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Global metabolic interaction network of
the human gut microbiota for context-specific
community-scale analysis
Jaeyun Sung1,2,3, Seunghyeon Kim1,4,5, Josephine Jill T. Cabatbat1, Sungho Jang6, Yong-Su Jin7,8,

Gyoo Yeol Jung6,9, Nicholas Chia10,11,12 & Pan-Jun Kim1,4,13

A system-level framework of complex microbe–microbe and host–microbe chemical cross-

talk would help elucidate the role of our gut microbiota in health and disease. Here we report

a literature-curated interspecies network of the human gut microbiota, called NJS16. This is

an extensive data resource composed of B570 microbial species and 3 human cell types

metabolically interacting through 44,400 small-molecule transport and macromolecule

degradation events. Based on the contents of our network, we develop a mathematical

approach to elucidate representative microbial and metabolic features of the gut microbial

community in a given population, such as a disease cohort. Applying this strategy to

microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of

the gut microbial ecosystem, core microbial entities with large metabolic influence, and

frequently produced metabolic compounds that might indicate relevant community metabolic

processes. Our network presents a foundation towards integrative investigations of

community-scale microbial activities within the human gut.
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T
he microbial habitat within the human intestine is the site
of an extraordinarily complex and dynamic symbiosis.
Central to the structure and evolution of the resident gut

microbial community (gut microbiota) are the various interac-
tions between microbes and with their chemical environment1,2.
Colonic microbes survive and grow by consuming diet-derived
and host-derived chemical compounds, as well as metabolic
byproducts excreted by other microbes3. Undigested dietary
macromolecules and host-derived substrates (such as mucin) are
broken down by microbial species and then the solubilized
molecules become available to other members of the community
as public goods for uptake. Furthermore, inherent microbial
activities involving the import of metabolic nutrients and
export of metabolic byproducts give rise to both competition
for resources and cooperative relationships, such as metabolic
cross-feeding, among resident microorganisms in the gut
environment4. In addition, the interactions of the gut
microbiota with the host are increasingly recognized to have an
impact on many aspects of human health and disease5,6. For
example, microbial fermentation products such as short-chain
fatty acids (SCFAs) have active roles in normal host physiology,
as energy sources for colonocytes, regulators of gene expression
and cell differentiation, and anti-inflammatory agents7,8. On the
other hand, some metabolic byproducts can be toxic, impairing
host tissue function and promoting the onset and progression of
disease9. Taken together, numerous microbe–microbe and
microbe–host interconnections serve as the basis of a complex
ecological network in the human gut.

Recent advances in sequencing technologies and metagenomics
have revealed associations between the abundance of taxonomic
groups (or their genetic repertoire) and a number of disorders,
including obesity, inflammatory bowel disease, colorectal
cancer and type 2 diabetes (T2D)10–13. Such descriptive,
profiling investigations offer important insights into taxonomic
and functional variations relevant to host phenotypes; yet, a
mechanistic and comprehensive understanding of those observed
results remains elusive. Notwithstanding the importance of
individual microbial species, the consequent impact of the
microbiota on the host would be largely attributed to the
collective activities of numerous microbial species and metabolic
compounds, thoroughly interlinked by network relationships.
This realization calls for an integrative network-based
approach for a system-level understanding of the human gut
microbiota14,15. If available, a comprehensive map of molecular
interactions between microbial species could be used to integrate
the vast collection of previous findings into a global network
context.

In the microbiome research field, a common practice to build a
microbial interaction network has been based on statistical
correlations of taxa abundances across samples16,17. However,
correlation-based inference networks hardly provide explicit
mechanistic details behind the identified correlations. Another
existing approach is to map the entire metabolic pathways by the
direct annotation of metagenome sequences18,19. Despite the
advantage of evaluating the metabolic potential of the community
in its entirety, this method does not segregate biochemical
reactions to those of different species, preventing its application
for the analysis of interspecies interactions. Furthermore, based
on the information of different metabolic networks of individual
microbial species, there are previous works that have modelled
diverse interspecies interactions explicitly mediated by imported
or exported metabolites20,21. Yet, these works have relied on
error-prone automated identification of transportable (importable
or exportable) metabolites and therefore are possibly incomplete
or inaccurate to some extent. Despite ongoing computational
efforts to describe microbial interactions using biologically

realistic (manually curated constraint-based or simplified
kinetic) metabolic models22–24, most of these models have
not yet reached the scale of diversity in the gut community,
which typically comprises hundreds of different microbial species
(it is noteworthy that this scale of microbial diversity has been
recently covered by semi-automatically generated, constraint-
based metabolic models25).

Here we present a global interspecies metabolic interaction
network of the human gut microbiota, NJS16. The information
upon which the network architecture stands is primarily from
literature-based annotations. Therefore, our network maps the
landscape of existing biological knowledge and curated experi-
mental data. To demonstrate the utility of our network, we
developed a mathematical framework for analysing gut microbial
communities in a given population, such as a cohort of T2D
patients. Recent studies have indicated that, as a prominent
environmental factor, alterations in the gut microbiota contribute
to the pathology of this disease12,26. Combined with faecal
metagenomic information from T2D patients12, our network
analysis reveals a community-scale infrastructure of metabolic
influence within the T2D gut ecosystem.

Results
Metabolite transport network of the human gut microbiota.
We aimed to construct a community-level network composed of
microbial species populating the human gut (Fig. 1). To construct
our network, we started by applying a phylogenetic analysis
tool on previously published, shotgun metagenomic sequencing
data from faecal samples of Chinese individuals12. Further details
of the microbiome data and of the taxonomic profiling
method are provided in Methods and Supplementary Data 1.
Next, we extensively searched the published literature for all
annotated, mainly experimental, information that describes
the small-molecule metabolites (for example, monosaccharides,
disaccharides, SCFAs, vitamins and gases), which are transported
into, and/or out of, the microbial species identified in the
microbiome samples (see Supplementary Data 2 for bibliography
of literature references). To complement our list of annotated
microbe–metabolite associations, we included macromolecule
degradation reactions that involve microbes and the
macromolecules (for example, cellulose, hemicellulose, inulin,
starch and mucin) which the microbes are known to degrade, as
well as the resulting degradation products (for example, D-glucose
and cellobiose from cellulose, N-acetylglucosamine, N-
acetylneuraminate, L-fucose and sulfate from mucin). Although
tissue cells of the human host are not physically a part of the gut
microbiota, in this study we view them as a functional extension
of the bacterial and archaeal community residing in the colon,
because host cells either can directly affect or can be affected by
microbial metabolism. The specific host cells that we considered
were the colonocyte (cell-type-specific metabolic model from
Recon 2)27, the goblet cell (for mucin secretion) and the
hepatocyte (for glycine- or taurine-conjugated bile acid export).
Lastly, we linked all microbes and host cells to their associated
metabolites and macromolecules into a comprehensive reference
map of human gut microbiota and chemical compound
relationships. More specifically, a community member and a
chemical compound are then connected by a (directed) link if the
organism can import and/or export the metabolite, or degrade the
macromolecule (see Methods and Fig. 2 for further details of our
network construction approach and the assessment of its possible
biases, respectively).

We present NJS16, a literature-curated community-level
network of the human gut microbiota organized through
metabolite transport (Fig. 1). Our network is a compilation of
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4,483 annotated transport or degradation reactions (from about
400 research articles, reviews and textbooks) between 244
metabolic compounds (229 small molecules and 15 macromole-
cules) and 570 microbial species and human cell types
(511 bacteria, 56 archaea and 3 host cells) (see Supplementary
Data 2 for information on all nodes and arrows in NJS16, on the

associations between macromolecules and their breakdown
products, and on which microbial species have been previously
well studied regarding their relationship to the human gut). To
investigate the inherent network topology of NJS16, we calculated
the number of metabolites imported or exported by each
microbial species. Each species in NJS16 imports 5.1 and exports
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Figure 1 | Global landscape of the human gut microbiota organized through metabolite transport. Overview of NJS16. The import of nutrients

(yellow arrows) and export of metabolic byproducts (blue arrows) comprise the organizational basis of the gut microbial community. Microbes of common

metabolic function are clustered together as functionally similar groups (large coloured nodes). Within the microbial community, competition exists for the

consumption of the same metabolites (small black nodes); cooperative relationships also occur, in the form of (i) interspecies cross-feeding, as exemplified

in the figure insets, and (ii) macromolecule degradation, wherein a microbe degrades macromolecules in its extracellular space (red arrows), thereby

releasing degradation products (grey arrows stemming from macromolecule nodes) as public goods. As a functional extension of the bacterial and archaeal

community residing in the colon, human host cells either can directly affect, or can be affected by, microbial metabolism. Host cell types in the network are:

(i) colonocytes, which absorb nutrients produced by certain microbes, (ii) goblet cells, which secrete complex mucus glycoproteins for mucin-degrading

microbes, and (iii) hepatocytes, which, although not part of colonic tissue, secrete conjugated bile acids that are consumed by microbes.
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3.9 metabolites on average (median 3 metabolites for both cases),
and the probability that a given species imports (or exports)
k metabolites follows an exponential distribution P(k)pe� rk

(rE0.2 and 0.4 for the import and export cases, respectively; see
Fig. 3a,b). The most promiscuous species is Bacteroides
thetaiotaomicron, which imports 34 and exports 29 metabolites.
Conversely, for each metabolite, we calculated the number of
species importing or exporting that metabolite. The probability
that a given metabolite is exported by k species follows a power-
law distribution P(k)pk� g (gE1.6), which is much broader than
the previous exponential fits; such a broad distribution is also
observed from imported metabolites (Fig. 3c,d). Specifically,
glucose and acetate are the most frequent substrate and product,
respectively, and are imported by 118 (20.8% of the total species)
and exported by 251 species (44.3% of the total species).
In contrast, an average metabolite is imported by 13.4 and
exported by 20.7 species (median 7 and 4 species, respectively).
Collectively, these results indicate that metabolites are highly
uneven in terms of their use by species.

Microbes compete against each other for the utilization of
available substrates (for example, carbon, nitrogen and phos-
phorus sources) in the human gut. In our network, this
competition is especially a common feature among groups of
microbes that share common metabolic and physiological
characteristics, such as acetogens and sulfate-reducing bacteria
(interestingly, our network and microbiome data show that
the similarity in two species’ nutritional profiles is positively
correlated with the species’ co-occurrence (r¼ 0.29 and
P¼ 0.02), in agreement with a previous claim20 when the same
measures were applied). Cooperative relationships are also
present, in the form of (i) interspecies cross-feeding, wherein a
metabolic byproduct of one microbe is a nutrient of another
(see each Fig. 1 inset that shows microbes surrounding a
particular metabolite) and (ii) macromolecule degradation,
wherein a microbe, via its ability to degrade macromolecules
and thereby release the degradation products into the

microenvironment as public goods, provides nutrients not
only for itself, but also for other community members. For
example, lactate produced by Bifidobacterium, Enterococcus and
Lactobacillus species is imported by lactate consumers such as
Anaerostipes caccae and Bilophila wadsworthia. Macromolecule
degraders, such as those that target hemicellulose (for example,
Prevotella ruminicola), can provide the degradation products
(for example, D-arabinose, D-galactose and xylooligosaccharides)
to themselves, as well as to nearby microbes.

As such, host cells are also involved in the cooperative
metabolic relationships within the gut microbiota: colonocytes
can absorb metabolites produced by microbes (for example,
SCFAs, amino acids and vitamins); goblet cells secrete complex
mucus glycoproteins as part of the intestinal mucosal layer, which
are a target for mucin-degrading microbes (for example,
Akkermansia muciniphila and B. thetaiotaomicron); and hepato-
cytes export glycine- or taurine-conjugated bile acids, which
eventually flow into the intestine and are taken up by bile-acid-
consuming microbes (for example, Bacteroides fragilis and
Clostridium perfringens). As clearly seen in these examples,
metabolite-driven cooperative relationships are pervasively seen
throughout the entire network (Fig. 1). Using NJS16, we can now
begin to explore the organizing characteristics of global microbial
metabolic activities in the human gut environment.

Context-specific microbial MIN. Herein, we demonstrate the
potential of our global metabolite transport network of the gut
microbiota for elucidating context-specific, community-level
features. We developed a mathematical framework and applied it
on the aforementioned Chinese microbiome samples, which were
previously obtained from T2D patients and non-diabetic con-
trols12. In particular, we undertook the analysis of these data with
an aim to identify the most representative microbial and
metabolic features of T2D gut microbiota, and to gain insight
into relevant microbe–microbe and microbe–host relationships.
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Figure 2 | Comparison of transportable metabolites from NJS16 and those inferred from existing databases. (a) For each microbial species (each data

point), the horizontal and vertical axes represent the number of its transportable metabolites from NJS16 and that inferred from the Kyoto Encyclopedia of

Genes and Genomes (KEGG)69, respectively. The latter was obtained by counting the species’ KEGG compounds that are common to any of the entire

transportable metabolites in NJS16. This KEGG-based estimation would result in many false positives; however, the KEGG information might be relatively

free of the literature bias that NJS16 harbours and thus can possibly serve as a more unbiased counterpart to NJS16. Most data points are located over the

grey diagonal, indicating that most species have more transportable metabolites according to KEGG than to NJS16. The presence of species with few

metabolites in NJS16 can be, at least in part, attributed to literature bias with false negatives in the species’ metabolites. (b) The vertical axis represents the

distribution of the probability P(k) that a given microbial species has k metabolites (horizontal axis) in its defined growth media whose information is from

the Known Media Database (KOMODO)70. We considered common species between NJS16 and KOMODO (only when found to have defined media

information) and counted their media components that are common to any of the transportable metabolites in NJS16. For a given species, the number

of such media components may possibly approximate the number of its importable metabolites. Compared with Fig. 3a, which is derived from NJS16,

b exhibits peaks at large metabolite numbers on the horizontal axis, possibly indicating false negatives in NJS16’s importable metabolites. Yet, given

KOMODO’s low coverage of microbial species in NJS16 (9.2%) and given that microbes may not necessarily import all compounds in their defined growth

media, our results warrant a cautious interpretation.
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Recent studies have shown that gut microbiota composition
and its functional traits can vary according to socio-demographic
and environmental factors, such as ethnicity, gender, age and
diet28–30. These factors can also have a profound impact
towards diseases such as T2D31. This indicates that comparative
microbiome analyses (for example, case versus control) should be
conducted in well-characterized cohort populations controlled for
sources of confounding variation. Therefore, for subsequent
analyses, we selected T2D and non-diabetic control microbiome
samples from a demographic cohort characterized as male,
mid-age and normal weight. This particular cohort was chosen,
because it has the largest sample size among all cohorts, as well as
comparable sample numbers in both phenotypes (control n¼ 21;
T2D n¼ 11). Because of a possible confounding effect on the gut
microbiome by an oral anti-diabetic medication32, we used T2D
samples from only metformin-untreated patients (Methods).
For this male, mid-age and normal weight cohort, we then
found microbial entities differentially abundant or scarce in T2D
(Methods). Here, a microbial entity represents a single microbial
species or a group of multiple microbial species; a group pertains
to microbial species of either a genus or a metabolic clique, which
is defined here as a group of species that import, export or
degrade the same metabolite or macromolecule (for example,
glucose importers, butyrate exporters or cellulose degraders).
A total list of relevant microbial entities is presented in
Supplementary Data 3.

Next, we applied NJS16 as a reference map to build the
community structure of microbial entities abundant or scarce in
T2D, and to understand how they metabolically influence each
other. This network, which we will call henceforth the microbial
metabolic influence network (MIN), is based on actual microbial

relative abundance information from the relevant T2D and
control microbiome samples, that is, context-specific abundance
information. A brief description of how we can construct these
context-specific microbial MINs is as follows: in complex,
microbial ecosystems, a microbial entity can provide nutrients
to another entity via interspecies cross-feeding of metabolic
byproducts and/or release of macromolecule degradation
products. This positive impact may potentially promote
microbial growth. In contrast, a microbial entity can limit
another entity’s access to nutrients via competition for the same
metabolites. This negative impact may potentially inhibit
microbial growth. Based on the combination of such positive
and negative effects, we can leverage information from NJS16 to
formulate and quantify the net metabolic influence of a microbial
entity i on another entity j (Wij). If each entity i or j is
a single species but not a group of multiple species, Wij is
estimated as

Wij �
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metabolites consumed by entity j, gik

p(c)¼ 1 if entity i produces
(consumes) metabolite k, or otherwise, gik

p(c)¼ 0, and a is a
constant. Full details of Wij, including its formulation, the
incorporation of macromolecule degradation, extension to
the case where entity i or j is a multi-species group and the
determination of a, are described in Methods and Supplementary
Methods. Overall, if a microbial entity i is found to have a higher
growth-promoting capability than a growth-inhibiting capability
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towards another microbial entity j, then Wij 4 0, and we classify
this interaction as having a net positive metabolic influence;
if there is a higher growth-inhibiting capability than a growth-
promoting capability, then Wij o 0, and we classify this
interaction as having a net negative metabolic influence. This
approach allows us to construct a community-level network of
positive and negative metabolic influences between pairs of
microbial entities differentially abundant or scarce in T2D (codes
are available in Supplementary Software). Furthermore, we
include in these networks cross-feeding interactions between
microbes and the host (Methods and Supplementary Methods),
along with their corresponding metabolites.

In Fig. 4, we show the MIN composed of microbial entities
associated with a male, mid-age and normal weight cohort. It
features the interplay of positive and negative metabolic
influences among 125 microbial entities. 116 of these 125 are
differentially abundant in T2D compared with control, whereas 9
are differentially scarce. As mentioned above, one major way a
microbial entity exerts a net positive metabolic influence is
through its ability to release macromolecule degradation products
for consumers of those public goods. For instance, Acidothermus
cellulolyticus can degrade cellulose in this MIN. Cellulose
degradation supplies D-glucose, cellobiose and cellulose oligosac-
charides to the microbial community. As another example, A.
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Figure 4 | MIN among the most representative microbial entities of T2D in a given demographic cohort. We identified community-wide metabolic

influence relationships between microbial entities differentially abundant in T2D (gold nodes) and in non-diabetic control (blue nodes) in a male, mid-age

and normal-weight cohort. Specifically, the network is characterized by positive (grey arrow) and negative (red arrow) metabolic influences between pairs

of microbial entities. Furthermore, entities that are highly influential—by exerting a metabolic influence towards a substantial number of microbial entities—

are depicted as network influencers (nodes with orange background. See also Fig. 5a). The number of species that compose each microbial group is shown

in parentheses next to the respective group’s name. Microbe-to-host (colonocyte) cross-feeding relationships that were predicted to be of representative

importance are shown in green arrows, with some examples of the corresponding metabolites. Macromolecule degradation by individual microbial species,

or by multiple species in a microbial group, is exemplified through purple arrows. Full lists of microbial entities and compounds in the networks are too

dense for direct visualization and therefore only a part of them are presented. Full details of this network are available in Supplementary Data 3.
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muciniphila in MIN participates in mucin degradation, providing
the degradation products to the microbial community. The other
major way a microbial entity can have a net positive metabolic
influence is through cross-feeding of exported metabolites. For
example, a member of the Propionibacterium genus produces
riboflavin for Lactobacillus delbrueckii in the MIN.

Apart from the positive metabolic influence relationships
examined above, the MIN also includes links of net negative
metabolic influence. Primarily, this type of relationship indicates
possible competition for the same resources, which may lead
to growth suppression of a microbial entity by another.
Catenibacterium mitsuokai, Eubacterium rectale and Veillonella
atypica, which were all found to be scarce in T2D (conversely,
abundant in control), have net negative metabolic influence
to many microbial entities found to be abundant in T2D
(conversely, scarce in control). For example, in the case of
E. rectale, there is possible competition with L. delbrueckii and
Lactobacillus fermentum for lactose consumption. As an overview
of the MIN from a male, mid-age, and normal weight cohort,
Supplementary Data 3 provides descriptions of which metabolites
determine each metabolic influence between pairs of microbial
entities.

Taken together, our MIN of microbial entities portrays a
roadmap of how chemical interactions come into effect for
community members in the gut environment. Given that

microbial organisms in the gut can synthesize and export various
chemical compounds, these microbial products can be seen as
potential modulators of microbe–host interactions. Although a
thorough examination of all possible metabolite production is
necessary towards understanding global microbe–host interac-
tions, a more effective means would be to focus our efforts on
the strongest and most relevant metabolic interactions. For this
purpose, we devised a computational method to pinpoint the
chemical compounds and their associated microbial entities
that compose the most representative interactions with the
host (Methods; full details of our pipeline are presented in
Supplementary Methods). A list of these microbe–host relation-
ships is provided in Supplementary Data 3.

In contrast to the entire spectrum of microbe–metabolite
associations presented in Fig. 1, our T2D-associated MIN
illustrated in Fig. 4 offers a focused view of the most relevant
microbe–microbe and microbe–host metabolic relationships.
These interactions could be interesting starting points for
further interrogations on context-specific gut microbiota at the
community level.

Hierarchy of the microbial MIN. In the influence network
shown in Fig. 4, the observation of hubs (which are microbial
entities that exert a metabolic influence to a relatively high
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(Fig. 4) and its probability distribution is shown in a. This plot was used to identify microbial entities with relatively large metabolic influences; specifically, a

transition point was chosen after a drop-off in the probability density of community influences (Methods). Microbial species or groups with relatively large

metabolic influence (shaded region) were designated as network influencers. (b) Network influencers (denoted by ‘Infl’) have a higher proportion of

macromolecule degraders than non-influencers (denoted by ‘n-Infl’), showing that macromolecule degradation is one of their key hallmarks. (c) Top five

most frequently produced metabolites by microbial entities differentially abundant in non-diabetic control: acetate (77.8%), CO2 (55.6%), lactate (55.6%),

propionate (44.4%) and butyrate (44.4%). (d) Top five most frequently produced metabolites by microbial entities differentially abundant in T2D: acetate

(25.6%), CO2 (21.4%), NH3 (14.5%), H2S (14.5%) and ethanol (10.3%). Differences in these two sets of metabolites could suggest insights into metabolic

processes associated with a T2D gut microbial ecosystem.
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number of other microbial entities) prompted us to explore
whether a hidden hierarchy of metabolic influence exists within
the microbial communities. To this end, we introduce the
T2D-relevant, community metabolic influence of a microbial
entity i (Fi), which can be estimated as

Fi �
X

j

H
Y

k;m2Pij

Wkm

* +
Pij

Dni

ni

������
������� yF

0
B@

1
CA;

where H( � ) is the Heaviside step function, Wkm measures entity
k’s direct metabolic influence on entity m (as previously defined),
Pij denotes one of the shortest paths connecting entities i and j in
the influence network, h � iPij is the average over the shortest
paths, Dni/ni characterizes entity i’s relative abundance change
from control to T2D subjects, and yF is a constant. For the full
details of Fi, including its formulation and case-dependent
variations, see Methods and Supplementary Methods. Briefly,
Fi denotes the cumulative number of community members
towards which microbial entity i exerts a very positive or negative
metabolic influence in either a direct or indirect way (an indirect
way here means exerting the influence through other inter-
mediate microbial members; see Methods). For example, in our
MIN, E. rectale was found to have a metabolic influence to
25 different microbial entities; hence, its community metabolic
influence Fi is quantified as 25. Next, we measured the
community metabolic influences of all microbial entities in
MIN (Fig. 5a). In the MIN, we identified a set of highly
interactive microbial entities, possibly acting as driving forces
behind the global dynamics of their respective communities.
We call these entities the network influencers. Among the
total microbial entities, 17.6% were identified as network
influencers.

Next, we examined some of the network influencers and the
metabolites underlying their community metabolic influence
towards other microbial entities (Supplementary Data 3).
Influencers found to be abundant in T2D include Thermobifida
fusca, A. muciniphila and Pseudomonas aeruginosa. T. fusca has a
positive metabolic influence on non-influencers also abundant in
T2D, by providing breakdown products of cellulose and
hemicellulose. Likewise, A. muciniphila, through its participation
in mucin degradation with other mucin degraders, has a positive
metabolic influence to sulfate-reducing bacteria in MIN, by
providing access to sulfate (a mucin degradation product).
Qin et al.12 (whose data we used in this study) also found an
increased abundance of A. muciniphila in patients with T2D.
However, Everard et al.33,34 reported seemingly conflicting
results, in which they observed a decrease in abundance of this
mucin-degrader in faecal samples of diabetic mice. P. aeruginosa,
a triglyceride degrader, can provide triglyceride degradation
products to other microbial entities, indicating the role of dietary
factors in this patient cohort. Influencers abundant in control
(alternatively, scarce in T2D) include E. rectale and Streptococcus
salivarius. E. rectale is a well-known producer of butyrate, which
has been demonstrated to be capable of improving T2D-
associated features35–37. S. salivarius was found to have overall
negative metabolic influences toward many microbial entities
scarce in control, with competition for the consumption of sugars
and B vitamins.

To gain insight into more general properties of network
influencers, we conducted a global analysis of associations
between influencers and compounds. We found that the ability
to degrade macromolecules (which in turn provides public goods)
was the remarkably common metabolic feature among influen-
cers. The average proportion of macromolecule degraders among
influencers (82.6%) was B10 times higher than that among non-

influencers (8.3%) (Fig. 5b), suggesting a prominent hallmark
of network influencers.

Next, we identified microbes whose strains are recognized as
human probiotics. Among the entities of this MIN, there were
three probiotic species, all of which were non-influencers
(L. delbrueckii, L. fermentum and Lactobacillus rhamnosus).
Although the general tendency of this result has yet to be
examined, this observation gives an interesting perspective on the
future design of probiotic regimens. As an alternative to direct
ingestion of multiple probiotic species, it may be advantageous to
introduce influencers that could promote the growth of probiotic
species already present among non-influencers. Therefore, a
thorough understanding of metabolic influence among microbial
community members could aid therapeutic methods aiming to
modify gut ecological composition.

Commonly produced metabolites by MIN microbial entities.
Metabolites that often originate from microbial entities abundant
in T2D may be indicative of how gut microbes, through their
metabolism, play key roles in a specific disease context. In this
regard, we sought to identify the metabolites that are most
commonly produced by microbial entities abundant in either
T2D or control. Differences in these two sets of metabolites could
provide insights into the metabolic processes of T2D-associated
gut microbial ecosystems.

From all microbial entities differentially abundant in non-
diabetic control, the top five commonly produced metabolites
(in terms of the fraction of different entities that produce a given
metabolite) were acetate (77.8%), CO2 (55.6%), lactate (55.6%),
propionate (44.4%) and butyrate (44.4%) (Fig. 5c). Butyrate and
propionate have been shown to exert multiple beneficial effects on
host physiology38–41. Some of these effects, which may contribute
to protection from T2D, include intestinal glucose production
(which helps prevent deregulation of glucose homeostasis
and weight gain)35, increase of energy expenditure36 and anti-
inflammatory effects8,42. In regards to lactate, it is noteworthy
that certain strains of lactic acid bacteria have been reported to
show anti-diabetic activities, possibly through a suppression of
glucose absorption from the intestine43.

On the other hand, the top five metabolites (in terms of the
fraction of different entities that produce a given metabolite)
produced by microbial entities differentially abundant in T2D
were acetate (25.6%), CO2 (21.4%), ammonia (NH3) (14.5%),
hydrogen sulfide (H2S) (14.5%) and ethanol (10.3%) (Fig. 5d).
Acetate and CO2 overlap with those in the aforementioned case of
non-diabetic control. For the remaining metabolites unique to
T2D (NH3, H2S and ethanol), their frequent appearance could
suggest a distinct feature of the T2D-associated microbial
community metabolism, although there is not yet conclusive
evidence of their direct mechanistic links to T2D pathology.
It still warrants mentioning that NH3 and H2S, often the
outcomes of protein fermentation processes by intestinal bacteria,
are known to cause adverse health effects as carcinogenic and
genotoxic agents44–47. In the context of T2D pathology, it may be
worthwhile to pursue these metabolites as part of future
investigations into the mechanistic relationships between gut
microbial metabolic processes and T2D.

Discussion
To provide a global framework for understanding community
metabolism within the human gut, we have presented in this
study NJS16, a network architecture encompassing the myriad
relationships among gut microbial species, host cells and
chemical compounds. Specifically, our network shows how
individual microbes interact with their chemical environment
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(via metabolite import, export and macromolecule degradation)
and thereby with other microbes (via resource competition,
interspecies cross-feeding and releasing macromolecule degrada-
tion products as public goods). One significant aspect of our work
is the inclusion of microbe–host metabolic interactions. In this
regard, our gut microbiota metabolite transport network can be
investigated for identifying interaction pathways or modules that
are associated with particular clinical conditions. As our network
is mainly established upon literature annotations, it can serve as a
useful data resource to those in the scientific community, who
wish to gain insight into microbe–microbe and microbe–host
metabolic interactions relevant to a particular context. Impor-
tantly, to stay scientifically correct and reliable, NJS16 will need to
be routinely revised and augmented.

In a patient population with a specific set of socio-demographic
characteristics (that is, male, mid-age and normal weight), the
microbial entities abundant or scarce in T2D and the influence
connections surrounding each microbial entity were shown in a
community-scale MIN. The influence network suggests the
presence of microbial entities that impose a relatively high degree
of metabolic influence to other entities. These influencers are
essentially the hubs of the network and could be considered as the
main controllers of a hierarchical microbial community.

Apart from being consumed by microbial entities as part of an
intricate cross-feeding web, metabolites that are produced and
eventually exported into the microenvironment can directly affect
host physiology through colonic absorption. NH3 and H2S, which
are known to cause detrimental effects to host health44–47, were
found to be among the most frequently produced metabolites by
microbial entities differentially abundant in T2D. Although
further investigation falls outside the scope of this study, it
would be intriguing to ask whether these metabolites might be
contributing factors or molecular signatures of T2D conditions.
However, focusing strictly on disease-associated metabolites may
be limited in scope; ultimately, the origin of the exported
metabolites (that is, the microbial entities) must be considered to
fully explain the complex narrative of how the gut microbiota
contributes to a disease state. To this end, our integrative
framework can help elucidate metabolites that may be linked
to a particular disease condition, their microbial sources and,
importantly, the infrastructure of the entire community
influencing the metabolism and growth of those microbial
sources.

Several limitations of our study should be noted when
interpreting our results. First, although the microbiome samples
used in our study were metformin-naive and from a single ethnic
background (Chinese), and our analysis was carefully conducted
within a relatively homogeneous patient cohort, we cannot
entirely exclude the possibility of other confounding factors.
Notably, the gut microbiota can be significantly altered by one’s
dietary regimen30,48, the information of which was not available
in the original data set used in our study. Eventually, replicating
our analyses on more finely classified patient cohorts—while
maintaining sufficient sample sizes—could improve control for
these potential confounders. In addition, in our study, a lack of
time-series microbiome data for the individuals makes it hard
to establish any clear causal relationship between their gut
microbiota and disease. Availability of these time-series data
would possibly lead to aetiological discoveries. Second, our gut
microbiota metabolite transport network is currently limited to
bacterial and archaeal species from a particular data source. It
needs to be expanded towards other species from different data
sources, as well as towards other major phylogenies such as
eukaryotes and viruses. Recently, a taxonomic profiling method
capable of strain-level identification of not only bacteria and
archaea, but also eukaryotes and viruses, has been published49.

Clearly, one can apply such newer methods to update and expand
the coverage of microorganisms in our network. Third, almost
all links between microbes and chemical compounds in our
network were based upon literature annotations. We believe that
this network gives us a higher quality data set than the
ones obtained by purely bioinformatics predictions. However,
our manual curation approach is not void of drawbacks: despite
our best efforts, the manually curated network may involve
possible misinterpretations of the literature information. In
addition, many of the experimental evidences considered
were from in vitro studies, of which the results may not be
straightforwardly translated into the in vivo events inside the gut.
Relatedly, oxygen-driven metabolic processes have long been
thought to be irrelevant in the gut, but recent findings suggest
the potential importance of oxygen for the gut microbiota
composition50–52. NJS16 does not have oxygen as an explicit
metabolic compound, although Supplementary Data 2 provides
information on individual species’ relationships with oxygen.
Furthermore, the links between microbes and compounds in our
network reflect simple binary information of either the presence
or absence of the corresponding associations, whereby the degree
of activity of those transport reactions, or individual organisms’
growth requirements, are not yet distinguishable. Substrate-
dependent product formation, interdependency of different
metabolic pathways and end-product inhibition of cell growth
have yet to be considered, and these would be better described by
constraint-based genome-scale metabolic models. Taken together,
our purely connectivity-based network structure should be
considered as a map of the metabolic potential of the microbial
community rather than of the actual state of metabolism itself.
In addition, the abundance of literature annotations is clearly
biased towards well-studied species and high-interest metabolites.
These issues regarding the limited completeness of our network
can be addressed to varying degrees, as a broader range and richer
depth of literature evidence becomes available.

Although we acknowledge these limitations and challenges, we
perceive them as guiding routes and benchmarks for improving
our network. Each individual link in our network is from
literature evidence (traceable literature references are provided in
Supplementary Data 2), yet further experimental data are
necessary to validate and update the global connectivity of the
proposed network structure. Thus, our work calls for the need to
develop high-throughput, quantitative techniques for identifying
and validating specific functions (for example, import and export
of metabolites and release of public goods from macromolecule
degradation) and microbial metabolic interactions (for example,
cross-feeding mechanisms and positive/negative metabolic influ-
ences) on a global scale, specifically within in vivo environments.
Improvements in single-cell genomics and metabolomics strate-
gies, in culturing techniques for previously uncultured
microbes53,54 and in platforms for in vivo high-throughput
screenings will undoubtedly accelerate this process. The advent of
such technologies could confirm or update our findings, as well as
push forward and establish general concepts and theories of
ecological systems biology.

Clearly, a comprehensive understanding of the metabolic
relationships between gut microbes and of how those relation-
ships are intertwined with host physiology is essential for the
development of microbiota-based treatments for disease55,56. We
see our work as an important step towards this direction, by
providing an in silico platform for the rational design of microbial
communities to benefit host health. Specifically, our network
could be utilized to generate computational models for predicting
the outcome of species-level perturbations on a microbial
community and its host environment. Promising approaches in
this front can be constraint-based methods22,24,57–59 and kinetic
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modelling23,60–63. In this direction, we expect our own microbial
ecological networks to help in the development of personalized
clinical strategies. Beyond metabolic interactions focused on by
this study, considering quorum sensing molecules, virulence
factors and genes for metabolic traits and transporters passed
along in horizontal gene transfer64,65 would be another
interesting avenue to pursue using network-based approaches.

Ultimately, gut microbiome analyses will evolve beyond
descriptive, profiling investigations towards more hypothesis-
driven, mechanism-focused studies. However, progress in this
direction will be contingent upon the maturation of our
general understanding of the global inner workings of a microbial
community. We envision that microbiome studies adopting systems
biology approaches and multi-omics data integration66 will be at
the forefront of unraveling the complexity of the gut microbiota, as
well as realizing its potential therapeutic applications.

Methods
Collection of microbiome data and taxonomic profiling. Raw metagenomic
sequencing data from faecal samples of 363 Chinese individuals (T2D and non-
diabetic controls) were downloaded from the NCBI Sequence Read Archive (SRA)
database (SRA045646 and SRA050230). Microbiome samples with missing patient
metadata, of low read count after alignment (o100,000 reads), or highly deviated
from the majority of the samples in their clustering results were removed from our
study (Supplementary Data 1). The taxonomic profiling software that ran on these
microbiome data was MetaPhlAn, which uses clade-specific marker sequences to
identify microbial taxa (with species-level resolution) and their relative abundances
from a metagenomic sample67. The marker gene catalogue used in MetaPhlAn was
from microbial genomes from the Integrated Microbial Genomes system
(July 2011). The MetaPhlAn software compares each metagenomic read from a
sample to this marker catalogue, to identify high-confidence matches. When using
MetaPhlAn, the default ‘rel_ab’ parameter options were selected. For all of our
samples, using MetaPhlAn gave rise to a total of 1,219 identified bacterial and
archaeal species, which cover B70% of all the species from a unified gut
microbiome data set with additional data sources (HMP reference genomes,
HMSMCP–Shotgun MetaPHlAn Community Profiling and GutMeta DownLoad
Center; accessed August 2016).

Collection of metabolic information for NJS16 construction. Metabolic infor-
mation primarily used in this study was experimental evidence of metabolite
transport or macromolecule degradation reported in literature. This information is
dispersed across numerous scientific journal articles and textbooks. Therefore, a
careful read of hundreds of these sources (Supplementary Data 2) was done to
discern which annotations were experimentally verified, from those that were
predicted solely based on automated bioinformatics algorithms. The small-mole-
cule metabolites considered in our work were mostly primary metabolites, which
are, nutrients involved in microbial growth, development or reproduction, or
byproducts of those metabolic processes. Most chemical derivatives of those pri-
mary metabolites, as well as many secondary metabolites, for example, anti-
microbial toxins, oligopeptides and quorum-sensing molecules, were excluded
from our study. In addition, literature sources that report the messenger RNA or
protein expression for metabolic-byproduct-producing enzymes, or for metabolite-
specific transporters, were considered. Small metabolites that can diffuse through
cell walls (for example, H2 and CO2), thereby not requiring transporter proteins,
were also considered, as long as they serve as primary substrates and/or products of
cellular metabolism. Furthermore, if a given microorganism or human cell type has
a published, manually curated genome-scale metabolic model, transport reactions
from the model were considered for that organism or cell type. Importantly, all
annotated metabolite transport or macromolecule degradation processes for
different strains of the same species were unified as collective features of that
particular species. As degradation of a given macromolecule is generally conducted
by multiple species in the gut, the corresponding degradation products
(Supplementary Data 2) were considered as indirect export products of all species
involved in that macromolecule degradation.

In NJS16, one set of nodes corresponds to organisms in the gut microbiota
community (that is, microbial species and host cells), whereas the other set
corresponds to chemical compounds (small-molecule metabolites or
macromolecules). The microbes in our network were connected to the metabolites
they can import from, and/or export to, their microenvironment, or to the
macromolecules they can degrade in their extracellular space. Taken together,
NJS16 is a comprehensive, primarily literature-curated, microbiota interaction map
that accounts for 567 bacterial and archaeal species in the large intestine, 3 human
cell types metabolically interacting with those colonic microbes and 244 chemical
compounds—all interconnected via 4,483 small-molecule metabolite transport or
macromolecule degradation processes. To facilitate visual exploration,

Supplementary Data 4 provides NJS16 in graph-editor accessible, markup language
file format.

Identification of patient-cohort-specific microbial entities. All microbiome
samples were categorized into sub-population cohorts based on each subject’s
gender (male/female), age range (young (age o 45 years), mid-age (45 years r age
o 65 years) and old age (65 years r age), as defined by the United States Census
Bureau), and body mass index (BMI) range (underweight (BMI o 18.5), normal
weight (18.5 r BMI o 25) and overweight (25 r BMI)). Among our T2D
samples, we used only those from metformin-untreated patients, information on
which was provided by a recent study on metformin-confounding effects on the gut
microbiota32. Among all 18 possible cohorts for both T2D patients and non-
diabetic controls, the male, mid-age and normal weight cohort (control n¼ 21;
T2D n¼ 11) was selected for detailed analyses based on its having the largest
sample size among all cohorts, as well as having comparable sample numbers in
both phenotypes (control and T2D). Microbial species differentially abundant or
scarce in T2D patients (compared with non-diabetic control subjects) were
identified by the Wilcoxon rank-sum test and false discovery rate (FDR) correction
was used for multiple testing (FDR o 0.1; Supplementary Methods). To identify
differentially abundant or scarce groups (genus or metabolic clique), the sum of all
relative abundances of microbial species in a particular group was obtained to
represent the relative abundance of the group, then followed by the Wilcoxon rank-
sum test and false discovery rate correction (FDR o 0.1; Supplementary Methods).
The microbial entities (species, genera and metabolic cliques) found to be
differentially abundant or scarce in T2D were selected for further pruning to
identify the most representative microbial entities (Supplementary Methods).

Construction of a microbial MIN. The bipartite network of microbial species and
metabolic compounds (NJS16) can be utilized as a global template for constructing
a context-specific network. For the male, mid-age and normal-weight cohort,
NJS16 was converted into a unipartite network of microbial entities (species, genera
and metabolic cliques) differentially abundant or scarce in T2D compared with
non-diabetic control. This network is called herein a microbial MIN. The con-
ceptual framework for constructing this network is as follows: in complex,
microbial ecosystems, a microbial entity can provide nutrients to another entity via
interspecies cross-feeding of metabolic byproducts and/or release of macro-
molecule degradation products. This positive impact may potentially promote
microbial growth. In contrast, a microbial entity can limit the access to nutrients of
another entity via competition for the same metabolites. This negative impact may
potentially inhibit microbial growth. Based on the combination of these positive
and negative effects, the net metabolic influence of a microbial entity i on another
entity j (Wij) can be calculated. To quantify Wij, the potential metabolic influence
of one microbial species on another microbial species needs to be estimated. For a
pair of species i and j, an increase in species i’s abundance may contribute to an
increase or decrease in species j’s growth (the use of either the growth rate or the
abundance does not much affect the following argument). Species i’s influence on

species j’s growth is expressed by Wij ¼
ð@mjÞ=mj

ð@niÞ=ni
, where mj is species j’s growth rate

and ni is species i’s abundance. Wij 4 0 (o 0) indicates the positive (negative)
metabolic influence that species i is promotive (inhibitive) for species j’s growth. In

more detail, Wij ¼
ð@mjÞ=mj

ð@niÞ=ni
¼ ni

mj
� @mj

@ni

� �
¼ ni

mj
�
P

k
@mj

@zkj

@zkj

@ni
, where k denotes each

metabolite imported by species j and zkj is the rate of metabolite k consumed
by species j per unit abundance. By assuming proper forms of mj and zkj, as a
function of {zkj} and that of {ni}, respectively (Supplementary Methods), Wij can
be written as:

Wij �
Xgc
jk¼1

k

a
nig

p
ikP

m
nmgp

mk

� nigc
ikP

m
nmgc

mk

8<
:

9=
;;

where gik
p(c)¼ 1 if species i produces (consumes) metabolite k, or otherwise

gik
p(c)¼ 0 and a is a constant. If species i degrades macromolecules whose

breakdown products are consumed by species j, Wij contains additional terms that
are described in Supplementary Methods. Further details of Wij, including its
formulation, the incorporation of macromolecule degradation and the determi-
nation of a, are presented in Supplementary Methods.

Next, we found that a potential metabolic influence of one microbial group
G on another microbial group G (each group is either a genus or metabolic clique)
is the weighted sum of Wlq (species l in group G and species q in group G) with
each weight being proportional to species q’s abundance (Supplementary
Methods). Consequently, a metabolic influence of one microbial entity on another
microbial entity can be calculated for every pair-wise case. For every pair of
differentially abundant or scarce entities i and j in T2D, a directed link with weight
Wij from entity i to entity j (and vice versa) was assigned. Among these links, only
the links that account for actual microbial abundance changes between control and
T2D subjects (Supplementary Methods) were considered.

In addition to microbe–microbe interactions, microbe–host interactions were
examined and the representative interactions in the patient cohort were identified
as follows: among metabolic cliques that are differentially abundant in T2D or in
control, those that could either directly influence, or are directly influenced by, host
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cells were initially selected. These metabolic cliques can be regarded as proxies for
enriched chemical compounds in T2D or in control. Then, all microbial entities
(of the corresponding MIN) with commonalties to the previously selected cliques
in regards to relevant phenotypes (abundant in T2D or in control), as well as
metabolic capability (consumption, production or degradation of a chemical
compound), were selected. These microbial entities were recognized as putative
candidates for having an important metabolic relationship with the host. Full
details of our methods are presented in Supplementary Methods.

Identification of network influencers. In a microbial MIN, a microbial entity
i can exert a metabolic influence on another microbial entity j if they are directly
connected to each other. Even when they do not have a direct connection, entity
i may indirectly exert a metabolic influence on entity j, if other entities located
between the two can transfer entity i’s influence to entity j. Taking into account
both of these direct and indirect effects, the quantity Fij

Pij, which measures entity i’s
influence on entity j along the shortest path Pij between the two entities, can be
defined (we only consider the influences that are relevant to the host phenotype
difference between T2D and control). As there can be either single or multiple
shortest paths, Fij � hFij

PijiPij, where h � iPij is the average over the shortest paths.
Fij serves as an estimate of entity i’s overall metabolic influence on entity j.

Next, the community-level metabolic influence of entity i (Fi) is defined as the
number of entity j’s that satisfy |Fi| Z yF (yF is a constant determined in
Supplementary Methods). By formulating Fij

Pij as a function of {Wkm: k, m A Pij}
and microbial abundances (Wkm denotes entity k’s direct metabolic influence on
entity m, as previously described), Fi can be written as:

Fi �
X

j

H
Y

k;m2Pij

Wkm

* +
Pij

Dni

ni

������
������� yF

0
B@

1
CA;

where H( � ) is the Heaviside step function and Dni/ni characterizes entity i’s relative
abundance change from control to T2D subjects. For full details of Fi, including its
formulation and case-dependent variation, see Supplementary Methods.

Lastly, the network influencers, which are microbial entities with distinctively
large Fi’s, were identified as follows: we identified a transition point of Fi from the
probability distribution of Fi (Fig. 5a), which distinguishes one group of microbial
entities (shaded area in Fig. 5a) from the other in their Fi’s, and we use this
transition point of Fi as the lower bound of the influencers’ Fi.

Data availability. NJS16 (Supplementary Data 2) is also available in the Dryad
Digital Repository68. Codes for the computation of microbe–microbe and
microbe–host metabolic influences are available as Supplementary Software. The
authors declare that all other relevant data are available within the article and its
Supplementary Information files, or from the corresponding author upon request.
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