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The entangled triplet pair state in acene
and heteroacene materials
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Entanglement of states is one of the most surprising and counter-intuitive consequences of

quantum mechanics, with potent applications in cryptography and computing. In organic

materials, one particularly significant manifestation is the spin-entangled triplet-pair state,

which mediates the spin-conserving fission of one spin-0 singlet exciton into two spin-1

triplet excitons. Despite long theoretical and experimental exploration, the nature of the

triplet-pair state and inter-triplet interactions have proved elusive. Here we use a range of

organic semiconductors that undergo singlet exciton fission to reveal the photophysical

properties of entangled triplet-pair states. We find that the triplet pair is bound with respect

to free triplets with an energy that is largely material independent (B30 meV). During its

lifetime, the component triplets behave cooperatively as a singlet and emit light through a

Herzberg–Teller-type mechanism, resulting in vibronically structured photoluminescence. In

photovoltaic blends, charge transfer can occur from the bound triplet pairs with 4100%

photon-to-charge conversion efficiency.
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T
he entangled pair of triplet excitons 1(TT) is thought to be
essential to the rapid, spin-allowed formation of two
triplets from a single absorbed photon1–3. Its overall singlet

character may allow for surprisingly fast, long-distance triplet
exciton transport following singlet fission4. The very same state
also mediates the reverse of singlet fission: triplet–triplet
annihilation (TTA), where two triplets fuse to form an emissive
singlet, a process exploited for biomedical imaging5,6,
high-density secure data storage7, incoherent energy
up-conversion8 and high-efficiency blue organic light-emitting
diodes9. Beyond applications of singlet fission and TTA, a clearer
understanding of the 1(TT) state will shed light on the nature of
the interaction between triplet excitons and may open the way to
new physics involving entangled bosons10,11. Despite significant
theoretical effort10–20, few experiments have succeeded in directly
probing the 1(TT) state in any system21–25, particularly in solid
films relevant to eventual singlet fission devices. We are aware of
a recent study of the 1(TT) state in solid films of 6,13-
Bis(triisopropylsilylethynyl) (TIPS)-tetracene, which crystallizes
into a structure unique among singlet fission materials26. The
nature of this state and its role in singlet
fission in the wider range of acene and heteroacene singlet-
fission materials are not clear, nor its importance in the physics of
singlet fission-based solar cells. During the review process, several
other reports have emerged describing properties of triplet-pair
states, including dynamic equilibrium with S1 (ref. 27), the
formation of quintet-coupled triplet pairs28,29, ultrafast formation
in a strongly exothermic system30 and theoretical re-evaluations
of triplet-pair interactions31–33. These works highlight the
ongoing debate about the nature of 1(TT). Of those that discuss
energetics, all consider 1(TT) to be higher in energy than T1þT1.
Here we demonstrate this is incorrect and show that 1(TT) is
bound with respect to free triplets.

Here we probe the 1(TT) state experimentally and theoretically
in a range of acene and heteroacene materials (Fig. 1a).
We demonstrate the generality of the presence of a bound
1(TT) state as the immediate product of singlet fission. The
processes of formation and decay of 1(TT) are shown in Fig. 1b, a
schematic inspired by Tayebjee et al.34 and references therein
13,35. Formation of 1(TT) is temperature-independent in
polycrystalline films and is thought to occur via a combination
of intra- and intermolecular motion from the photoexcited
singlet12–14,21,34,36,37. Once formed, 1(TT) can undergo one of
three detectable decay processes as follows: (i) form free
(unbound) triplets, a process aided by disorder at low
temperatures and thermally activated above 50 K; (ii) emit (red
arrows) by way of symmetry-breaking distortions enabling
intensity borrowing from nearby bright states; and (iii) with
sufficient energy, ‘back transfer’ to S1 leading to delayed
fluorescence. We also infer that a significant proportion of
1(TT) states undergo non-radiative decay, presumably directly to
the ground state. In photovoltaic blends, we find that charge
transfer from this bound, entangled triplet pair is as efficient as
that from free triplets giving photon-to-charge conversion
quantum efficiencies of 4100%.

Results
Emissive triplet-pair state. Figure 1a shows the chemical
structures of the molecules used. All undergo singlet fission
with time constants ranging from sub-100 fs in pentacene
and TIPS-pentacene to 50–300 ps in 2,8-difluoro-5,11-bis(-
triethylsilylethynyl)anthradithiophene (F2-TES ADT), rubrene
and tetracene15,38–40. The time-integrated, temperature-
dependent photoluminescence (PL) spectra of F2-TES ADT are

shown in Fig. 1c. Similar to tetracene films, described in refs
34,41–43, emission at temperatures between 200 and 90 K is
dominated by a new peak, red-shifted from the 0–0 emission
peak. Below 90 K, an enhanced 0–0 peak once again dominates
the spectrum. Given the similarity in temperature-dependent
emission and, as we demonstrate below, singlet fission dynamics
in F2-TES ADT and tetracene, we suggest a similar origin for the
red-shifted emissive species. We propose in the following that this
emission arises from a bound, entangled triplet pair, 1(TT), the
immediate product of singlet fission.

To better understand the origin of the PL spectral shifts, we
performed time-resolved measurements in F2-TES ADT solutions
(Fig. 2a) and thin films (Fig. 2b). We chose to focus on F2-TES
ADT as, unlike tetracene, F2-TES ADT shows no significant
structural phase transition in the thin films (Supplementary
Fig. 4), no evidence of ‘excimer’ emission43,44 and strong triplet
features in transient absorption (TA) spectra. In dilute solution
only singlet states emit, with a lifetime of 12 ns. Concentrated
solutions and thin films, however, show evidence of multiple
emitting species. To separate spectral features with correlated
decay kinetics we use a spectral decomposition method based on
a genetic algorithm45 (see the Methods section for more details).
The PL maps are best modelled as a sum of two independent
species (solid lines) both in concentrated solution and thin films.
The same procedure was applied to data taken at other
temperatures (Supplementary Fig. 5), yielding clearly delineated
prompt and delayed PL spectra (Fig. 2c).

In concentrated solution, the singlet converts into a red-shifted
species maintaining vibronic structure. Likewise, in solid films
decomposition reveals correlation between prompt and delayed
emitter kinetics: the delayed species grows at the expense of
the prompt. Although the ‘prompt’ emitter lifetime remains
essentially unchanged over the temperature range, the ‘delayed’
emitter lifetime increases substantially with decreasing
temperature. Conversely, the prompt emission spectrum changes
dramatically with temperature. The enhancement of the 0–0 peak,
a property common to materials such as tetracene, which show
super-radiance at low temperature46, allows assignment to the
singlet exciton. The delayed red-shifted emission spectrum, which
dominates F2-TES ADT film emission at intermediate
temperatures, is remarkably constant below 200 K and can
be assigned to 1(TT), see below. At higher temperatures, the
increased intensity in the delayed component at 585 nm,
co-incident with the singlet 0–0 emission, suggests thermally
activated delayed fluorescence with the same lifetime as 1(TT)
(process (iii) in Fig. 1b).

Spin-entanglement of 1(TT) observed by quantum beating.
Interestingly, following femtosecond excitation at 300 K we
observed temporal oscillations of the PL, as shown in Fig. 3a.
Similar to tetracene47,48 (right panel), the amplitude reduces
gradually within an 8 ns window and follows the extracted
delayed emitter kinetics. The Fourier transform reveals the
existence of three beat frequencies (Fig. 3b) at 1.1, 2.0
and 2.9±0.1 GHz that are strikingly similar to those in
tetracene (1.0, 1.9 and 3.1±0.1 GHz, respectively), as discussed
in Supplementary Note 1. These quantum beats have never been
reported in other materials than tetracene, and are a
manifestation of the spin properties of triplet pairs following
singlet fission47,48. Briefly, in the simplest two-electron two-hole
picture of singlet fission, there are 16 possible combinations of
4 spins: 2 singlets, 9 triplets and 5 quintets. Singlet fission
entails spin-allowed conversion between the two singlet states,
one of which is a superposition of triplet-pair states of the
form Sj i ¼ 1ffiffi

3
p XXj i þ YYj i þ ZZj ið Þ in the zero-field basis (see
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Supplementary Notes 1 and 2 for details including magnetic
resonance characterization (Supplementary Fig. 6) and details
relating to quantum beating (Supplementary Fig. 7)). |Si is not an
energy eigenstate of the system and |XXi, |YYi and |ZZi acquire
relative phases, evolving in time with frequencies governed by
their energy spacing. As the state periodically approaches its
initial composition (that is, 1(TT)), there is significant
enhancement of the rate to re-form the original, fluorescent
singlet through TTA if this is energetically allowed. The observed
PL quantum beats thus reveal modulation of the radiative TTA
probability due to spin conservation. The oscillation amplitude
follows the extracted delayed PL kinetics in F2-TES ADT and
tetracene, clearly linking the delayed emission to the 1(TT) state
generated by singlet fission. The beats’ persistence over the 1(TT)
lifetime indicates that spin coherence is maintained over at least
that timescale, and that 1(TT) is thus an entangled triplet-pair state.

1(TT) emission through Herzberg–Teller symmetry breaking.
It is unexpected for this doubly excited state (1(TT)) to emit,
especially with the well-defined vibronic progression seen in

Fig. 2c, right panel. To probe the origin of this behaviour we have
performed ab initio (CASSCF(4,4)) excited-state calculations on
p-stacked dimers in the crystal geometry (details in the Methods
section below and Table 1). Mixing with charge transfer
and singlet states stabilizes 1(TT) relative to the singlet and
non-interacting triplet pairs. Importantly, the bright singlet
contribution to the adiabatic 1(TT) state vanishes at the
equilibrium geometry16,20. 1(TT) instead mixes only with a dark
singlet, with emission thus forbidden. Geometric distortion
activates slight mixing with the bright state, resulting in finite
but low radiative rate (that is, B40� lower than that of the
initial singlet state in F2-TES ADT at 50 K). Nonetheless, the
1(TT) emission can dominate the spectrum at intermediate
temperatures due to its long lifetime. This mechanism is
equivalent to Herzberg–Teller coupling49, in which a
symmetry-forbidden dark state can couple to a vibration of the
bright-state symmetry and thereby obtain the correct symmetry
for mixing or intensity borrowing from nearby bright states.

We propose that this mechanism explains the vibronically
structured red-shifted PL seen in many acenes in the literature.
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Figure 1 | Singlet exciton fission in polyacenes. (a) Molecules investigated in this study. (b) Schematic potential energy surface denoting key

photophysical processes (dashed arrows) in singlet fission materials. Photoexcitation (Exc.) is followed by singlet (black) relaxation along inter- and

intramolecular coordinates, resulting in the observed Stokes shift (PLS1). Further relaxation into the bound, spin-coherent triplet pair state 1(TT) (red)

constitutes singlet exciton fission (SEF). Three detectable decay processes are possible from 1(TT). (i) Thermally activated dissociation into free triplets

(purple), which is aided by disorder/grain boundaries and exhibits a typical activation energy of 20–40 meV. (ii) Direct ‘delayed’ emission from 1(TT) (PLTT)

through Herzberg–Teller intensity borrowing. As a consequence of this mechanism, the 0-0 transition is suppressed. (iii) Thermally activated back-transfer

into the singlet manifold. This process results in delayed fluorescence (PLS1), and is suppressed in tetracene and F2-TES ADT at r 200 K, indicating the

presence of a slight energy barrier. (c) Temperature-dependent absorption and PL spectra of F2-TES ADT films.
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As discussed above, tetracene demonstrates very similar
temperature-dependent PL to F2-TES ADT (Fig. 2d,
Supplementary Note 3, Supplementary Figs 8 and 9, and refs
34,41–43), with a red-shifted delayed component34,42 that decays
with the same lifetime as the quantum beating (Fig. 3a). Even on
much longer timescales, structured 1(TT) emission may be
preferentially regenerated by annihilation from ‘trapped’ triplets
due to its lower electronic energy34,50. Rubrene (Supplementary
Fig. 10) likewise shows evidence of a temperature-dependent
long-lived PL feature, somewhat obscured by the similarity of the
S1 and 1(TT) energies; even pentacene has been shown to
demonstrate similarly shaped emission in films51 and crystals52.
Under Herzberg–Teller coupling the 0–0 peak is suppressed53;
thus, we assign the most prominent feature in the 1(TT) spectrum
to the 0–1 peak, akin to emission from the ‘triplet-pair’-like54 S1

state in polyenes55. Following this model, we determine the
energy of the 1(TT) 0–0 peak from the spacing between observed
0–1 and 0–2 peaks (Supplementary Fig. 1). We find that the
energy extracted from PL scales with the expected 2� T1 energy
from independent measurements of the triplet energy, with an
offset which could account for the binding energy of the triplets
in 1(TT). This is shown in Fig. 4.

This model has critical implications for singlet fission
energetics in ‘slow’ tetracene-like materials. In F2-TES ADT and
similar materials, 1(TT) and S1 are roughly isoenergetic. Indeed,
the delayed spectra in Fig. 2c reveal temperature-dependent
broadening consistent with delayed singlet re-formation, which is
turned off o200 K. The implicit small barrier to singlet
re-formation can only be reconciled with the observed 1(TT)
PL spectrum through the Herzberg–Teller model. The ability of
1(TT) to emit and the spin-conservation considerations above
suggest that quantum beating could likewise be anticipated in the
direct 1(TT) emission, suggesting a need for spectrally resolved
quantum beating studies.

Identification of 1(TT) in TA spectroscopy. For further insight
into the formation and decay of 1(TT) we used TA spectroscopy.
Figure 5a shows the TA spectra of F2-TES ADT films collected at
300 K and we can immediately distinguish two primary species:
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the initially formed singlet exciton and a subsequent long-lived
photo-induced absorption (PIA) band centred at 970 nm. To aid
assignment of this feature, we examine F2-TES ADT solutions at
several concentrations21,36 (Fig. 5b,c). For simplicity, we focus on
the probe range 800–1,100 nm, where all states of interest have
distinct PIA features (full characterization in Supplementary
Figs 5, 11-13). In dilute solutions (Fig. 5b,c top), we observe
B12 ns singlet decay consistent with measured PL (Fig. 2a).
Concentrated solutions (32 mM, Fig. 5b,c middle) exhibit faster
singlet decay and spectral evolution over 100s of nanoseconds to
yield long-lived triplets (T1þT1; sensitization56 in
Supplementary Fig. 11). Between singlet and triplet, we observe
an intermediate, which decays with the same kinetics (red trace)
as the delayed 1(TT) emission (pink dashed trace), enabling
assignment to 1(TT). The last panels in Fig. 5b,c reveal a similar
progression in thin films at 50 K (Supplementary Fig. 13 for other
temperatures), demonstrating that 1(TT) acts as a distinct singlet
fission intermediate even in the solid state. We expect the 1(TT)
PIA absorption cross-section to be similar to that of two free
triplets. Therefore, the reduction in signal from 3–100 ns in the
raw TA kinetic (pink trace in Fig. 5c) suggests significant decay
without forming free triplets. The total PL quantum yield of 10%
at 50 K indicates that this decay is largely non-radiative.

We observe the same progression in rubrene, TIPS-pentacene
and pentacene (Fig. 6), confirming the presence of the 1(TT)
intermediate in all three (see also Supplementary Figs 14–18). In
rubrene, these features match the red-shifted delayed PL kinetics
(Supplementary Fig. 10). No PL was detected in TIPS-pentacene
and pentacene films. We performed similar measurements on
polycrystalline tetracene films (Supplementary Fig. 19) but, as
discussed in Supplementary Note 3, find that these are difficult
due to small triplet absorption cross-sections43,57–59, coupled
with the need for low excitation density to avoid exciton–exciton
annihilation60. In the other materials (Supplementary Fig. 20),

1(TT) decay was completely independent of intensity, indicating
that any recombination is geminate. By contrast, free triplets
exhibit fluence-dependent recombination. Interestingly, our
results show that S1 decay and 1(TT) growth are largely
temperature-independent (Fig. 5 and Supplementary Figs 13
and 14), even in rubrene39.

Stabilization of 1(TT) versus S1 and 2� T1. A temperature
dependence does, however, appear in the subsequent process, in
which the bound triplet pair separates into free triplet excitons
(Fig. 5 and Supplementary Fig. 13). It is noteworthy that this is
even observed in TIPS-pentacene and pentacene (Supplementary
Note 4 and Supplementary Figs 16 and 18), where the overall
process of singlet fission is exothermic (Supplementary Fig. 21
and ref. 61). In Fig. 7a we plot 1(TT) and free triplet population
dynamics for F2-TES ADT films from 4–250 K. Data for other
molecules can be found in Supplementary Fig. 20 (F2 ADT single
crystal), Supplementary Fig. 13 (rubrene), Supplementary Fig. 15
(TIPS-pentacene) and Supplementary Fig. 17 (pentacene). From
an Arrhenius fit to the corresponding rates of free triplet
formation at elevated temperature, we obtain a general
phenomenological activation barrier B20–40 meV (Fig. 7b),
although the underlying rates vary by nearly two orders of
magnitude. These results demonstrate that 1(TT) is stabilized
with respect not only to the initial singlet but also to two free
triplet excitons, confirming its bound nature21. We consider that
this behaviour is general to the acenes and is likely to be a
common property of all singlet fission materials, recalling the
well-known stabilization of the triplet-pair 2Ag state in polyenes
relative to two free triplets54,56,62.

To better understand this binding and thermally activated
decay, we have analysed conversion from 1(TT) into free triplets
based on Marcus–Levich–Jortner rate theory parameterized
against ab initio calculations (Table 2 and Fig. 7c, full details in
the Methods section). We considered the p-stacked crystal
geometries of F2-TES ADT, TIPS-pentacene and rubrene, in
which separation is one dimensional. The enthalpy change DH
for separation was determined using trimer models in which
molecules adopted either the fully relaxed triplet geometry (T) or
the ground-state geometry (G). Bound and separated triplet pairs
then correspond to TTG and TGT configurations, respectively.
The free energy stabilization going from TGT to TTG completely
dominates the activation energy DE. The stabilization energies are
overestimated by these calculations, probably due to the presence
of polymorphism and the assumed single crystal geometry. For
instance, we calculate that increasing the p-stack distance in
TIPS-pentacene by 0.1 Å decreases the DH by B30%. None-
theless, the predicted trends in the DE values match well with
measurements.

Moreover, the magnitudes of DH (50–100 meV) correlate well
with the admixture of singlet and charge-transfer configurations
(Table 1), indicating that this mixing is a primary driver of 1(TT)
stabilization, although orbital delocalization also contributes. The

Table 1 | Diabatic mixing in 1(TT).

Bright S1 Dark S1 CT

TIPS-Pn (T Tequilibrium) 0.00 0.28 1.34
TIPS-Pn (T Gequilibrium) 0.22 0.10 1.22
F2-TES ADT (T Tequilibrium) 0.00 0.24 0.96
F2-TES ADT (T Gequilibrium) 0.46 0.02 0.08

Mixing ratios (%) of other diabatic states into 1(TT) in two geometries.
1(TT) is optically dark at equilibrium (T Tequilibrium). Distortion of one molecule (T Gequilibrium) activates mixing with the bright singlet and thus 1(TT) emission, exemplifying Herzberg–Teller coupling.
Details in the Methods section.
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electronic coupling for intermolecular triplet transfer VT�T was
estimated using p-stacked dimer models and agrees well with
previous studies38.

As shown in Fig. 7d, the resulting rate equation yields a strong
temperature dependence for 1(TT) separation, in good agreement
with experimental results given the simple model. Importantly,
we reproduce the large rate difference between TIPS-pentacene
and F2-TES ADT, and the smaller difference between F2-TES
ADT and rubrene. These differences cannot be attributed to DH
(comparable for all three) and instead follow VT�T. Thus, the
underlying rate for 1(TT) separation is governed by the intrinsic
triplet mobility. At the same time, we note that the overall
activation energy is dominated by DH rather than the inter- or
intramolecular reorganization energies. We can thus conclude

that the measured high-temperature activation energies reflect the
energy stabilization of bound versus free triplet pairs, and that
triplet-pair separation can be described in terms of triplet
hopping from the bound state. The most significant discrepancy
between theory and experiment is at low temperature: the model
predicts vanishingly small 1(TT) separation, whereas we measure
very little change in the rate from B50 K to lower temperatures.
We propose that structural and/or energetic disorder, for instance
as would be found at grain boundaries, accounts for the
persistence of low-barrier free triplet formation.

To verify this, we have performed similar detailed TA and
PL measurements on single crystals of difluorinated
anthradithiophene (F2-ADT, Fig. 7d,e and Supplementary
Fig. 20). We observed similar singlet and 1(TT) emission,
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with clear temperature dependence of the 1(TT) lifetime above
200 K but little temperature dependence below. In TA, we found
free triplet formation at Z200 K but observed no free triplets at
lower temperature. These results support our model for the role
of disorder: in the absence of structural or energetic disorder, the
1(TT) state must be separated through thermal energy alone,
leading to complete suppression of the process at low
temperature.

Concerted two-electron transfer from 1(TT) in solar cells.
The low rate for 1(TT) separation in F2-TES ADT, tetracene47

and rubrene suggests that this state may play a significant role in
fission-sensitized solar cells, unlike in pentacene-based devices
where the extrapolated room-temperature 1(TT) lifetime is
only B200 fs (ref. 22). To elucidate the behaviour of 1(TT) in
photovoltaic blend films and devices, we have studied
bulk-heterojunction films of F2-TES ADT and [6,6]-phenyl C71
butyric acid methyl ester (PC71BM) in 4:1 molar ratio, in which
we expect significant demixing. The device structure is shown
schematically in Fig. 8a with electrical characteristics in Fig. 8b,c.
We focus here on two representative temperatures: 300 and 50 K,
where the primary long-lived species in F2-TES ADT
should either be free or bound spin-entangled triplets,
respectively (for other temperatures, see Supplementary
Fig. 22). As noted above, the yield of free triplets relative to
1(TT) drops as the temperature is lowered (Fig. 8f).

Figure 8d,e shows that at 300 K free triplets are formed, revealing
that a significant proportion of F2-TES ADT molecules must be far
from the fullerene interface. Spectral decomposition (Fig. 8d)
reveals a third species, identified as a hole polaron (radical cation)
in F2-TES ADT from comparison with charge-modulation
spectroscopy (dashed line in Fig. 8d and Supplementary Fig. 23).
Charge-modulation spectroscopy is used to determine the optical

spectra and absorption cross-section of hole polarons in the solid-
state (see Supplementary Note 5 for details). From the strength of
the hole polaron contribution to the TA signal we can then directly
extract the charge population formed (see Supplementary Note 5
and Supplementary Table 1), resulting in a photon-to-charge
quantum yield of B120%. Equivalent device characterization in
Fig. 8b,c shows that, although the power conversion efficiency of
the device is low (1.7%), the peak internal quantum efficiency
approached 120% in the spectral range of F2-TES ADT (Fig. 8c) in
excellent agreement with the TA results.

The 300 K extracted kinetics shown in Fig. 8e reveal that these
charges form at the expense of both bound and free triplet excitons,
resulting in a reduction of both the 1(TT) PL and free triplet TA
lifetimes. There is thus a competition between two modes of 1(TT)
decay: diffusion to a PC71BM interface with direct charge
generation, and thermally activated separation into free triplets,
which in turn diffuse to the interface to form charges.

At 50 K, the contribution of 1(TT) to charge formation can be
isolated, as free triplet formation is strongly suppressed. Indeed, we
find that the relative yield of free triplets is 450% lower at 50 K
than at 300 K (Fig. 8f). In the TA dynamics, following formation of
bound triplet pairs, we observe separation into charges with no sign
of intermediate free triplets. Intriguingly, we find that the 1(TT)
lifetime in neat and blend films is strikingly similar at 50 K. We can
only reconcile this by citing the same rate-determining process for
both 1(TT) separation to free triplets and charge separation from
1(TT): exciton diffusion to the interface. In blend films this is to a
PC71BM-rich phase; in neat films diffusion is to grain boundaries
or other defect sites (see above).

To determine qualitatively the contribution of 1(TT) and free
triplets to the charge yield, we focus on Fig. 8f. Although the yield
of free triplets varies significantly from 50 to 300 K, the charge
yield remains constant. If charges were only generated from free
triplets, their yield should track the free triplet yield. As this is not
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the case, we find that multi-electron transfer from 1(TT) should
be the dominant pathway at low temperature.

Discussion
We have demonstrated the general presence of the bound,
entangled triplet-pair state 1(TT). An interesting property of
1(TT) is that it emits as a singlet but can transfer charge from
each of its constituent triplets. We find that non-radiative decay
of 1(TT) is a dominant loss mechanism limiting further
exploitation. Similarly fast non-radiative 1(TT) decay has been
observed in covalent acene dimers24,63, carotenoid aggregates62,64

and polymers56,65,66, and understanding the mechanism of this
process and minimizing it could allow for efficient solar cells with
direct charge transfer from 1(TT). Our work also has critical

implications for TTA upconversion efficiency models67, where
the implicit assumption is that the singlet-character TTA
encounter complex (that is, 1(TT)) converts to S1 with unity
efficiency. Instead we find that 1(TT) -S1 conversion efficiency
is determined by the competition between singlet formation,
triplet-pair separation and non-radiative decay.

More broadly, we consider that the generality of our findings
across singlet fission materials affords a powerful platform to
study the interactions between triplet excitons and the properties
of bound multiexciton states and could lead to a new material set
for solid-state quantum computing applications.

Methods
Materials. F2-TES ADT was synthesized as described previously68. PC71BM,
tetracene, rubrene, TIPS-pentacene and pentacene were purchased from Sigma
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(b) Rate of 1(TT) decay as a function of temperature. Error bars are uncertainty in the exponential fitting of 1(TT) decay. Dashed lines are mono-exponential

fits to the high-temperature data. Although the overall rate of 1(TT) separation varies widely, the temperature dependence is strikingly similar across the

series (activation energy B20–40 meV). Data for pentacene-based materials scaled by 0.1� for clarity. (c) Marcus–Levich–Jortner rate model of 1(TT)

separation for three p-stacked systems. The strong variation in rate is attributed to the triplet-transfer coupling, while the temperature dependence is

primarily governed by the enthalpy of 1(TT) separation. (d) Normalized population kinetics of excited-state species extracted from TA measurements

(solid) and PL measurements (dashed) of F2-ADT single crystal at 200 and 110 K (see also Supplementary Fig. 21). As in thin films, sequential conversion

from S1 to emissive 1(TT) to free triplets is observed, but 1(TT) separation is fully suppressed at low temperature. (e) Normalized, temperature-dependent

decay kinetics of 1(TT) in F2-ADT single crystal. At low temperature where no free triplets are formed, the decay converges to the intrinsic 1(TT) lifetime.

Table 2 | Parameters for triplet hopping model from ab initio calculations.

VT�T (meV) DH (meV) DE (meV) at kinter¼50 meV kintra (meV)

TIPS-Pentacene 22 87 94 177
F2-TES ADT 33 67 68 195
Rubrene 18 47 47 242

Electronic coupling for triplet transfer VT�T, enthalpy of 1(TT) separation DH, activation energy DE and intramolecular reorganization energy for triplet diffusion lintra, in units of meV. Details in the
Methods section.
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Aldrich. F2-TES ADT and TIPS-pentacene thin film samples were spin-cast
(15 mg ml� 1, toluene) on polyimide precoated fused-silica substrates (the
polyimide aids wetting of the organic semiconductor). For F2-TES ADT: PC71BM
thin film samples, 4:1F2-TES ADT:PC71BM blend solutions (15 mg ml� 1 total
material, mesitylene) were spin-cast on polyimide precoated fused-silica substrates.
Samples were dried on a hot-plate at 50 �C for 10 min. Tetracene, rubrene and
pentacene thin-film samples were prepared via thermal evaporation at a base
pressure of o6� 10� 6 mbar.

Single crystals of F2-ADT were grown through a physical vapour growth
method. Details of the relevant method can be seen elsewhere69. We used a growth
apparatus equipped with source and growth heaters that were placed side-by-side.
Temperatures of the heaters were regulated in such a way that high-quality single
crystals could be produced. In the present studies we set the source and growth
heaters at 240 �C and 220 �C, respectively. The growth duration was 6 h.

TA and PL. For TA measurements, 90 fs pulses generated in a Ti:sapphire amplifier
system (Spectra-Physics Solstice) operating at 1 kHz were used. The broadband
probe beams were generated in separate home-built non-collinear optical
parametric amplifiers for visible (500–800 nm) and near-infrared (800–1,100 nm)
ranges. For fs-ps TA measurements, we used either narrowband o200 fs pulses
from a commercial travelling-wave optical parametric amplifier of super-
fluorescence (TOPAS) or compressed pulses (B40 fs, spanning 525–625 nm) from
a home-built non-collinear optical parametric amplifier to excite the samples. The
time delay between pump and probe pulses was controlled by a mechanical delay

stage. Unless otherwise noted, pump intensities were kept below 5 mJ cm� 2 to
avoid bimolecular singlet–singlet annihilation effects and the pump and probe
polarization were set to magic angle (54.7�) to avoid reorientation effects. For ns-
TA measurements, pump pulses were generated using a frequency-doubled Q-
switched B500 ps Nd:YVO4 laser (532 nm). Delay times from 1 ns to 1 ms were
achieved using an electronic delay generator. For time-resolved PL measurements
to generate spectral maps, the samples were excited by 40 ps pulses (excitation
wavelength: 470 nm) operating at a repetition rate of 2.5 MHz. PL decay dynamics
were resolved using electronic gating through time-correlated single-photon
counting with a temporal resolution of 180 ps and detection based on a cooled
microchannel plate photomultiplier tube coupled to a monochromator. PL quan-
tum beating measurements were performed on a separate time-correlated single
photon counting system (Becker-Hickl module) system, using 100 fs pulses at
500 nm with a repetition rate of 80 MHz. Here, the emission was detected with a
silicon single-photon avalanche diode, yielding a temporal resolution of around
40 ps. For all solid-state time-resolved optical measurements, samples were kept at
a fixed temperature in a cryostat with dynamic helium gas flow. For solution
measurements, a fused silica 1 mm path length cuvette was used.

Triplet sensitization. Blends of N-methylfulleropyrolidine (NMFP) and F2-TES
ADT in a molar ratio of 4:1 were prepared at a concentration of 1 mg ml� 1 in
chloroform. The NMFP was excited by the 355 nm frequency tripled output of a
Q-switched sub-ns Nd:YVO4 laser. Following intersystem crossing on NMFP,
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shows 4100% IQE in the region where F2-TES ADT absorbs. (d) TA spectra of bulk-heterojunction films of F2-TES ADT and PC71BM in 4:1 molar ratio, at

300 K (top) and 50 K (bottom) and averaged over the indicated delay ranges (thin lines). Thick lines: species extracted from spectral decomposition. The

F2-TES ADT hole polaron (radical cation or ‘charge’) spectra extracted through spectral decomposition closely match those obtained with charge-

modulation spectroscopy (CMS, dashed). (e) Triplet and charge population kinetics extracted from data in (d) and Fig. 6. (neat films, dash-dotted) and

equivalent transient PL maps. Shortening of both the 1(TT) PL lifetime and the free triplet lifetime at 300 K suggest both species contribute to charge

formation. At lower temperatures, no free triplets are detected prior to charge transfer at the interface. The kinetics of interfacial charge transfer closely

match those of triplet-pair separation in neat films (dash-dotted). (f) Top panel: photon-to-charge conversion yield determined from TA measurements
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normalized to the 300 K value, varies with temperature.
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triplet transfer to F2-TES ADT occurs and is monitored by TA spectroscopy.
Results are shown in Supplementary Fig. 11.

Phosphorescence. To obtain samples that gave phosphorescence, the molecule of
interest was spin-coated into films doped with platinum octaethylporphyrin
(purchased from Sigma Aldrich). The weight ratio of target molecules to
platinum octaethylporphyrin in solution was varied from 95:5 to 98:2, to give
the clearest phosphorescence signal. Mixtures were spin-coated on Spectrosil at
800–1,200 r.p.m. for 1–2 min in a nitrogen-filled glove box and the films were then
annealed at 60 �C for 30 min. The final samples were encapsulated to prevent
sample degradation and triplet quenching by oxygen. Phosphorescence was
detected using a calibrated infrared InGaAs photodiode array (ANDOR iDus
490A) coupled to a spectrograph (ANDOR Shamrock), with CW excitation at
532 nm (B0.5 mW).

Optically detected magnetic resonance. Optically detected magnetic resonance
(ODMR) experiments were performed to investigate the presence of free triplets in
F2-TES ADT. In these measurements, the change in PL is monitored under
magnetic resonance. ODMR gives a direct way of identifying triplet excitons, as the
dipole–dipole interaction between electron and hole spins within the triplet exciton
gives rise to characteristically broad ODMR spectra, governed by the zero-field
splitting Hamiltonian ĤZFS=‘ ¼ D�ðŜ2

Z � Ŝ
2
=3ÞþE�ðŜ2

X � Ŝ2
Y Þ4, where

Ŝ ¼ ðŜX ; ŜY ; ŜZÞ is the triplet spin operator, and D* and E* are the zero-field
splitting parameters70.

Films were placed on a microwave stripline operated at a frequency of 6.2 GHz
and mounted inside an optically accessible cryostat magnet, providing the static
magnetic field B. Excitation was provided by a 532 nm laser with variable intensity
I. The integrated PL was collected by a photodetector, after removing the laser line
with a 550 nm long-pass filter. Microwaves were square-wave modulated at
frequency fM, and the change in PL due to microwave transitions DPL was recorded
by monitoring the photodetector response at this microwave chopping frequency
using lock-in detection.

Structural characterization. Specular X-ray diffraction was performed with a
PANalytical Empyrean system in Bragg–Brentano geometry using a sealed copper
tube (l¼ 1.5418 Å, 40 kV, 40 mA) and an X’Celerate detector operating in a
one-dimensional mode. A variable slit optics choosing an illuminated length of
10 mm was used in combination with 0.04� Soller slits at the primary as well as at
the secondary side. Low temperatures down to 85 K were reached with the low
temperature attachment TTK600 from Anton Paar Ltd using vacuum (2� 10� 5

bar) conditions. Starting from room temperature the samples were cooled down in
steps of 25 K with a cooling rate of 5 K min� 1. After reaching a temperature of
85 K, the sample was rapidly heated up to room temperature and cooled down
again in steps to a temperature of 230 K, to confirm the measurements were
reproducible after thermal cycling. Careful alignment of the sample height and
sample tilt were made to obtain reliable results. Peak parameters were determined
by a fit of a Gaussian curve to the experimentally observed Bragg peaks.

For measurements conducted at room temperature, the out-of-plane film
structure was investigated with X-ray reflectivity in a lab setup (D8, Bruker) using a
wavelength of 1.5406 Å.

Photovoltaic device fabrication and characterization. Solar cells were fabricated
on 10 mm� 15 mm indium tin oxide-coated glass substrates that served as the
anode. The substrates were ultrasonically cleaned in detergent, deionized water,
acetone and isopropanol. A layer of 30 nm PEDOT:PSS (poly(3,4-ethylenediox-
ythiophene):poly(styrene sulphonate) (Clevios PH 1000) was spin-coated onto the
indium tin oxide substrate and dried in air at 120 �C for 10 min. Fifteen milligrams
of 4:1 F2-TES ADT/PC71BM blend was dissolved in 1 ml of mesitylene and
spin-coated on top of the PEDOT layer at 1,500 r.p.m. and annealed for 10 min at
80 �C. Finally, the LiF/Al cathode (50 nm) was vacuum-evaporated onto the
annealed photoactive layer. All devices were encapsulated before testing.

A 100 W tungsten halogen lamp (500–1,500 nm) and a 120 W Xenon lamp
(350–500 nm) dispersed through a monochromator (Oriel Cornerstone 260) were
used for external quantum efficiency measurements. For wavelengths between 375
and 900 nm, a set of silicon diodes (ThorLabs SM05PD1A) were used. A Keithley
2635 source measure unit was used to measure the short-circuit current as a
function of wavelength. The incident light was focused to a spot size of ca. 1 mm2

using a set of lenses to illuminate individual pixels of size 0.08 cm2. The
current–voltage (I–V) characteristics of the devices were measured under standard
AM 1.5G conditions using an Abet Sun 2000 solar simulator, at an intensity
equivalent to 100 mW cm� 2. Spectral mismatch correction was performed before
the measurements. The dark and bright I–V characteristics were measured using
the Keithley 2635 source measure unit.

Internal quantum efficiency plots were calculated from external quantum
efficiency (l)/A(l), where A is the absorbance of the photoactive layer, which was
computed with a transfer matrix approach, where A was modelled according to
published literature procedures71. The required values for the refractive index n
and the extinction coefficient k were determined via ellipsometry, see
Supplementary Fig. 25. The real and imaginary part of the complex refractive index

were determined using variable angle spectroscopic ellipsometry (M-2000,
Woollam Co.) using an optically isotropic layered optical model. The thickness was
determined by fitting the data in the transparent wavelength range using the
Cauchy model to describe the real part of the complex refractive index, assuming
the imaginary part is zero. Film thicknesses were further determined via AFM.

Spectral decomposition techniques. To identify the spectral species present in
the TA measurements and to determine their individual evolution over time, we
used a combination of singular value decomposition and a spectral deconvolution
code45. This code generates a given number of spectra that best reproduce the
original data, while satisfying basic physical constraints such as spectral shape and
population dynamics. The optimization of these spectra is done by a genetic
algorithm. Once the code has minimized the residual between the obtained spectra
and the original data the output is a set of spectra and kinetics for the species
identified. The advantage of this optimization method over other approaches is that
the genetic algorithm starts from random initial spectra and does not require a
starting kinetic scheme, such as in global analysis methods. In brief, the genetic
algorithm is an example of an evolutionary algorithm that factors TA spectra into a
pre-determined number of spectral components. The idea is based on natural
selection of genes in a population; random spectra or parents are mixed until they
give separate spectra that best reproduce the original data, which constitutes a test
for genetic fitness. The advantages of a genetic algorithm for our purpose over
other optimization methods, such as gradient search methods, is that it is more
capable of modelling a multidimensional data space that can be noisy and contain
several overlapping features. Gradient search methods, on the other hand, are
much more likely to get stuck in local minima.

Here, this optimization code was used to analyse the separate spectral
components of TA and PL spectra. Singular value decomposition was used to give
an initial estimation of the number of principal components in each spectrum.
From here the optimization code was run to look for the same number of species.
We assumed that the initially photogenerated species primarily contains only
singlets that evolve into other excited states at later time. Once it was determined
whether two or three species best fit the data, the genetic algorithm was run several
times on the same TA measurement to assess the reproducibility of the results.
Unless otherwise mentioned, for fs–ps TA measurements, the algorithm was run
over 200 fs to 2 ns. The precise dynamics of the sub-200 fs region are hard to assess
due to the numerous fluctuations in the early-time signal and a time resolution of
B200 fs. For ns-TA measurements, the algorithm was run over 3–2,000 ns,
omitting the instrument response region. For ps-PL measurements, the algorithm
was run over 200 ps–20 ns.

We assess the reliability of the results of the optimization in three ways: (1) by
testing the reproducibility of the results from 410 runs of the genetic algorithm data,
as shown in Supplementary Fig. 26; (2) by comparing the spectra obtained from the
optimization to the raw data obtained from both TA and PL measurements; and (3)
by comparing the kinetics of population decay and/or spectra with independent
measurements, for example, comparing the singlet and 1(TT) intermediate state
kinetics in the TA measurements with that in the transient PL measurements. These
two measurements are both conducted in the linear regime at similar excitation
fluence to ensure the same photophysics are observed in both measurements.

Ab initio calculations. PL from the triplet pair state: to clarify the origin of 1(TT)
PL, we analyse the bright exciton component in the 1(TT) state based on ab initio
excited-state calculations. The 1(TT) states of p-stacked dimers are calculated using
the complete active space self-consistent field (CASSCF) method, where the active
orbitals consist of the highest-occupied molecular-orbital and lowest-unoccupied
molecular-orbital of two monomers, that is CASSCF(4,4). The doubly excited
1(TT) diabatic state is optically dark and thus the 1(TT) PL necessitates mixing
with singly excited bright exciton states. Yet, as found for the acene crystals16, the
bright exciton component to the adiabatic 1(TT) states completely vanishes due to
the relative phase factor of the wavefunctions in H-aggregates. In this case, the
symmetric 1(TT) mixes only with the dark exciton and charge transfer states,
which do not contribute to PL. However, the bright exciton can be mixed with
1(TT) via symmetry-breaking effects due to intra-molecular vibronic coupling. We
model this in the simplest way possible by displacing the geometry of one of
monomers from the triplet minimum to the ground state minimum, (see Fig. 2f in
the main text for results and discussion). Such a scenario is consistent with
intensity borrowing induced by coupling to vibrational modes, that is, the
Herzberg–Teller mechanism.

Triplet pair separation rate: we analysed the transfer rate from the bound 1(TT)
to free triplets based on the Marcus–Levich–Jortner rate theory parameterized
against ab initio calculations. The electronic coupling for the intermolecular triplet
transfer, VT�T, (see Fig. 5c in the main text) was estimated using time-dependent
density functional theory as applied to p-stacked dimer models. The intramolecular
reorganization energy, lintra, for the triplet diffusion was computed on the
monomers at the DFT level. The enthalpy change, DH, for the 1(TT) separation
was obtained from CASSCF(4,4)/ CASPT2 calculations on p-stacked trimer
models, with the monomers adopting either the fully relaxed triplet geometry (T)
or the ground-state geometry (G). Thus, in this notation, the bound and separated
triplet pairs correspond to TTG and TGT configurations, respectively.
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The 1(TT) separation rate, KT�T, is evaluated by the Marcus–Levich–Jortner
theory:

KTT ¼
2p
‘

V2
TTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4plinterkT
p h0 j0i2intraexp � ðDHþ linterÞ2

4linterkT

� �
exp

DS
k

� �
ð1Þ

where k, T and S are the Boltzmann constant, temperature and entropy change,
respectively. The Franck–Condon factor for the intramolecular effective mode,
h0|0iintra, is evaluated from the reorganization energy, lintra, and the frequency
of 0.18 eV corresponding to the usual breathing/stretching mode in aromatic/
conjugated molecules. The low-frequency intermolecular reorganization energy,
linter, is small for covalent excitations such as triplets and its calculation
cumbersome. Here we take a conservative value of 0.05 eV; modifying it in a
reasonable range (up to a factor of 3) hardly affects the conclusions below. eW
account for DS considering the numbers of spatial and spin configurations for the
bound 1(TT) and separated triplets. The 1(TT) separation pathway for p-stacked
TIPS-pentacene, F2-TES ADT and rubrene can be regarded as a one-dimensional
chain; in this case, the spatial DS from the bound 1(TT) to nearest-neighbour TþT
is unity. Considering the dissipation of spin correlation, the number of spin
configurations of the separated T–T (3� 3) is three times as many as the
total-singlet 1(TT), that is exp(DS/k)¼ 3.

The calculated DH indicates that the 1(TT) separation is endergonic for the
three molecular materials investigated (see Fig. 5d in the main text). The bound
1(TT) is stabilized by orbital delocalization as well as the admixture of singly
excited electronic configurations into the nearest-neighbour TT pairs (TTG), both
contributions vanishing in the case of separated triplets (TGT). The free-energy
stabilization going from TGT to TTG completely dominates the activation energy
DE. Although these are overestimated by the calculations, the predicted trends in
the DE values (namely larger in TIPS-pentacene compared to rubrene) match
reasonably well with the measurements. It is interesting to point out that for
rubrene in its equilibrium crystal structure at 0 K, the singlet-triplet mixing is
strictly null because of symmetry20; thus, the finite (yet smaller) DE value
computed in that case reflects only the energy stabilization associated with direct
wavefunction overlap between neighbouring triplets. The relatively large 1(TT)
separation rate of TIPS-pentacene compared with F2-TES ADT and rubrene is
rationalized by the difference in electronic coupling for triplet diffusion. Thus,
based on these theoretical results, we believe the measured activation energies
reported in Fig. 5 essentially reflect the energy stabilization of bound vs free triplet
pairs, rather than the reorganization energy for the migration of free triplets. This is
borne out by the fact that measurements in anthracene single crystals have
demonstrated that the triplet diffusion coefficient is quasi temperature-
independent in the range 100–300 K (ref. 72) (see also references therein).

Data availability. The data that support the findings shown in both the main
figures and Supplementary Figures in this study are available with the identifier
https://doi.org/10.17863/CAM.9032.
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