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Self-folding origami at any energy scale
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Programmable stiff sheets with a single low-energy folding motion have been sought in fields

ranging from the ancient art of origami to modern meta-materials research. Despite such

attention, only two extreme classes of crease patterns are usually studied; special Miura-Ori-

based zero-energy patterns, in which crease folding requires no sheet bending, and random

patterns with high-energy folding, in which the sheet bends as much as creases fold. We

present a physical approach that allows systematic exploration of the entire space of crease

patterns as a function of the folding energy. Consequently, we uncover statistical results in

origami, finding the entropy of crease patterns of given folding energy. Notably, we identify

three classes of Mountain-Valley choices that have widely varying ‘typical’ folding energies.

Our work opens up a wealth of experimentally relevant self-folding origami designs not reliant

on Miura-Ori, the Kawasaki condition or any special symmetry in space.
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P
rogrammed instabilities and weak spots have emerged as a
powerful tool to design a unique preferred deformation
mode into mechanical structures1,2. Such mechanisms are

attractive in actuators3,4, meta-materials5, art, architecture6,7,
robotics8 and other applications at different length scales, because
mechanisms require minimal control at the time of deployment;
as seen in folding chairs or unfolding umbrellas, the designed
deformation is a unique one-dimensional path in configuration
space through which the structure is naturally guided under any
external force. Mechanisms9, even more so than marginal
structures10, are delicately poised at the boundary between
being rigid and floppy. Despite much recent interest in large
extended mechanisms6,11–15 and some critical contributions
towards the same6,16–20, most work has focused on
deformations with high symmetry, and the space of designed
disordered deformations remains largely unexplored.

A prominent and ancient example of designed deformation is
origami. In particular, rigid origami is the study of stiff sheets that
do not bend except at the prescribed creases6. If creases are placed
at just the correct angles relative to each other, the sheet as a
whole has exactly one allowed deformation in which all the
creases fold at the same time. Such sheets can be described21 as
self-folding because the allowed mode will be actuated by almost
any applied force; there is no need to precisely tailor the folding
forces. While a general origami pattern might have several folding
motions, a self-folding pattern will have a unique extended
motion that requires less energy than all others.

However, even in this well-studied area, most known examples of
self-folding crease patterns are in fact rigidly foldable (that is,
foldable at precisely zero energy cost). With the exception of some
influential works discussed below6,16–20, rigidly foldable crease
patterns are often periodic structures made of repeating units, such
as Miura-Ori and its derivatives22,23. Further, origami design has
often been limited to the Mountain-Valley (MV) pattern implicit in
Miura-Ori6,11,24. Many such studies of rigid origami have also been
restricted to so-called flat-foldable or near-flat-foldable vertices6,25

(that is, patterns in which all creases fold to angle p simultaneously);
the flat-foldability restriction on angles in a crease pattern leads to
dramatic algebraic simplifications in rigidity calculations. As a
result, Miura-Ori derivatives are often rigidly foldable, with the stiff
sheet between creases (that is, the ‘faces’) not bending at all when
the creases are folded.

Restricting study to the rigid foldable patterns with no face
bending misses a larger space of near-perfect mechanisms, in
which face bending or energy cost of actuation can be made
arbitrarily small. Understanding the full space of crease patterns
as a function of folding energy is also crucial for self-folding
origami applications13, since applications vary widely in material
stiffness and actuation torques (or energies) available. For
example, folding a structure made of stiff plates connected by
shape-memory polymer hinges26,27 that provide low-actuation
torques might require nearly rigid foldable patterns; but using
shape-memory alloys28 or ionic electroactive polymer13 hinges
that provide higher torques would allow use of less foldable
patterns as well. Similarly, one might wish to prevent accidental
deployment of a self-folding hydrogel capsule29 due to small pH
fluctuations, necessitating less foldable patterns.

Surprisingly little is known about general self-folding origami
patterns that are not exactly rigidly foldable. Important
contributions include Huffman’s work17 on general n-valent
vertices and Tachi’s simulation scheme of origami patterns6.
Wu and You 20 introduced analytic methods to analyse motions
of multi-vertex patterns, extending Belcastro and Hull’s condition
for testing rigid-foldability18 for non-flat foldable patterns. Tachi
went beyond rigid foldability for general patterns by establishing
design principles for first order foldability16,19.

Energy scale-dependent origami design and statistical proper-
ties of typical patterns are the basic building blocks needed for a
physically motivated theory of origami15, relevant to both
natural4 and synthetic13,30 systems. In this work, we present a
systematic exploration of the space of self-folding crease patterns
as a function of folding energy by solving equations in sequence.
We further show that MV choices strongly affect foldability, for
example, 62% of all MV choices account for 10% of highly
foldable patterns. Finally, we find an entropy–energy relationship
quantifying the number of crease patterns with given folding
energy, describing how many more crease patterns become
available for a given increase in available actuation energy, for
example, in active hinges13.

Results
Vertex transfer function. As in past work6,11,23, we study patterns
made of general 4-vertices, like those shown in Fig. 1, since vertices
with three or fewer edges are completely rigid while vertices with
more than four edges are too soft (that is, have multiple continuous
degrees of freedom). Assuming the angles y12,y23,y34,y41 between
creases of the vertex add to 2p, we note two primary facts about
generalized 4-vertices studied earlier23; three out of the four creases
must fold in a common orientation (say, Mountain, black in Fig. 2a)
with the final odd-one-out crease folding the other way (Valley
state, red). The final odd-one-out crease can be any one of the two
creases whose neighbouring angles add to less than p (ref. 23)
(Supplementary Fig. 1). Once the discrete odd-one-out choice in
MV has been made, a 4-vertex has exactly one folding degree of
freedom (Fig. 2a); the folding angle ri at any crease i completely
determines any other folding angle rj. For two chosen adjacent
creases, we symbolically write,

r1 ¼ T r2; yf gð Þ ð1Þ
where {y} are the four in-plane angles between creases.

For small fold angles ri, we can linearize the above relationship
and write

r1 � R yf gð Þr2þO r2
2

� �
: ð2Þ

R’s determine the mechanical advantage and dynamic range of
folding angles at a vertex.

Similar transfer functions have appeared in the literature over
the years6,9,15,17,31–33. We emphasize that the transfer functions
T, R depend on the MV configuration at the vertex23. Explicit
forms of T, R for general 4-vertices, including their MV
dependence, are presented in Supplementary Note 1.

Loop equation and tuneable stiffness. While a single 4-vertex
(Fig. 2a) always has one degree of freedom, 4-vertices linked to form
a quad are generically rigid. In fact, the number of folding degrees
of freedom (that is, 12 folding angles ri) exactly matches the
number of constraints relating these folding angles (three at each
vertex). Hence a generic quad has, at best, a discrete set of folded
states—the folding motion between such states will generically
involve face bending or other such violation of constraints.

Thus, smooth folding motions (modes) require fine tuning of the
in-plane angles at each vertex (design parameters). An intuitive way
to understand the fine tuning required is to write a consistency loop
condition for a fold angle r, say that of AD (see Fig. 2b), transported
around the quad (that is, forming a closed loop),

r¼TD TC TB TA rð Þ
� �� �� �

ð3Þ
This nonlinear loop equation needs to be satisfied as a function of r,
not just at particular values of r, in order to have a smooth folding
mode. Taylor expanding the right hand side and subtracting r,

0 � f1rþ f2r2þ f3r3þ . . . ð4Þ
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Figure 2 | Loop equations uncover folding modes of variable face bending over orders of magnitude. (a) Folding angles r1, r2 of adjacent creases at a

4-vertex are related by a transfer function T, determined by in-plane angles y. (b) For a quad to be foldable, a fold angle r of an edge must return as r when

transported around the loop using transfer functions TA, TB, TC, TD. For a smooth folding motion, the equation must be satisfied order by order in r. (c) Face

bending can be dramatically reduced in a controlled manner by solving loop equations in sequence. Random quads (red triangles), not designed to solve

any loop equation, show face bending comparable to crease folding. Quads solving the first loop equation PR¼ 1 (orange� s) typically have face bending

o10� 2 Rad. We find that the residue of the highest loop equation not solved determines the extent of face bending; hence orange points and green points

show the drop of face bending with decreasing
P

K and
P

L respectively.
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Figure 1 | Designing self-folding origami. (a) Forces applied to a ‘self-folding’ sheet will preferentially actuate the one pathway designed to have

significantly less face bending than the other two pathways shown (that is, designed to have Edesigned=Eothers � 1). (b) The celebrated Miura-Ori pattern is

a special highly symmetric pattern with Edesigned=Eothers � 0. (c–e) In this work, we study a larger space of experimentally relevant crease patterns by going

beyond rigidly foldable symmetric patterns. The folding energy scale of such patterns can be made as small as needed in a systematic manner;

Edesigned�r4nþ 2
crease where rcrease is the median crease folding angle, and n the number of solved loop equations that are derived here. Patterns in c–e are

geometrically distinct from traditionally studied limits (Kawasaki vertices, Miura-Ori Mountain-Valley choice). These patterns solve exactly only one (d,e)

or two (c) loop equations.
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where f1¼PR� 1. Setting fi¼ 0 8i gives—potentially—an infinite
set of equations for the design parameters (that is, in-plane angles
ys)—to have a folding motion to all orders in r. Similar loop
equations for lowest order foldability were derived by Tachi16,19

earlier.
We can write the series of loop equations, defined term by term

using the expansion of the transfer function of equation (4). The
loop equations are computed explicitly in Supplementary Note 1,
while here we write them symbolically as

�R : RARBRCRD¼1

�K : KAþKBþKCþKD¼0

�L : LAþ LBþ LCþ LD¼0:

..

.

ð5Þ

As shown in Supplementary Note 1, RV is a property of in-plane
angles at a single vertex V. KV, LV,y are products of functions of
a single vertex V and of RV0 at other vertices VaV0.

MATLAB Code to compute loop equations to arbitrary order is
given as Supplementary Material. For a quad, we verified that the
first five equations are independent. Combined with Tachi’s
earlier work6 that discovered a six-parameter family of rigidly
foldable quads with a special symmetry (flat foldability), our work
suggests that only the first five-loop equations are fully
independent (Supplementary Note 2), as each loop equation
constrains one parameter of the 11d {y} design space. Here we
focus on exploring the full space of creases patterns as a function
of foldability and MV choices.

When a quad does not satisfy all loop equations exactly, there
is no perfect zero-energy mode. Allowing a single diagonal fold
(Fig. 2c, inset) adds an additional degree of freedom and thus

Examples Examples

Examples Examples

Natural class (N)

E
nt

ro
py

 S

Semi-natural class (S) Unnatural class (U)

a b

R

RR

R

Key: R = ⎪R⎪>1, R = ⎪R⎪<1= OR

R

RR

R

R

RR

R R

RR

R

Natural 

Semi-natural

Unnatural

Total

12

1/2

1/2

1

1

11

10

9

8

7

6

5
–14 –12 –10 –8 –6 –4 –2 0 2

In ( ~ log E )(�face/�crease )
2
 *

Figure 3 | Mountain-Valley choices fall into three classes based on foldability of typical modes. (a) For example, semi-natural MV configurations dictate

that Rj j41 at three vertices and Rj jo1 at one, which is statistically less compatible with PR¼ 1 than natural configurations (two Rj j41, two Rj jo1).

(b) Consequently, when random modes of N, S and U types are sampled, U (unnatural) type modes tend to be much stiffer than S or N type. We sampled

106 random modes, simulated folding and recorded their stiffness; we show the histogram binned by (log) face bending energy logr2
face=r
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which we call the entropy S(E). r�crease¼ medianrcrease
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. Among soft patterns (Eo10� 1), 90% of random modes are of Natural MV type which account

for only 6/16th of all MV configurations. S- and U-type modes dominate at high energies E410� 1. The histogram captures a statistical relationship

between MV choices and foldability for ‘typical’ quad patterns and MV classes.
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energy. We sampled B105 random quad meshes made of A quads (for

A¼ 1, 2, 4, 6), folded them with the same fixed Mountain-Valley choice and

noted the face bending energy per quad �E � 1=Að Þ
P

r2
face=medianr2

crease.

The entropy of patterns is S¼ A
2 log �E. eS �Eð Þd log �E is the number of random

patterns in an energy interval d log �E.). Thus the probability of finding a soft

crease pattern eS �Eð Þd log �E� �E
A
2 in a random ensemble diminishes

exponentially with mesh size A (for fixed �E) but only as a power law in

energy �E (for fixed A).
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allows any augmented quad (a quad with an additional face
diagonal crease) to fold. Measuring the angle rface of a freely
folding diagonal is a proxy for the face bending energy in the
presence of a stiff face (Supplementary Fig. 2).

We note that stretching energy in thin sheets scales the same
way with rface as bending energy due to a virial theorem34,35, but
is expected to be considerably smaller34,35. Further, for thin
sheets, bending strain is much larger than stretching strain in
low-energy configurations34,35. Hence, in the following, we model
both the energy and geometry by considering only face bending.
We later check the validity of this thin sheet approximation using
finite element simulations in COMSOL (Fig. 5 and
Supplementary Fig. 2). Thickness in real application varies, for
example, 0.05 mm thick NiTi sheets of width 50 mm for stents28

to 1-mm-thick GaAs sheets of width 100 mm (ref. 36) for optically
actuated mirrors.

To study the relationship between loop equations and face
bending quantitatively, we generated random quadrilateral
patterns with random MV assignments and used them to solve
loop equations order by order using gradient descent. We then
added a crease along the face diagonal (Fig. 2c inset), simulated
folding of each augmented quad from the unfolded state through
small folding angles. In this way, we find,

rface ¼ a1 �R� 1j jrcreaseþ a3 �Kj jr3
creaseþ

a5 �Lj jr5
creaseþ . . .

ð6Þ

where rcrease40 is the median crease folding angle and the
coefficient ai depend on the details (that is, yij) of the quad. Thus,
as noted in Fig. 1a, the energy required to actuate the designed
mode,

Edesigned�r2
face� r4nþ 2

crease ;

drops rapidly with the number n of the exactly satisfied loop
equations in the hierarchy. Applying the loop equation hierarchy to
different seeds of pattern designs allows discovery of soft foldable
patterns devoid of symmetries or order in space (Fig. 1c–e). Such
soft patterns may have interesting mechanical properties that
distinguish them significantly from the well-studied Miura-Ori
pattern (Fig. 1b).

Remarkably, the relationship between face bending rface and n
strongly persists even if face bending is determined after folding
to a large angle rcrease� 1 Rad. As shown in Fig. 2c, the loop
equations when solved in sequence provide a controlled and
systematic reduction in face bending over nine orders of
magnitude. Solving each successive equation reduces face bending
by a factor of B102. In addition, the residue of the leading loop
equation ‘not’ exactly solved is highly predictive of face bending.
Thus the value of SK is predictive of face bending for quads that
solve PR¼ 1 (orange � ), while SL is predictive of face bending
for quads that solve PR¼ 1 and SK¼ 0 (green þ ) and so on.

Equation (5) thus provides a simple design principle for
exploring the crease patterns at any chosen folding energy scale
over many orders of magnitude; one simply solves the hierarchy
of loop equations to the extent needed. Note that if the creases
themselves have non-zero folding energy (for example, due to
finite thickness), the folding energy Edesigned would be bounded
from below by such an energy scale; crease patterns cannot be
made softer than the intrinsic stiffness of individual creases.

Mountain-Valley choice strongly affects foldability. The loop
equations explicitly depend on the MV choices around the quad.
The equations can be defined for any given MV choice, opening
up the full space of origami patterns. Almost all work-to-date on
origami is based on Miura-Ori’s MV choice. In the following, we
show that different MV choices lead to different typical foldability
in a statistical sense.

We find that some MV choices are intrinsically more
conducive to solving the loop equations than others. Hence we
can categorize MV choices by foldability classes. To define these
classes precisely, note that at each vertex, one we can define the
‘broken’ direction to be the two longitudinal creases whose MV
states differ (key in Fig. 3a). The two creases in the orthogonal
‘unbroken’ direction have the same MV state. The
crucial observation is that the creases in the unbroken
direction ‘typically’ fold more than the broken creases; hence
Rij

�� �� � ri=rj

��� ���o1 if i is in the broken direction and j unbroken
(see equation (2)).

Intuitively, some MV choices tend to make Rj j41 at two of the
4-vertices around a quad and Rj jo1 at the other two. These
natural MV assignments (Fig. 3a) are most easily compatible with
PR¼ 1 (equation (5)). Semi-natural MV patterns have Rj j41 at
three vertices and Rj jo1 at the fourth (or vice-versa). Finally,
unnatural quads have all four Rj j41 (or Rj jo1); the in-plane y
angles of such a quad must be fine-tuned to be foldable.

The class of a MV choice thus determines how easy it is to
solve the first loop equation PR¼ 1. Random quads with
Unnatural MV choice are far less foldable than natural or semi-
natural types (Supplementary Fig. 3).

To quantify this statement, we sampled B106 random quads
by displacing the vertices of a regular square lattice randomly and
independently. We then simulated folding each of these quads
with a random folding torque to obtain a folding mode with
max rcrease� 1 Rad; we noted the resulting MV data as well as the
resultant face bending rface for each mode. The histogram, binned
by face bending energy log E¼ log r2

faceþ const is shown in
Fig. 3b; we define the entries of this histogram to be the entropy
S(E) since

R E2

E1
eSðEÞd log E gives the number of modes in our
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simulations. (a) Face bending for a quad when folded along different

Mountain-Valley modes. While stiffness for small folding angles less than,

say, p/2 is predicted by the loop equation residue �R� 1j j, the initially soft

red mode becomes stiffer than others at large folding angles. The other
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random ensemble in the energy range E1� E2 (S(E) is defined
only up to an additive normalization constant).

First, in Fig. 3b, we note that the total entropy follows a simple
law up to quite stiff modes, SðEÞ¼ 1

2 log E that we explore further
below. We also see that 90% of modes softer than EB10� 1 are
accounted for by Natural MV configurations, even though such
configurations only account for 6/16 of all MV choices. Most of
the remaining 10% of soft modes are accounted for by semi-
natural configurations (8/16 of all choices). Among stiff modes
E410� 1, the situation is reversed and semi-natural and
unnatural configurations form a majority.

Thus, in addition to opening the door to arbitrary MV choices,
our work suggests previously unnoticed MV classes that
qualitatively differ in their typical foldability. Such widely varying
entropy of MV classes suggests important lessons in design;
natural configurations can be expected to be more forgiving of
error in laying out creases while unnatural configurations need to
be highly fine-tuned to be foldable.

Entropy–energy relationship for large crease patterns. We have
seen that a quad’s folding mode can be made arbitrarily soft by
solving a series of loop equations; but soft modes are rarer than
stiff modes. In the following section we generalize these con-
siderations to large origami meshes.

We sampled crease patterns made of A quads by displacing the
vertices of a regular lattice with A inner faces plaquettes randomly
and independently, in much the same way as for the quad above.
We folded the resulting crease pattern using a torque that selects
chosen MV data until max(rcrease)¼ 1 Rad and recorded the
resulting face bending rface on each quad. We then made a
histogram of 1=Að Þ

P
r2

face=median r2
crease� E=A � �E from a

large sampling of such lattices of different sizes; see Fig. 4.
We again define the entropy of crease patterns (now for a given

MV) as the logarithm of the above histogram. We find that this
entropy is extensive in pattern size A and has a simple form,

S �Eð Þ¼A
2

log
�E

E0

� �
þ . . . ð7Þ

where �E is the (intensive) face bending energy per quad, the
ellipsis represent sub-leading corrections in A and E0 is a constant
discussed later. By construction, eS �Eð Þd log �E is the number of
crease patterns of chosen MV with folding energy within an
interval d log �E around �E.

We can understand the extensive scaling of entropy S with A
and the log E dependence using the loop equations. As seen in
Fig. 2c, for a single quad, face bending energy is simply related to
loop equation residues, for example, �E�r2

face� �Kð Þ2 for the
green points. On the other hand, we find that the fraction of
quads in our random ensemble with loop residue less than �Kj j is
simply proportional to �Kj j; this is because patterns in our
random ensemble appear to be uniformly distributed in their
residues. Hence the total number of patterns of energy less than E
scales as

ffiffiffi
E
p

. Setting
R �E

0 eS ~Eð Þd log ~E�
ffiffiffi
�E
p

(by our definition of
entropy), we find S �Eð Þ¼ 1

2 log �E. (Note that the energy is not quite
linear in the residue of the first loop equation PR� 1 in Fig. 2c
which is reflected in Fig. 3b as well.)

For large quad meshes, the above arguments apply to each
quad since we need to solve loop equations independently for
each quad in order to make softer patterns. For example,
imposing a loop equation now removes A times as many design
variables. Hence we find S �Eð Þ¼ (A/2)log �E.

Finally, note the log E dependence for large lattices in
equation (7) is expected to break down near an energy scale E0

(the 105 samples generated here were not sufficient to probe this

scale). In particular, Tachi’s results6 on rigid foldable patterns
imply an entropy of

ffiffiffiffi
A
p

at zero energy.
Our investigations of entropy of folding modes as a function of

energy connects to earlier work on crumpling transitions37;
consider a sheet with a thermally variable crease pattern held at
fixed temperature. At high temperatures, if the entropy of stiff
modes is sufficiently high, the sheet might crumple for entropic
reasons, even if energetically disfavoured. Earlier analytic
approaches were restricted to the entropy of rigid-foldable
modes on regular lattices38,39 while our work is off-lattice and
has a continuum energy E. Our entropy S(E), based on quad
meshes, only grows logarithmically in energy and hence does not
show a first order transition.

The entropy–energy relationship in equation (7) has theoretical
and practical implications. In particular, the probability of a
random pattern (when folded with a fixed MV) being softer than
energy E decreases exponentially with mesh size A but only as a
power law with E.

Such results are useful in understanding the trade-off between
energy scales and design freedom. Self-folding origami applica-
tions vary greatly in the energy Ematerial needed to bend an
uncreased face to a given angle, for example, compare a Young’s
modulus of B103 Pa for hydrogels29 to B107 Pa for NiTi alloy in
origami stents28. Similarly, actuation mechanisms for active
hinges are diverse, including electric13, optical36, thermal28 and
chemical (pH) (ref. 29) methods. Hence, the actuation energy
Eactuation provided by active hinges (defined as work done by
hinges during folding to 1 Rad) can vary widely, for example,
compare torques of B6 	 10� 3 Nm in 30 mm-long shape-
memory polymer hinges26,27 to 5� or 400� that torque in
ionic electroactive polymers or shape-memory alloys
respectively13.

Taken together, Eactuation/Ematerial can vary greatly across
applications. Our energy–entropy relation shows that the fraction
of all patterns suitable for such an application is
� Eactuation=Ematerialð ÞA=2 (for large A).

In addition, micron-scale applications might often have a
design requirement to prevent inadvertent actuation due to
uncontrolled noisy processes of a lower energy scale Enoise, for
example, spontaneous temperature28 or pH fluctuations in
hydrogels29 or random mechanical kicks. To avoid inadvertent
actuation, the folding energy of patterns must be in the
‘Goldilocks’ zone between Enoise and Eactuation. The fraction of
all patterns in the ‘Goldilocks’ zone can be computed to be
(Eactuation/Ematerial)A/2� (Enoise/Ematerial)A/2 for large A.

Equation (7) thus provides a basic guideline for how many
more patterns become available if the actuation energy Eactuation is
raised, say, at the cost of higher power input26 or if the energy of
uncontrolled processes Enoise is lowered.

While our results were derived for the simplest random
ensemble, they can be adapted to other ensembles of patterns
relevant to specific applications.

Face bending along folding modes. In this work, face bending
was measured by augmenting the quad with a diagonal crease
(Supplementary Methods) and then setting crease folding to one
representative angle (B1 Rad) in equation (6). It is reasonable to
expect face bending behaves as nonlinear function of crease
folding for large folding angles. In this section we study the face
bending of folding modes for variable crease folding amplitudes.

In Fig. 5a, we show face bending as a function of crease folding
for four different folding modes. We see that the loop equation
residue �R� 1j j is a good predictor of face bending up to crease
folding of Bp/2 Rad. For larger folding, strongly nonlinear effects
kick in; the initially soft red mode become stiffer than others
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rapidly, while other modes show non-monotonic behaviour.
Non-monotonic bistable behaviour has been seen before in
experiments on highly symmetric flat-foldable patterns11,22.

To visualize what face bending stresses might look like in a real
material without a diagonal crease, we show results of a finite
element simulation in COMSOL in Fig. 5b of two select modes
from Fig. 5a. Unlike our simplified model, this simulation
accounts for stretching, bending of all nine faces, finite thickness
of the material and finite width of creases. While our simple
diagonal crease model cannot capture the precise folding energies
seen in the COMSOL simulation, we see that the bending stress is
localized to a furrow along the diagonal, a result expected for thin
sheets34 (Supplementary Fig. 2 for more analysis and
simulations). Further, when folded in COMSOL with a small
but fixed folding force (note: not to fixed angle), the red mode
shows higher stresses, implying that it is softer than the green
mode, in agreement with our face bending model in Fig. 5a.

Discussion
In this work, we have studied self-folding origami meshes as a
function of folding energy, free from assumptions about MV data
or symmetries such as flat-foldability. We found a design
principle for self-folding patterns of arbitrary stiffness in terms
of a series of loop equations applied to each quad in the pattern.
These general patterns can exhibit diverse curvatures in three
dimensions as compared to Miura-Ori. Related recent work11 has
achieved remarkable three dimensional structures by gradual
modulation of Miura-Ori patterns on length scales much larger
than the repeating unit cell; however, our work allows design on
arbitrary length scales without being limited to any underlying
repetitive motif.

MV data were found to greatly affect foldability. Natural MV
types are typically much softer than Semi-natural or Unnatural
types. This notion informs design decisions for soft self-folding
modes, both as soft Natural modes are more numerous, but also
as they are projected to be less prone to large stiffness fluctuations
due to manufacturing errors.

We complemented these design principles with a statistical
understanding of the space of all large quad meshes; we
determined the total entropy of crease patterns of any given
folding energy. Such a relationship tells us the number of patterns
with a ‘Goldilocks’ folding energy that is lower than available
actuation energy but high enough to prevent inadvertent
actuation due to noisy uncontrolled processes.

While our work focused on quad meshes for concreteness, the
loop equation hierarchy applies to any pattern made of arbitrary
combinations of polygons, provided all vertices have valence four.
We leave investigations of mechanisms with other topologies to
future work.

In conclusion, understanding the space of crease patterns as a
function of an energy scale combined with statistical results on
the foldability of ‘typical’ patterns are crucial ingredients in
developing a physically relevant theory of self-folding origami.

Data availability. Data supporting the findings of this study are
available from the corresponding author on request.
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