (in units of e/tF, where tF is twice the time of flight between the two

barriers) as a function of time for a Fabry–Perot cavity. At t¼0, the voltage

bias is raised from V(to0)¼0 to Vb¼ 6h/(etF). Inset: zoom on the

oscillations of the current on a plateau.
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interferences at high (possibly room) temperature, new regimes
where photonic and fermionic excitations share the same
frequency range and new effects based on the dynamical
aspects of quantum mechanics, such as the one proposed here.

As argued above, the present proposal can be implemented in a
wide variety of coherent nanoelectronic devices as well as with
many different measurement setups (and corresponding frequen-
cies). Let us end this letter with a discussion of the different
possibilities to measure it experimentally. The requirements to
observe the transient a.c. oscillations are threefold. First, the
temperature must be low enough for the phase coherence length
to be larger than the system size (more precisely longer than the
longest path involved). This condition translates into a simple
operational one, one must observe interference patterns in the
sample using d.c. measurements—the a.c. requirement is not
more stringent than the usual d.c. one. Second, one needs to be
able to raise the potential faster than the time of flight tF so that a
fast pulse generator is needed. Pulse generators with raise time as
fast as 100 ps can be found commercially while 10 ps is available
in the lab. On chip complementary metal-oxide-semiconductor-
based ring oscillators might also be possible alternative methods
to produce such a fast train of square pulses. Finally, one must be
able to measure fast enough to access the frequency eVb/h, which
itself must be 41/tF in order for several oscillations to take place
within the transient regime. In practice, one would periodically
switch on and off the bias voltage Vb to ‘repeat’ the experiment
and accumulate the a.c. signal. Ideally, one would measure the
time-dependent current in a ‘coherent’ way, that is, one would
directly measure the current as a function of time and observe the
transient regime. This is, however, probably difficult as it requires
an experimental setup with very high bandwidth and very fast
acquisition of the signal. The measurement could also be
performed on chip by coupling the system to, say, a qubit as
the signal produced by the transient a.c. effect is very close to the
one used to produce Rabi oscillations. In any case these ‘coherent’
measurements are not easy and also not adapted to very high
frequencies (photons in the optical to far infrared frequencies). A
second strategy is to measure the signal ‘incoherently’, that is,
measure the spectral density of the current SI(n) or equivalently
the number of photons N(n)¼ZcSI(n)/hn (Zc: electromagnetic
impedance of the system) with, for example, quadratic detectors
(RFs) or photon detectors (optical frequencies)23. The transient
a.c. effect will manifest itself through a peak in SI at the frequency
n¼ eVb/h of amplitude Be2/tF and quality factor QEeVbtF/h
(number of oscillations inside the transient regime). For example,
a value of tF¼ 1 ns with an impedance of Zc¼ 1 kO corresponds
to a signal SIE10� 29 AHz� 1, or a RF power ZcSIE10� 26

WHz� 1, or equivalently to an effective noise temperature of
ZcSI/kBE1mK, a signal well within reach with current cryogenic
RF amplifiers (effective noise of 1–10K). One can also try to
observe the ac signal at larger, say optical, frequencies. This
corresponds to lower impedances ZcE377O and a much lower
number of photons N(n)E10� 8 photons. Assuming a 10%
efficiency (this will strongly depend on the geometry) and a
1GHz repetition rate, we arrive at a few 1–10 photons per second.
Note that all these estimates assume a single-channel geometry.
For incoherent measurements, one can use multiple channels
NchBS/lF2 (S: transverse surface of a Fabry–Perot cavity, lF:
Fermi wavelength) in parallel and increase the a.c. signal
accordingly.

We now turn to a few concrete systems. We start with the
Mach–Zehnder interferometer in the quantum Hall regime, as
studied above, where the time of flight tF can be rather large.
Indeed, its phase coherence length has been measured to be as
high as 20 mm at low temperature (20mK; ref. 10), which sets the
upper limit for the difference of lengths between the two arms of

the interferometer. Using typical values for the group velocity of
the edge states of 104–105ms� 1, we arrive at tFE0.1–1 ns. One
must therefore raise the potential at frequencies faster than
1–10GHz to trigger the transient oscillations of amplitude
E1 nA. Another interesting geometry is the ‘flying qubit’
experiment of ref. 24. This setup is essentially equivalent to a
Mach–Zehnder interferometer but the two paths are not spatially
resolved, see ref. 25. It could be advantageous with respect to the
former Mach–Zehnder as the longitudinal velocities can be tuned
using various gates so that tF can take much larger values. The
Fabry–Perot cavity also offers a valid alternative either in its
single-channel form (as implemented in a carbon nanotube or in
the quantum Hall regime) or in a multichannel geometry. A small
pillar made of epitaxial metals, say Cu-Ag-Cu, similar to the
perpendicular structures used to fabricate spin valves would
implement a many channels Fabry–Perot cavity with the metallic
interfaces serving as the semi-transparent mirrors. A 1-mm2 pillar
corresponds to NchE108 and a corresponding increase in the
signal. These are only possible geometries but many others could
be considered as well, including systems, which are not ‘well
defined’ interferometers. For instance the universal conductance
fluctuations present in disordered systems also come from the
interference of different trajectories of various lengths which
should therefore lead to a transient a.c. current.

Methods
Numerical method. The time-dependent numerical calculations have been
performed using the T-KWANT algorithm described in ref. 11, following the model
detailed in ref. 12. The d.c. calculations were performed with the KWANT open
source package26.
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