
ARTICLE

Received 23 Aug 2016 | Accepted 20 Mar 2017 | Published 17 May 2017

Experimental quantum compressed sensing
for a seven-qubit system
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Well-controlled quantum devices with their increasing system size face a new roadblock

hindering further development of quantum technologies. The effort of quantum

tomography—the reconstruction of states and processes of a quantum device—scales

unfavourably: state-of-the-art systems can no longer be characterized. Quantum compressed

sensing mitigates this problem by reconstructing states from incomplete data. Here we

present an experimental implementation of compressed tomography of a seven-qubit

system—a topological colour code prepared in a trapped ion architecture. We are in the

highly incomplete—127 Pauli basis measurement settings—and highly noisy—100 repetitions

each—regime. Originally, compressed sensing was advocated for states with few non-zero

eigenvalues. We argue that low-rank estimates are appropriate in general since statistical

noise enables reliable reconstruction of only the leading eigenvectors. The remaining

eigenvectors behave consistently with a random-matrix model that carries no information

about the true state.
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R
ecent years have seen rapid progress in the development of
quantum technologies, with precisely controlled quantum
systems reaching ever larger system sizes. Specifically, for

systems of trapped ions, arrays of tens or more individual ions
have been engineered and manipulated in their quantum state1–4,
while architectures such as superconducting qubits5,6 and neutral
atoms7,8, among many others, are also developing rapidly.
These technological and scientific developments have enabled
implementations of small-scale quantum simulators2–4, small
measurement-based quantum computations9, proof-of-principle
gate-based quantum computations1,10–12 and quantum error
correction, for example, based on topological colour codes1.

As a result of this fast development, a new roadblock is of
increasing concern: the fact that the Hilbert space dimension
scales exponentially means that traditional methods for the
experimental characterization of quantum states and processes
become infeasible even for intermediate system sizes. This is
problematic since such systems are the building blocks for
emerging quantum technologies. To mitigate this problem, it has
been suggested to use various structural properties of natural
quantum systems—for example, high purity, symmetries, sparsity
in a known basis or entanglement area laws—to reduce the effort
of characterization13–19. For the purposes of this work, we refer to
a quantum system as being intermediate-sized if it has five to ten
physical qubits. This is the range where quantum error correction
of one- and two-qubit logical gates becomes possible and
full-state reconstruction methods are most useful.

Here we are relying on the technique of ‘compressed sensing’,
which has emerged over the past decade in the field of classical
data analysis20,21. It is now routinely used to estimate vectors
or matrices from incomplete information, with applications in
such diverse fields as image processing, seismology, wireless
communication and many more21,22. Furthermore, compressed
sensing for low-rank matrices has been adapted as a tool for
quantum system characterization—also referred to as quantum
tomography—in a series of works13,15,23. A particularly appealing
feature of ‘quantum compressed sensing’ (the use of compressed
sensing for quantum tomography) is the fact that there is no need
to make any a priori assumptions about the true quantum
state15,24 since the validity of the reconstruction can be
subsequently verified.

Quantum compressed sensing is most effective on density
matrices with quickly decaying eigenvalues. Such a state can be
well approximated by a matrix of rank r (much smaller than the
dimension d of the Hilbert space) and depends only on O(rd)
parameters—significantly fewer than the d2 parameters required
in general. In quantum information experiments, the goal is often
to prepare a pure state, described by a rank-1 density matrix.
Noise effects will typically require one to include more than one
eigenvalue to obtain a good approximation of the true state.
However, in highly controlled experiments, the number of
additional eigenvalues is expected to be small. In this context,
the theory of compressed sensing showed for the first time that
the reduced number of parameters is reflected in a reduced effort
in both measurements and computation required for tomo-
graphic reconstruction. Indeed, it has been rigorously proven that
an (approximate) rank-r density matrix can be recovered
from Oðrd log2 dÞ experimentally measured parameters13. This
performance—close to the absolute lower bound of O(rd)—can
even be achieved when the eigenbasis is completely unknown13.

In this work, we demonstrate that this approach is reaching
maturity by implementing an experimental reconstruction of the
state of a seven-qubit system from an informationally incomplete
set of measurements. In fact, we report the first implementation
of compressed state reconstruction on a platform of seven
trapped ions, which are prepared in a state of a topological colour

code25. Important steps towards quantum compressed
sensing protocols have been implemented17,26,27. In particular,
previous work27 has explored quantum state tomography based
on expectation values using techniques of compressed sensing in
a six-qubit photonic system. Here we continue to push towards
much bigger systems by developing more scalable compressed
sensing reconstruction tools. In addition, we have used a variety
of computationally efficient estimators to achieve recovery in
practice, which we revisit when we describe the numerical
techniques used in our experiment.

A secondary objective of this work is to argue that compressed
tomography, while originally developed for density matrices
with a small number of dominating eigenvalues, can also be
appropriate in situations where the unknown true density matrix
is not, in fact, of low rank. This counterintuitive conclusion
follows from the finding that in realistic regimes (for example,
incomplete data), the statistical signal-to-noise ratio is such that
only the leading eigenvectors of the density matrix can be reliably
reconstructed. Indeed, we find that the tail of least-significant
eigenvectors behaves in ways consistent with a random-matrix
model, which means that reporting more than the first few
eigenvectors reveals no information about the true state and thus
amounts to overfitting. To make this insight more concrete, we
formulate a task that is reminiscent of support identification in
compressed sensing—the problem of deciding which eigenspaces
should be included in an estimate (see, for example, ref. 28),
which we call ‘quantum support identification’. We give heuristics
for identifying the relevant support, based on comparing the
behaviour of the estimate with a random-matrix model. Our
findings are consistent with a recent approach that recommends
spectral thresholding for statistical reasons29; and another that
shows that statistical noise in state reconstruction protocols can
manifest itself by giving rise to random-matrix-like behaviour of
the spectrum of the recovered state30.

Finally, we observe that the estimators introduced in the
context of compressed sensing reconstruct the leading
eigenvectors more faithfully than more traditional approaches,
at the price of being less faithful to the spectral tail. This suggests
that one should employ the former if one is more interested in
learning about ‘coherent errors’ (that is, the way in which the
first eigenvector deviates from its target), while the latter are
better-suited to analyse ‘incoherent noise processes’ that drive up
the rank.

Results
Physical system and data model. We begin by explaining
the physical architecture of trapped ions that serves as the
platform for this endeavour. In the considered ion-trap quantum
computer, 40Caþ ions are stored in a linear Paul trap.
Each physical qubit is encoded in S1=2 m ¼ � 1=2ð Þ ¼ 1j i and the
metastable, excited state corresponding to
D5=2 m ¼ � 1=2ð Þ ¼ 0j i. Manipulation of the qubit is performed
by laser pulses resonant (or close to resonant) to the atomic
transitions of 40Caþ . The universal set of quantum gates is
implemented using three types of operations: collective opera-
tions of the form exp(� i(y/2)Sf) with

Sf ¼
XL

l¼1

cosðfÞXl þ sinðfÞYlð Þ; ð1Þ

and entangling operations of the form expð� i y=4ð ÞS2
fÞ, reflect-

ing the entangling Mølmer–Sørenson interaction31. Here Xl, Yl

and Zl are the Pauli operators of qubit l, y¼Ot is determined by
the Rabi frequency O and laser pulse duration t40, and f is
determined by the relative phase between qubit and laser. The
third type of operations is generated by single-qubit phase
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rotations induced by localized AC-Stark shifts. More details of
this experimental set-up are covered in ref. 32.

Within this experimental setting involving L¼ 7 qubits,
quantum states have been prepared to the best of the
experimental knowledge that, however, is limited by statistical
noise and systematic errors. The quantum states are described
mathematically by density operators rAHd(C) (Hermitian d� d
matrices) for d¼ 2L that satisfy tr(r)¼ 1 and rZ0. In all of the
experiments, the aim was to prepare a pure state vector contained
in the code space, which is a two-dimensional subspace of the
Hilbert space of seven qubits spanned by �0j i and �1j i. Here the
state vectors �0j i and �1j i span the code space and are joint þ 1
eigenstates of the set of stabilizer operators that define the code.
The stabilizer operators are given explicitly in ref. 1. The
particular basis for the code space is chosen by picking �0j i and
�1j i to be the eigenvectors of Z1 #y# ZL with eigenvalues þ 1

and � 1, respectively. The states that the ideal experiment would
prepare will be referred to as ‘anticipated states’ in what follows.
Both j�0i and �1j i are code words of a Calderbank–Shor–Steane
code33,34 originating from the theory of quantum error correction
designed to protect fragile quantum information against
unwanted local noise. At the same time, they can be seen as the
smallest fully functional instances of a ‘topological colour code’25,
which are topological quantum error-correcting codes defined on
physical systems supported on two-dimensional lattices.

For each state, a set of n¼ 127 Pauli basis ‘measurement
settings’ is chosen. (An informationally complete set would
contain 3L¼ 2,187 settings.) Each measurement setting j is
characterized by a choice of a local Pauli matrix

WðjÞ
l 2 Xl;Yl;Zlf g; l ¼ 1; . . . ; L; ð2Þ

for each of the L qubits. The lth qubit is measured in the
eigenbasis of W jð Þ

l . There are two possible outcomes for each
qubit, and therefore a total of 2L possible outcomes per
experiment. Each specific outcome k is associated with a
projection operator

PðjÞk ¼ vðjÞk

��� E
vðjÞk

D ���; k ¼ 1; . . . 2L; ð3Þ

where jvðjÞk i is a tensor product of eigenvectors of the W jð Þ
l .

For each measurement setting, the measurement is
repeated m¼ 100 times and the statistics of measurement
outcomes is recorded. From the relative frequencies of outcomes

k, the probability trðrPðjÞk Þ is estimated. Note that because of the
relatively small number of repetitions of the measurements
per setting, given 2L potential outcomes, many of the possible
outcomes will not appear even once. This implies that we have a
highly noisy signal.

Let us denote the measurement settings that have been chosen
as VCW, where W is the set of all possible measurement
settings. We define the ‘sampling operator’ A: Hd(C)-Rnd as

AðrÞ ¼ tr rPð1Þ1

� �
; tr rPð1Þ2

� �
; . . . ; tr rPðnÞd

� �� �
; ð4Þ

with n ¼ Vj j the number of chosen settings. That is, the sampling
operator is the linear map that simply returns the list of
expectation values of the observables PðjÞk measured in the state r.
The data taken are of the type

y ¼ AðrÞþ zðrÞ; ð5Þ
where the zero-mean random vector z(r) captures the statistical
noise. The outcomes for any given basis follow a multinomial
distribution, from which one obtains the expression

1
m

tr rPðjÞk

� �
1� tr rPðjÞk

� �� �
; ð6Þ

for the second moment of each given component of y.

For completeness, we note that the ‘Pauli basis measurements’
considered here differ from the ‘Pauli correlation measurements’
that were the basis of previous works on quantum compressed
sensing13. Pauli correlation measurements are of the form

trðrðWðjÞ
1 � . . . �WðjÞ

L ÞÞ, where again the W jð Þ
l are Pauli

matrices acting on the lth qubit. These correlators associate
‘one’ expectation value with each choice of local Pauli matrices
and appear, for example, as syndrome measurements in quantum
error correction. As detailed above, the ‘basis measurements’ yield
2L parameters per choice of local Pauli matrices. This is the
number of ways of picking one of the two eigenvectors of each
Pauli matrix. Basis measurements, which thus give much more
detailed information per setting, appear naturally in the ion-trap
architecture used in this work. Moreover, one can recover Pauli
correlations from basis measurements via the relationship

tr r WðjÞ
1 � . . . �WðjÞ

L

� �� �
¼
Xd

k¼1

� 1ð ÞwðkÞtr rPðjÞk

� �
; ð7Þ

where w(k) denotes the parity of the binary representation of the
integer k.

Estimators and state reconstruction. In statistics, an ‘estimator’
is a rule for mapping observed data (here, outcomes y) to an
estimate for an unknown quantity (here, a density matrix r). At
the heart of the discussion is an estimator that is particularly
common in the compressed sensing literature. This is the
so-called ‘trace norm minimizer’ referred here to as TNM: this is
an estimator based on trace minimization with a positivity
constraint. We solve the following problem

min
X

Xk k�¼ trðXÞ; s:t: X � 0; y�AðXÞk k2
2� E; ð8Þ

where �k k� is the nuclear or matrix trace norm and E40 is the
error level. The trace norm can be shown to be the tightest convex
relaxation of rank. Thus, the regularization term both encourages
low-rank solutions and, due to convexity, can be minimized
efficiently21,23. This estimator resembles the Dantzig selector15.
It is an estimator based on the intuition derived from compressed
sensing that under the restricted isometry property35, the positive
semidefinite trace norm minimizer compatible with the data is
the actual state13. This estimator can be cast as a semidefinite
program (SDP), which means that AðXÞ has to be computed in
matrix form, with all memory requirements that come along with
it. For L¼ 7 qubits, as presented in this work, using a SDP solver
is still feasible since the number of measurement settings is not
too large (about o1,000 on a standard workstation). However,
better-scaling algorithms exist for this problem and can readily be
used. Note that for this estimator, one has to estimate the error-
level parameter E40 (ref. 15). In practice, one can recognize two
limiting regimes for choosing this parameter: if E is too small, the
optimization problem is infeasible, that is, there is no solution X
that satisfies the constraints. If E is too big, in contrast, one finds a
solution that it is biased towards low-rank states, that is, solution
X is close to being pure. Here we work in the former regime, that
is, we use the smallest E parameter for which the optimization
problem converges.

To complement our study, in addition to the TNM estimator,
we use a simple and versatile estimator based on the least squares
method, which we refer to as LS. It is a LS estimator with
positivity constraint and it solves

min
X

y�AðXÞk k2
2; s:t: X � 0: ð9Þ

The positivity constraint on X helps the estimation process, based
on the intuition that the set of feasible density operators lies at the
intersection of those operators compatible with the data and the
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positive cone. In practice, one can perform very good estimation
with this estimator, even with informationally incomplete
measurements, if the actual state is not too mixed and hence
close to the boundary of state space. There is empirical evidence
for this observation, which can also be made precise36. In fact, the
additional positivity constraint in this type of problems renders
essentially all estimators equivalent37.

Formally, both estimators can be realized via algorithms that
are efficient in the sense that they can be solved in polynomial
time in the size of the input. In fact, they are specifically suited to
the regime of intermediate/large quantum systems and compar-
ably little data in which we are interested. However, since our
analysis involves hundreds of estimation problems, additional
theoretical efforts are required to arrive at an implementation that
performs well in practice in the regime of intermediate and large
quantum systems for the LS estimator. To achieve this, we here
introduce a new specific implementation for LS estimator. In this
approach, we parametrize the quantum state r as

r ¼ QyQ; ð10Þ

for some r� d complex matrix Q, where r controls the rank of r.
We then consider

min
Q

gðQÞ ¼ min
Q

y�A QyQ
� ���� ���2

2
; ð11Þ

where �k k2 is the vector 2 norm.
Using this parameterization of r ensures that it is positive

semidefinite by construction. The optimization problem itself is
then solved using a gradient method. A gradient flow on the basis
of r directly would introduce negative eigenvalues in every step.
In contrast, we optimize over Q, using the fact that we can
analytically compute the gradient

rQgðQÞ ¼ 4QAy A QyQ
� �

� y
� �

; ð12Þ

of the objective function in equation (11). This way, we dispense
with the unnecessary and computationally expensive projection
step that would otherwise be needed to enforce positivity.

This simplification significantly improves the computational
effort as compared to earlier estimators that made use of an
iterative gradient method based on r. We refer to this gradient
method based on a manifestly positive parametrization of states
as GRAD. We present details of this algorithm in the methods
section. This improvement is of great relevance for the study we
carry out in the next section.

Quantum support identification. The traditional goal of
quantum state tomography is to estimate the true density matrix
of the system—that is, the one that would result in the limit of
infinitely many measurements, when all statistical uncertainties
have vanished (assuming no drift or other systematic errors). We
will now argue that in a high-dimensional setting, with limited
data, it may be neither possible nor desirable to obtain a complete
estimate of the true state.

It is not necessarily desirable, because it is unclear that a
high-dimensional matrix would provide either interpretable
or actionable information. Consider a typical use case for
tomography, where the difference between the anticipated state
and the leading eigenvectors encodes useful information about
the dominating error sources. The eigenvectors associated with
the first few eigenvalues contain the most useful information
about noise effects, and based in these inputs an experimentalist
can adjust the apparatus to achieve a higher fidelity in future runs.
However, it is unclear which action would possibly follow from
knowing, say, the exact form of the 100th eigenvector.

At the same time, the data obtained may also not be sufficient
to estimate all the parameters of the full density matrix to a
sensible accuracy. Indeed, trying to fit too many degrees of
freedom to noisy data results in ‘overfitting’, where the estimate
depends strongly on statistical fluctuations and only to a small
degree on the true state. To combat this, ‘model selection’
methods give rules for selecting a lower-dimensional model if the
amount and variability of the data do not allow for a
reconstruction of the full set of unknown parameters38.

In the context of quantum state estimation, ‘spectral
thresholding’ has been proposed as a model selection method
and theoretically analysed in the regime of informationally
complete measurements29. Spectral thresholding here means that
a lower-dimensional model is selected by setting all eigenvalues of
the estimate to zero if they are below a threshold value that
depends on the dimension of the Hilbert space and the variance
of the individual measurements29.

Here we propose a new heuristic for selecting which
eigenvalues of an estimate to keep and which to discard as not
meaningful. While it lacks the rigorous guarantees of ref. 29, it is
applicable in more general situations. It is based on a transparent
criterion: parameters of an estimated density matrix should not
be reported if they behave in ways consistent with a random-
matrix model—that is, if they can be explained as resulting from a
purely random noise without any signal. The use of random-
matrix theory for the purpose of testing the significance of
estimated small eigenvalues has recently been discussed in ref. 30.
While related to our approach, the goals and methods are
distinctly different: the aim of ref. 30 is to make statements about
the true rank of an unknown density operator by looking at the
properties of its spectrum. Here, in contrast, we want to identify
the part of the estimate we can already trust given the data
available while looking at the properties of the random
eigenvectors of the reconstructed density matrix. Our approach,
in addition, does estimate the correct true rank when enough
information is provided. See Supplementary Discussion for a
detailed description.

Technically, for a given data set y(1), the spectral decomposi-
tion of the positive semidefinite estimate yð1Þ/f yð1Þ

� �
can be

written as

r̂ð1Þ :¼ f yð1Þ
� �

¼
Xd

j¼1

lð1Þj Eð1Þj ; ð13Þ

with decreasingly ordered eigenvalues flð1Þj g and corresponding

eigenprojections fEð1Þj g, where f denotes the action of the
estimator on the data. When insufficient data are taken in an
experiment, not all eigenprojections can be characterized equally
well. Only for some eigenprojections will one have provided
sufficient data. They, concomitantly, will have low uncertainties
and thus will be common to different estimates of the same state
based on different realizations of the experiment, while the
other directions will fluctuate wildly based on the particular
data obtained. Generating a different data set y(2) using the
bootstrapping techniques detailed below, we arrive at the estimate
f yð2Þ
� �

with decomposition

r̂ð2Þ :¼ f yð2Þ
� �

¼
Xd

j¼1

lð2Þj Eð2Þj : ð14Þ

Our figure of merit is based on the Hilbert–Schmidt scalar
product of the eigenprojections

Mj yð1Þ; yð2Þ
� �

¼ tr Eð1Þj Eð2Þj

� �
; ð15Þ
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where j¼ 1, y, d. In the informationally incomplete regime we
are in, this quantity will show a strong overlap only between the
dominant eigenvectors. For the eigenvectors of the complement,
the overlaps resemble the overlap of state vectors chosen
randomly from the unitarily invariant Haar measure. In the light
of this, the spectral thresholding parameter k is taken to be

k :¼ max j : E Mj yð1Þ; yð2Þ
� �� �

4ed

n o
; ð16Þ

in expectation over pairs yð1Þ; yð2Þ
� �

, where the threshold ed is

chosen as ed ¼ EðxÞþ varðxÞ1=2 for the random variable defined
as xðUÞ ¼ ch jU cj ij j2 as overlaps between Haar random state
vectors from Cd, where U is a Haar random unitary. Specifically,
a random-matrix theory computation (see methods) gives,

ed ¼
1
d
þ 2

d dþ 1ð Þ �
1

d2

� 	1=2

: ð17Þ

On the basis of such a significance threshold, for the estimate
based on the data, we return the spectrally thresholded state rk

with a normalization c40, where

rk ¼ c
Xk

j¼1

lð1Þj Eð1Þj : ð18Þ

Let us now define the protocol we follow to provide an estimate
that has low enough rank to be compatible with few data and yet
avoid overfitting. For this, we review the concept of boot-
strapping. We consider two types of bootstrapping: parametric
and non-parametric. In parametric bootstrapping, from the
reconstructed density matrix, one simulates the experimental
measurements (sampled according to the appropriate noise
statistics) and for each sample data realization one computes a
new estimated density matrix. In non-parametric bootstrapping,
however, the measured frequencies are assumed as the true
probabilities, which in turn are used to simulate (sample) new
data sets that are used, as before, to compute an ensemble of
estimated density matrices. In both cases, one uses the ensemble
of recovered density matrices to gain confidence on the
reconstructed state.

The way we proceed is the following: from the experimentally
measured frequencies, we do either parametric or non-parametric
bootstrapping to generate an ensemble of estimated density
matrices using the GRAD algorithm for the LS estimator. We do
it in this way because this particular implementation is able to
deal with hundreds of bootstrapped data sets in a reasonably
short time. Then, we find their spectral decomposition and order
their eigenvalues and eigenvectors in descending order as
explained above. Subsequently, for all possible pairs of estimated
density matrices, we compute the mean of equation (15) for all j.
Finally, we report as the rank of the reconstructed state the largest
j, equation (16), for which the quantity Mj has an overlap greater
than the threshold computed in equation (17). The results are
shown in Fig. 1c and in Supplementary Discussion, where we also
show the performance of this method via extensive numerical
simulations.
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Figure 1 | Example of quantum state reconstruction for the logical �0
�� 


state vector. (a) Trace norm minimizer (TNM) estimate with minimal

error-level E¼ 1.1 (F¼0.43), corresponding to equation (8). (b) Least

squares (LS) estimate (F¼0.30), corresponding to equation (9).

(c) Rank 21 leading subspace projection of the LS estimate (F¼0.32)

obtained by our spectral thresholding method, equation (18). The plots are

two-dimensional plots of the absolute values of the entries of the density

matrix in the standard basis with magnitude represented by the grey scale.

The axes are labelled by the computational basis vectors. For reasons of

clarity, the basis vectors are numbered as xA{1, 2, y, d}, where w x� 1ð Þj i
is the state vector in the standard computational basis, and w(x� 1) is the

binary representation of x� 1. So x¼ 1 corresponds to 0; . . . ;0;0j i,
x¼ 2 to 0; . . . ;0; 1j i and so on. The performance of the reconstruction

is measured by the fidelity F¼ �0
� ��r̂ �0

�� 
, where r̂ is the estimated state.

While all three estimators produce roughly similar looking estimates,

they differ in the fidelity with the anticipated state for the reasons explained

in the main text.
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Discussion
In each experiment we have performed, the ‘anticipated states’
were taken from the code space span �0j i; �1j ið Þ of the topological
colour code. In Fig. 1, we present a graphical representation of an
instance of such a reconstruction (for more examples, please see
Supplementary Discussion). It depicts the reconstructed state
based on the TNM estimator, the one obtained via the LS
estimator computed with our GRAD algorithm, and a truncated
estimate that we call ‘spectral thresholding’ estimate, where only
the highest eigenvalues have been kept via the procedure
described in the previous section.

From Fig. 1, we see that the estimators give rise to valid and
faithful reconstructions of the anticipated state, in that the
reconstructed states are close in fidelity to the anticipated states,
though some estimators report higher fidelities than others.
The computational runtime for the estimators is moreover
quite modest, of the order of an hour, and of a few minutes
for the GRAD estimator. This analysis, Fig. 1a, can be seen
as a first experimental implementation of quantum state
tomography based on a compressed sensing methodology for
high-dimensional quantum systems.

If we compare a typical figure of merit for the quality of a state
reconstruction—the fidelity to the anticipated state—then we
notice that the three reported reconstruction fidelities differ from
F¼ 0.43 (TNM estimate) down to F¼ 0.30 (LS estimate) on the
same data. We hypothesize that this difference is due to a
combination of limited data (applicable to all estimators) and the
fact that the TNM estimate gives a much higher penalty to mixed
states than the other two estimators. In fact, we empirically
observe that the purity of the reconstructed state strongly
depends on the choice of error-level parameter E. For large E
values, the TNM estimator will favour reconstructing nearly pure
states, and thus it will not estimate the tail of the spectrum when
data are scarce. Because of this, it is expected to be better at
diagnosing ‘coherent’ errors, as it will return the dominant pure
state. By contrast, for small E values or when other estimators are
used, one sacrifices purity to better match the spectrum, which
causes the reconstructed state to have a poorer fidelity with the
anticipated state. Thus, these estimators might be better for
diagnosing ‘incoherent’ noise, as these methods retain visibility
for excessive noise in the system. In the context of process
tomography of near unitary maps, a similar effect has been
observed39.

We can gather evidence for our hypothesis by looking at
the diagonal matrix elements of the reconstructed states in the
anticipated basis, meaning the stabilizer basis that includes the
anticipated state. In Fig. 2a,b, we see the absolute values of
the matrix elements of the reconstructed states using this basis.
Here it is much clearer that the TNM estimate with large E
parameter is detecting coherent noise, while the LS estimate
(and the spectral thresholding estimate, not shown) achieve a
more mixed reconstruction. In fact, Fig. 2c shows that in every
case the majority of the diagonal elements are decaying
exponentially when ordered in decreasing magnitude, but with
a much more rapid initial decay for the TNM estimator with
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Figure 2 | Coherent versus incoherent error analysis for the logical �0
�� 


state vector. (a) Trace norm minimizer (TNM) estimate with large E¼ 1.8.

(b) Least squares (LS) estimate. (c) Diagonal element comparison.

(a,b) Two-dimensional plots of the absolute values of the entries of the

difference between the anticipated state and the reconstructed state

density matrices in the stabilizer basis of the anticipated state for the logical
�0
�� 
 state vector. In this basis, the anticipated state is exactly diagonal with

only one non-zero entry in the diagonal. While only the TNM (with large E)
and LS estimates are shown, the spectral thresholding estimate is very

similar to (b) and is omitted. (c) In the same basis, we plot the diagonal

elements of the reconstructed density matrices in order of decreasing

magnitude. The log–log plot shows that after a rapid initial decay, most of

the diagonal elements follow an exponential decay curve. The TNM (with

minimal E) has slightly less heavier tails than the LS and spectral

thresholding estimates. For comparison, the result of the TNM estimator

with a large E parameter has almost all its support in few diagonal elements

and thus is biased heavily towards pure states, as expected. As discussed in

the main text, the TNM estimate with large E parameter is detecting

coherent noise, while the LS estimate achieves a more mixed reconstruction

and is better-suited to detect incoherent errors.
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large E. Although this constitutes evidence for our hypothesis,
much more work should be done to determine whether there is
any advantage to using different estimators to highlight different
features of the noise.

In this context, from our analysis of the experimental data at
hand, and given the amount of available data, we see evidence
that the errors present in our experiment are mostly incoherent.
The absence of strong coherences (off-diagonal elements) in the
reconstructed density matrix (Fig. 2a; Supplementary Fig. 3)
seems to indicate that. Our methods demonstrate that the
principal components of the density matrix have a large overlap
with the anticipated state. Notice that observing this feature in
such a large Hilbert space by luck is nearly impossible. This
observation gives further actionable advice from the tomographic
analysis, in that an improvement of the preparation should aim at
removing such incoherent errors.

As stated earlier, the purpose of our work is twofold. On one
hand, it presents a successful first compressed sensing tomo-
graphy implementation on a seven-qubit quantum experiment,
using estimators and reconstruction techniques that are efficient
in the Hilbert space dimension. In this way, it demonstrates the
potential of using the machinery of the ‘big data’ paradigm to
assess quantum systems close to the limit of what is experimen-
tally feasible. On the other hand, more conceptually, we discuss
ideas of ‘quantum support identification’, related to the question
of what quantum state tomography can actually mean in the
regime of informationally incomplete data for intermediately
sized quantum systems. We advocate a paradigm that only those
low-rank states should be reported that have a statistical basis and
we see that the compressed sensing machinery, that is, TNM with
minimal E, is enough to give an estimate of such characteristics
without being too expensive to compute. We also saw evidence
that using a TNM estimate with large E can be useful to detect
coherent errors.

Quantum tomography—the task of reconstructing unknown
states from data—is a key primitive in quantum technologies. At
its heart, it aims at providing actionable advice upon which the
experimenter can make the appropriate modifications to an
experimental set-up. It goes beyond mere certification of the
correctness of an anticipated preparation of a quantum
state15,16,40: by learning in what way the actually prepared state
deviates from the anticipated one, one can modify the apparatus
appropriately to improve performance in future runs. It is our
hope that we can inspire further work on the certification and
reconstruction of quantum states and processes for increasingly
large quantum systems, overcoming the roadblock against further
development in quantum technologies.

Methods
The GRAD algorithm. Here we present details of the reconstruction sketched in
the main text. In our approach, which we called GRAD, solving the LS estimator,
we parametrize the density matrix as

r ¼ QyQ; ð19Þ

which makes it manifestly positive semidefinite. We then solve

min
Q

gðQÞ ¼ min
Q

y�A QyQ
� ���� ���2

2
; ð20Þ

with �k k2 being the vector 2 norm. We do this using a gradient search algorithm,
but notably for Q and not for r itself. This is the key feature of this approach.
This method derives from the idea presented in ref. 41. The basic iteration step in a
sequence of Qif g is

Qiþ 1 ¼ Qi� airQg Qið Þ: ð21Þ

For the moment ai40 is chosen to be a sufficiently small step size, but this can
surely be refined to a conjugate gradient method if absolutely necessary, and can
hence be tuned to increase convergence speed. In our case, the actual gradient can

be computed analytically. Note that g(Q) can be written as

gðQÞ ¼
X

k

yk � tr PkQyQ
� �� �2

; ð22Þ

and its gradient

rQgðQÞ ¼� 2
X

k

yk � tr PkQyQ
� �� �

rQtr QPkQy
� �

¼ 4QAy A QyQ
� �

� y
� �

;

ð23Þ

as stated in the main text. Here we have used the standard matrix identity
rXTr(XBXw)¼XBwþXB for the particular case in which B is Hermitian. We then
iterate the previous equation until reaching convergence. The state is renormalized
at the end, as the trace is not constrained in this way. This is an extremely fast and
elegant way to incorporate positivity of QwQ.

It is worth mentioning that this approach significantly improves earlier ideas
deriving from refs 42,43, in which a gradient method for the state r was combined
with a suitable projection. Specifically,

min
X

f ðXÞ ¼ min
X

y�AðXÞk k2
2; s:t: X � 0 ð24Þ

was solved by moving away from the SDP and solving the optimization problem
using a gradient search algorithm. The basic iteration is

Xiþ 1 ¼ P Xi � airX f Xið Þð Þ; ð25Þ
where here rX is the gradient operator with respect to matrix X and PðXÞ is a
projector that makes the estimated state positive semidefinite. The gradient is
computed explicitly

rX f ðXÞ ¼ 2Ay AðXÞ� yð Þ: ð26Þ
While this approach also works, the projection significantly slows down the
algorithm, hence the need for our method that directly incorporates positivity.

The random-matrix model. Here we present results from random-matrix theory
on expected overlaps of random vectors. Specifically, for an arbitrary vector
cj i 2 Cd , we consider the random variable defined by

xðUÞ ¼ ch jU cj ij j2 ð27Þ
and moments thereof with respect to the Haar measure. This quantity is easily
identified as the overlap of two random vectors from Cd. We compute first and
second moments thereof. They can be computed making use of the powerful
Weingarten function formalism44. We find in terms of a Weingarten function Wg,Z

UðdÞ

dU ch jU cj ij j2¼ Wg ð1Þ; dð Þ ¼ 1
d
: ð28Þ

The second moments can be expressed asZ
UðdÞ

dU ch jU cj ij j4¼2Wg ð1; 2Þ; dð Þþ 2Wg ð2; 1Þ; dð Þ

¼ 2
d2 � 1

� 2
d d2 � 1ð Þ

¼ 2
d dþ 1ð Þ

ð29Þ

using suitable Weingarten functions. The sum over all permutations on two
symbols in the relationship between Haar averages and Weingarten functions,
ð1; 2Þ7!ð1; 2Þ and ð1; 2Þ7!ð2; 1Þ, then simply gives rise to the above two terms.
These result in the expression for the variance

varðxÞ ¼ 2
d dþ 1ð Þ �

1
d2
: ð30Þ

In the main text, the quantity

ed ¼EðxÞþ varðxÞ1=2

¼ 1
d
þ 2

d dþ 1ð Þ �
1

d2

� 	1=2 ð31Þ

has been derived from this.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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