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Quantification of differential gene expression
by multiplexed targeted resequencing of cDNA
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Whole-transcriptome or RNA sequencing (RNA-Seq) is a powerful and versatile tool for
functional analysis of different types of RNA molecules, but sample reagent and sequencing
cost can be prohibitive for hypothesis-driven studies where the aim is to quantify differential
expression of a limited number of genes. Here we present an approach for quantification of
differential mMRNA expression by targeted resequencing of complementary DNA using
single-molecule molecular inversion probes (cDNA-smMIPs) that enable highly multiplexed
resequencing of cDNA target regions of ~100 nucleotides and counting of individual
molecules. We show that accurate estimates of differential expression can be obtained from
molecule counts for hundreds of smMIPs per reaction and that smMIPs are also suitable
for quantification of relative gene expression and allele-specific expression. Compared with
low-coverage RNA-Seq and a hybridization-based targeted RNA-Seq method, cDNA-smMIPs
are a cost-effective high-throughput tool for hypothesis-driven expression analysis in large
numbers of genes (10 to 500) and samples (hundreds to thousands).
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hole-transcriptome or RNA sequencing (RNA-Seq) is

a powerful and versatile tool for functional analysis of

different types of RNA molecules in a wide variety
of applications, ranging from fundamental cell biology to
clinical studies of the consequences of genomic variation and
environmental perturbations!%. Besides genome-wide differential
expression analysis, RNA-seq can be used to quantify allele-
specific expression, alternative splicing or gene fusions events'2,
A limitation of whole-transcriptome sequencing is that the
per-sample reagent and sequencing cost can be prohibitive for
hypothesis-driven studies where the aim is to quantify differential
expression of a limited set of genes in a large number of
experimental conditions or samples. Alternatively, quantitative
PCR (qPCR) is a cost-effective and robust technique to assay a
small number of genes in a medium number of samples.
However, qPCR rapidly becomes labour intensive and
expensive as the number of samples and genes increases.
Targeted resequencing approaches have the potential to close
the gap between whole-transcriptome sequencing and qPCR.
Hybridization-based capture approaches using biotin-labelled
oligonucleotide RNA or DNA probes have been used to better
characterize splicing or fusions of lowly expressed transcripts>~>.
While significantly reducing the required total number of
sequencing reads, these approaches still have considerable per-
sample reagent costs, limiting scaling up to large numbers of
samples. Other approaches such as Luminex xMAP handle
thousands of samples for ~ 1,000 genes®’ but require specialized
equipment.

Single-molecule molecular inversion probes (smMIPs)® may fill
the gap between qPCR and RNA-Seq as it allows a library-free
enrichment (that is, enrichment and library preparation in a
single step), a high degree of multiplexing of both targets and
samples, single-molecule counting via degenerate tags and the
protocol to generate the sequencing library can be performed in a
lab with standard PCR equipment. The cost of a single smMIP at
~7 USD? is similar to that of a QPCR primer pair; one column-
based synthesis of smMIPs (25nmol scale) is sufficient for
millions of independent reactions. smMIPs were previously
developed as a method for genotyping®!® and targeted DNA
resequencing to identify rare genetic variation in tens to hundreds
of genes in thousands of individuals® or estimate genomic copy
number variation!'!. Circular padlock probes!®, which laid the
basis for smMIPs, have been used for estimation of allelic ratios in
complementary DNA (cDNA), but target only 1 nucleotide of
sequence and do not allow for single-molecule counting!?.

Here we show that smMIPs can be applied to cDNA to provide
accurate estimates of differential expression, and that they are
also suitable for quantification of relative gene expression and
allele-specific gene expression. We compare the performance of
c¢DNA-smMIPs to that of CaptureSeq and low-coverage RNA-Seq
for targeted gene expression studies. Finally, we show that
cDNA-smMIPs are cost effective compared with alternative
approaches.

Results

Outline of method. We developed an experimental approach and
dedicated statistical model (Fig. 1la) to quantify differential
expression, relative expression and allelic ratios with molecule
counts from cDNA-smMIPs. Our approach consists of applying
single-molecule molecular inversion probes to cDNA (reverse
transcribed RNA). The protocol is similar to that for MIP or
smMIP-based resequencing of DNA®13; the key differences are in
the design of smMIPs and in the overall ratio of cDNA molecules
to smMIPs that we increased 10-fold compare to genomic DNA
(gDNA) to account for the large dynamic range of transcript
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abundance (see Methods, ‘smMIP capture’). We designed
between 5 and 10 cDNA-specific smMIPs per gene, of which
some span exon—exon boundaries and some fall inside exons.
We used individual molecule counts obtained from the
unique molecular identifiers (UMIs) in the smMIPs to quantify
expression with a Bayesian statistical model.

Comparison with external RNA Controls (ERCC). To
determine the accuracy of expression quantification with
cDNA-smMIPs, we used artificial transcripts with precisely
known concentrations (External RNA Control Consortium
(ERCC)!™. There are two mixes (ERCC1 and ERCC2) containing
the same 92 ERCC transcripts. These transcripts have different
concentrations in each mix: they are divided into four groups
such that the ratio of concentrations ERCC1 versus ERCC2
transcripts is respectively 0.5 X, 0.67 x, 1.0 x (no difference)
and 4.0 x. We added ERCCI[2] RNA to total RNA from
human peripheral blood mononuclear cells (PBMCs), and
generated cDNA from this combined artificial and human RNA
sample, yielding one ERCCI/PBMC cDNA sample and one
ERCC2/PBMC c¢DNA sample. Four smMIP captures per cDNA
sample were performed (two with 10 ng ¢cDNA input and two
with 50 ng cDNA input) with 337 smMIPs targeting the 92 ERCC
transcripts (5-9 smMIPs/transcript).

In keeping with results from smMIP-based resequencing
of DNA, there was considerable variation between probes
targeting the same cDNA transcript (Supplementary Fig. 1 and
Supplementary Table 1). However, we found that correlation with
the known concentrations was high when we averaged the
expression as estimated by multiple probes targeting the same
transcript (R®?=0.91+0.02, s.d. from 8 technical replicates,
Supplementary Fig. 2). The transcript-level correlation was
similar to that of the targeted RNA-Seq method CaptureSeq’
that uses hybridization of biotin-labelled oligonucleotide probes
to enrich for selected transcripts (Supplementary Fig. 3).

Accuracy of differential expression estimates. We evaluated the
accuracy of differential expression (DE) estimates. Variability in
capture efficiency between smMIPs should not affect DE
estimates because the abundance estimated by the same probe is
compared between conditions. However, we noted that the
difference in expression values between two replicates for ERCC1
was correlated with the difference between two replicates for
ERCC2, indicating the presence of a systematic probe bias that is
independent of the experimental condition (Supplementary
Fig. 4). We developed a Bayesian hierarchical model to
estimate differential expression while correcting for this bias (see
Methods). The model estimates a single normalized expression
value for each probe and condition from all replicates for a given
condition.

Our approach vyielded accurate estimates of differential
expression from individual cDNA-smMIP probes by combining
counts from four technical replicates (Fig. 1b). We next averaged
the differential expression estimates of probes targeting the same
transcript to obtain a transcript-level estimate of differential
expression. Also, at the transcript level the accuracy (difference
between expected and observed fold change) of cDNA-smMIPs
was high, successfully distinguishing between 0.67- and 0.5-fold
changes (Fig. 1c, Supplementary Tables 1 and 2). Accuracy of
CaptureSeq (based on, respectively, 4 and 5 replicates for ERCC1
and ERCC2) was lower that underestimated the fold change
for transcripts with 4 x difference in abundance. However, the
precision (variation in estimated fold change within each group)
of CaptureSeq was somewhat higher than that of cDNA-smMIPs
(see Supplementary Figs 5 and 6 for comparisons between
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Figure 1 | Evaluation of cDNA-smMIPs for estimation of differential expression with artificial transcripts. (a) Outline of the approach. (b) Accuracy of
differential expression estimates from 337 individual cDNA-smMIPs targeting 92 ERCC transcripts in condition ERCC1 and ERCC2. The 92 transcripts are
divided into four groups; for each group the difference in transcript abundance between condition ERCC1 and ERCC2 is known, and is indicated by the solid
lines. Four technical capture replicates were performed on respectively one cDNA sample for condition ERCCT and one cDNA sample for condition ERCC2.
The expression value for each smMIP is estimated using a Bayesian model. Data points are coloured according to their expected expression fold difference.
(c) Comparison of differential expression quantification by cDNA-smMIPs and the previously published method CaptureSeq® that performs targeted

RNA-Seq by biotin-labelled oligonucleotide hybridization. Only transcripts with log2-expression values of >4 were included for both methods. Differential
expression estimated with the Bayesian model from respectively four ERCCT and ERCC2 cDNA-smMIPs capture replicates is compared with differential
expression estimates from respectively 4 ERCC1 and 5 ERCC2 replicates for CaptureSeq (see respectively Supplementary Tables 1 and 2 for statistics).

individual replicates for respectively cDNA-smMIPs and
CaptureSeq). Thus, accurate quantification of relative gene
expression, which involves comparisons of different genes in
the same condition, requires multiple smMIPs per transcript;
in contrast, accurate quantification of differential expression,
which involves comparing the same gene in different conditions,
can be achieved with a single smMIP, but can be further
improved by combining estimates from multiple smMIPs.

To gain more insight into the relative performance of
CaptureSeq and cDNA-smMIPs, we compared sensitivity
of transcript detection. CaptureSeq detected low-abundance
transcripts with higher sensitivity (Supplementary Fig. 7a).
It has previously been observed that CaptureSeq read counts
saturate for the high-abundance ERCC transcripts and that
consequently CaptureSeq read count is not linearly correlated
with transcript abundance (see Supplementary Figs 3 and 5 in
ref. 5). This effectively increases sensitivity to low-abundance
transcripts. In contrast, c¢DNA-smMIPs molecule counts
were linearly correlated with ERCC transcript abundance
(Supplementary Figs 8 and 9); thus, more reads are accounted
for by the high-abundance transcripts, and cDNA-smMIPs

detected overall fewer transcripts than CaptureSeq. However,
on the subset of ERCC transcripts whose concentration was in
the range where CaptureSeq quantification is linear, detection
sensitivity of c¢DNA-smMIPs and CaptureSeq was similar
(Supplementary Fig. 7b).

Evaluation using endogenous transcripts. We next evaluated the
performance of cDNA-smMIPs on endogenous transcripts of
Epstein-Barr transformed lymphoblast cell lines (EBVs). We used
RNA-Seq data for EBV cell lines of 660 samples from the
Geuvadis project’> to design smMIPs for the most highly
expressed transcript of 12 genes (95 smMIPs in total) that
spanned a range of expression values (Supplementary Table 3).
To evaluate reproducibility, cDNA-smMIP capture experiments
were performed for two different cell lines originating from two
individuals (EBV2 and EBV3) in two separate experiments. In the
second experiment, two experimenters independently performed
smMIP capture using the same ¢cDNA sample as input. In the
second experiment, cDNA was created from the same RNA stock
as the first experiment. Again, four technical capture replicates
(two with 10 ng cDNA input and two with 50 ng cDNA input)
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Figure 2 | Validation of cDNA-smMIPs using on lymphoblastoid cell lines. (a) Quantification of relative gene expresssion on endogeneous transcripts of
EBV-transformed lymphoblastoid cell lines compared with average gene expression from RNA-Seq data of 660 samples in the Geuvadis project'® for the
same cell type. Two experiments were performed (exp. 1 and exp. 2); in the second experiment, two technical replicates were created by two independent
experimenters (designated by Rep. 1 and Rep. 2, see Supplementary Table 2). cDNA for experiments 1 and 2 was generated independently from the same
RNA for EBV2 and EBV3. (b) Concordance of differential expression between sample EBV2 and EBV3 for individual smMIPs (N =95).

per cell line were used in each experiment. We then applied our
Bayesian model to estimate normalized smMIP expression values
for each condition and averaged these to obtain gene-level
estimates of expression; the gene average was compared with the
population average of log2(1 +RPKM) gene expression values
estimated by the Geuvadis project. cDNA-smMIPs performed
well, with Pearson’s correlation R?> between cDNA-smMIPs and
RNA-Seq estimates of gene expression ranging from 0.81 to 0.92
(Fig. 2a and Supplementary Table 4). We observed a slight
discrepancy for the EBV2 cell line, where the correlation was
respectively R?=0.91 and R>=0.81 in the first and second
experiments. Interestingly, in the second experiment the
concordance between the two independent experimenters was
very high for this sample (R*>=0.998, P=1le— 14; two-sided
Pearson’s correlation test), suggesting variability in cDNA
synthesis as a potential cause for the discrepancy. The DE
estimates for the two cell lines were reproducible between the first
and second experiments (R>=0.85, P=9e—41; two-sided
Pearson’s correlation test. Fig. 2b).

Comparison with low-coverage whole-transcriptome RNA-Seq.
We compared the performance of cDNA-smMIPs to unbiased
low-coverage whole-transcriptome RNA sequencing at the same
number of sequencing reads. The expectation is that enrichment
with ¢cDNA-smMIPs results in increased sequencing depth at
the transcripts of interest. Indeed, for our panel of 12 genes
targeted with 95 cDNA-smMIPs, molecule counts per gene were
~100-fold higher than fragment counts (read pairs) obtained
with RNA-Seq (Fig. 3a) at the same total number of reads. As a
result, the number of genes for which expression was detected
was increased (Fig. 3b) and reproducibility of estimated fold
changes was higher (Fig. 3¢ and Supplementary Fig. 11) for
cDNA-smMIPs. ¢cDNA-smMIPs make it possible to obtain
molecule counts for specific exons or exon-exon boundaries.
As expected, the molecule counts of cDNA-smMIPs individual
target regions are also similarly ~100-fold higher than the
fragment count of whole-transcriptome RNA-Seq in the smMIP
target regions (Fig. 3d). This facilitates expression analysis of
specific isoforms.

Comparison with RNA-Seq in biological application. We next
sought to replicate with cDNA-smMIPs our previous study'®
where we used RNA-Seq to characterize the immune response in
human PBMCs following in vitro stimulation with heat-killed
(HK) Candida albicans, a common cause of fungal infections.
We obtained PBMCs from a new anonymous blood donor and
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added HK C. albicans to the PBMC culture medium for a period
of 24 h as described previously16 (Fig. 4). We used data from two
smMIP capture replicates per condition (Supplementary Table 5).
We then estimated differential expression between the stimulated
PBMCs and the control condition without C. albicans. To
compare with the RNA-Seq estimate, probe-level estimates of
differential expression from the Bayesian model were averaged to
obtain gene-level estimates and associated confidence intervals.
We were able to replicate with ¢cDNA-smMIPs our previous
finding'® that mRNA levels of the interferon-y response genes
IFITI and IFNG are strongly upregulated following C. albicans
stimulation (Fig. 4 and Supplementary Fig. 11). Thus, cDNA-
smMIPs can be applied to primary cells to study the molecular
mechanisms in biological systems.

Estimation of allelic ratios. Finally, we used cDNA-smMIPs to
estimate allelic ratios, that is, allowing allele specific expression
measurements. We designed 64 smMIPs for 32 common
coding variants that are homozygous for the opposite allele in
respectively the K562 and HEK293 cell line. We serially diluted
K562 ¢cDNA with HEK239T cDNA, so that the fraction of K562
cDNA decreased exponentially at a rate of 0.75. Because a target
gene is not expressed at exactly the same level in the K562 and
HEK293T cell line, one cannot a priori predict precisely the
expected ratio for the first dilution step. However, between
subsequent dilution steps the ratio of allelic ratios is expected to
be 0.75. Indeed, this is what we observed (Supplementary Figs 12
and 13 and Supplementary Table 6). We then selected three
single-nucleotide polymorphisms (SNPs) for each of which there
were two smMIPs with non-overlapping extension and ligation
probes, thus providing independent estimates. We found that the
estimated allelic ratios were highly concordant between the two
smMIPs (mean Pearson’s R* = 0.96, Fig. 5).

Discussion

cDNA-smMIPs have the potential to address an important
practical need in gene expression studies as a method that can
measure expression of a moderate number of genes of interest
(~10 to 500) across a significant number of conditions or
samples (~10 to 1,000 or more) at low cost. Based on our
calculations, cDNA-smMIPs are more cost effective than qPCR,
low-coverage RNA-Seq and CaptureSeq (Fig. 6, Supplementary
Fig. 14 and Supplementary Table 7). ¢cDNA-smMIPs allow
multiplexing of hundreds of capture targets and at least 384
samples in a single sequencing run, using available barcoded PCR
primers®. The high throughput of smMIPs has previously been

| 8:15190 | DOI: 10.1038/ncomms15190 | www.nature.com/naturecommunications


http://www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15190

ARTICLE

a
Average of 12 genes Highest expressed gene:PTBP1 Lowest expressed dgene:AIRE
100,000 100,000 3 100,000

€ —u— cDNA-smMIPs € £ —=— CcDNA-smMIPs
3 10,0004 —= RNA-Seq 3 10,000 - 8 10,0004 —= RNA-Seq
o K @
g 1,000 3 /—/ g 1000 E 1,000
o [=} o
£ 1004 £ 1004 £ 100
C c c
Q [ ()
5 10 4 ././'/. £ 10 4 5 10
Y g s
2 14 2 14 —=— cDNA-smMIPs @ 1
8 8 —=— RNA-Seq c?)

0 0 +——rrr 0

N N o N N N N N
S § oM S § § oM oM S
2O & °°Q~ 00@ SR K o QQW QQQ* O S B
N \Q« NS ,\Q« N+ \0~

Number of sequenced fragments

o 104 e= - - ey
8 - - - - )
S 08 - - -
el o0 - L]
(9]
P o=
2 0.6 -
5 . -
G 044 °°
c -
2 oo
§ 024 o ® cDNA-smMIPs
w . ® RNA-Seq
R S P
§ § § $ $
O S & S o
N A ™ Q
[N oY

Number of sequenced fragments

cDNA-smMIP coverage

100,000 -=- YWHAZ
10,000
1,000

100

Molecule count

Number of sequenced fragments

Number of sequenced fragments

(¢

Pearson correlation

Number of sequenced fragments

g 1 0 T ....... ..........
£
= 08 o
-0 L)
22 .
o € 0.6 [
= . .
RS °
S g 0.4
T X
o O
S 0.2 . ® cDNA-smMIPs
o L]
o ° © ® RNA-Seq
S S g s
S S S s
v N N N
& N S
Number of sequenced fragments
RNA-Seq coverage in smMIP
target regions
100,000
10,000
§ 1,000
Q
o
S 100
£
g€ 10
fin

Number of sequenced fragments

Figure 3 | Comparison of cDNA-smMIPs with low-coverage RNA-Seq. (a) Differences in molecule count (cDNA-smMIPs) and fragment count/read
pairs (RNA-Seq) for the 12 genes targeted in the cDNA-smMIPs assay. The data points are averages over the randomly sampled sets of fragments.
(b) Fraction of detected genes (genes with at least one mapped read) as a function of total number of reads. Each data point corresponds to a replicate.
() Reproducibility of fold changes was estimated as a function of the total number of sequencing read pairs. For cDNA-smMIPs, the correlation is between
log2(fold change) estimated in experiment 1 (using two technical replicates per individual) and experiment 2 (two technical replicates per individual).
For the low-coverage RNA-Seq, correlation is between log2(fold change) estimated in experiment 1 (one technical replicate for respectively individual
HGO00117 and NA06986) and experiment 2 (one technical replicate for each individual). Each data point corresponds to a random sampling (without
replacement) of the number of fragments (=read pairs) given on the horizontal axis and is based on 8 and 4 technical replicates for respectively
cDNA-smMIPs and RNA-Seq. Corresponding scatter plots between the replicate DE estimates are shown in Supplementary Fig. 10. (d) Comparison of
molecule counts (cDNA-smMIPs) and fragments/read pairs (RNA-Seq) mapping to the regions targeted by the cDNA-smMIPs. For each gene the average

count across all smMIPs targeting the same gene is reported.

shown for DNA applications®17~1°, Total protocol duration is
2-3 days, with only ~5h of hands-on time. Furthermore, the
protocol is highly amenable to automation. We have recently
demonstrated such automation in the context of DNA-based
resequencing with smMIPs!®,

To provide a reference for the performance of cDNA-smMIPs,
we have included a comparison with CaptureSeq, a targeted
RNA-Seq method based on an alternative enrichment strategy.
However, it should be noted that CaptureSeq was primarily
designed to target low-abundance RNA species, whereas our aim
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was to estimate differential expression between many samples
across the full dynamic range. We included in our panel of
targeted transcripts a number of highly expressed genes (both for
the ERCC standards and the endogeneous genes). These highly
expressed targets still account for a substantial number of
sequence reads; one can increase sensitivity to low-abundance
transcripts by excluding highly expressed genes from the target
panel.

There are several avenues for further improvement. First, we
have not iteratively optimized the smMIP design or rebalanced
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concentrations of smMIPs in the capture pool to even out
variation in capture efficiency between smMIPs or expected
transcript abundance. This is common practice for smMIP-based
DNA-resequencing® and may also be beneficial for cDNA-
smMIPs. Second, we find that the amount of input ¢cDNA
required (when not produced by ribosomal-depletion methods)
varies with cell type, likely because the ratio between targeted
transcripts and ribosomal RNA is variable. This may affect the
number of unique molecules obtained from cDNA capture
with smMIPs. Finally, the relatively low capture efficiency of
smMIPs (compared with qPCR primers) increases the amount of
input ¢cDNA required to obtain a certain number of unique
observations. This is reflected in the ratio of unique molecules to
sequencing depth (Supplementary Tables 2-4). However, this is
offset by the ability to count the individual molecules (transcripts)
with smMIPs that strongly reduces the impact of PCR
amplification and enables accurate quantification with modest
amounts of input cDNA as we have shown here. The number of
PCR cycles can generally be optimized to reduce PCR duplicates
when samples are from the same tissue or cell type.

An important question is how to quantify the sensitivity of
cDNA-smMIPs. Although ¢cDNA-smMIPs can be applied to
modest amounts of cDNA, our protocol cannot be directly
applied to the extremely low amounts of ¢cDNA typical of
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Figure 6 | Cost comparison. Reported cost is per sample, assuming a total
of 1,000 samples, starting from RNA and including library preparation and
sequencing. Breakdown of cost for cONA-smMIPs is given in
Supplementary Table 7. For cDNA-smMIPs and gPCR, calculation is based
on 100 target regions in 20 genes; reported cost also includes cDNA
synthesis (iScript), purification and measurement of cDNA concentration
(8.25 USD). Cost for RNA-Seq is based on lllumina Truseq V2 kit (48
reactions, 3,724 USD, assuming 5 million paired-end reads on lllumina
NextSeq at cost of USD 32.49). Cost for CaptureSeq is based on same
Illumina Truseq V2 kit (48 reactions) followed by capture with Nimblegen
SeqCap in 5-plex capture (87 USD/sample) as previously described®3° and
5 million paired-end reads on lllumina NextSeq(USD 32.49). The current
commercially available version of SeqCap also permits 12-plex capture.

single-cell experiments. The probability to detect a given
transcript furthermore depends on total sequencing reads
and the other transcripts that are targeted in the same
experiment. We therefore could not estimate from our data a
sensitivity limit in terms of the minimum absolute number of
target RNA molecules that must be present in a sample.
It is however possible to characterize sensitivity in terms of the
average number of transcripts per cell. Figure 2d shows
that we detect transcripts that have an FPKM of <1 in
corresponding whole-transcripts RNA-Seq data (Fig. 3d shows
the absolute number of molecules detected with smMIPs for the
corresponding gene, AIRE). Transcripts with an abundance of 10
fragments per kilobase of transcript per Million mapped
reads (FPKM) in EBV cells on average correspond to 1 transcript
copy per cell?’. Thus, transcripts that have a low abundance
relative to other transcripts in a cell can indeed be detected
with ¢cDNA-smMIPs. Furthermore, we expect that one can
increase the probability of detecting extremely low-abundance
transcripts by excluding high-abundance targets from the panel
(because these reduce the probability that a low-abundance
fragment will be sequenced) and increasing the amount of input
cDNA.
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We envision that cDNA-smMIPs may be useful to test the
effect of many experimental perturbations (for example, drug
treatments, overexpression of genes or CRISPR-Cas9 genome
editing?!=23) on the expression of genes in specific pathways.
Another interesting application and direction for future research
is whether cDNA-smMIPs can be applied to cDNA derived from
degraded RNA such as from formalin-fixed, paraffin-embedded
(FFPE) material. We have successfully applied smMIPs to DNA
derived from FFPE material'®, but as RNA fragments may have
degraded more extensively than DNA it is still an open question
of whether cDNA from FFPE material is suitable for targeting
with ¢cDNA-smMIPs. A potential adaption of the approach
described here could be to reduce the length of the target
sequence of a smMIP (sequence between extension and ligation
probe) so that potentially smaller ¢cDNA fragments can be
targeted with smMIPs.

In summary, we have shown that ¢cDNA-smMIPs yield
accurate estimates of differential expression, and are suitable to
estimate relative gene expression and allele-specific expression.
The use of molecular identifiers makes it possible to apply
smMIPs to low quantities of input cDNA. The approach can be
applied to cDNA from primary cells and cell line, is sufficiently
scalable to perform hypothesis-driven expression analysis in large
numbers of samples and is more cost effective than RNA-Seq and
CaptureSeq.

Methods

EBV and PBMC smMIP design. To design smMIPs for cDNA, we adapted a
previously described workflow ‘MipGen 1.0 for DNA®?4, This workflow uses a
number of properties of a smMIP to predict its performance; these include
properties of the MIP itself (for example, GC content) and its copy number in the
human genome. The key difference with the design strategy for DNA is that we
also design smMIPs that span exon-exon boundaries. It is customary to design
qPCR primers that span an exon-exon boundary to improve specificity. However,
we did not impose this requirement on the molecular inversion probes. Our script
used the sequence of known transcripts from Ensembl (Version 75, hgl9) as
possible target sequences. We used the transcript that was estimated to be most
highly expressed in EBV cell lines derived from European individuals from the
Geuvadis project as the target sequence for which we designed probes. We
converted the genomic coordinates of common variants from the 1000 Genomes
Project (Phase I) to transcript coordinates. Together, the target sequences and
known variants were used as input for the MipGen workflow. We did not use the
tiling feature of MipGen. From the set of MIPs with a MipGen 1.0 performance
score of 5, we manually selected 96 to approximately cover the transcript selected
for each gene resulting in a mix of exon-exon crossing and within-exon smMIPs.
smMIPs were designed with UMI of 9 nucleotides in between the extension probe
sequence and the universal primer. The ligation and extension probe together were
constrained to be 40 nucleotide length in total, each probe individually at least 16
nucleotide long and at most 24 nucleotides. With a common backbone sequence
(that contains the universal primer binding sites) of 5-CTTCAGCTTCCCGAT
ATCCGACGGTAGTGT-3', this resulted in smMIP oligos of 40 + 9 +30 =79
nucleotides. The target sequence was designed to be 112 nucleotides. The designed
cDNA-smMIPs are given in Supplementary Data 1.

ERCC transcripts smMIP design. We divided the ERCC transcripts into
non-overlapping segments of 200 nucleotides. For 33 of 370 segments no smMIP
with performance score of 5 could be found by MipGen 1.0, resulting in a total of
337 smMIPs for 92 ERCC transcripts. The median number of smMIPs per ERCC
transcript was 4, with a range of 1-9. The designed cDNA-smMIPs are given in
Supplementary Data 2.

HEK293 K562 allelic ratio smMIP design. In the absence of whole-genome
sequencing data, we used public RNA-Sequencing data to call genotypes for
common SNPs in HEK and K562 cell lines. We made the assumption that common
variants in this data set would likely be present in the lines used in our laboratory.
We aligned RNA sequencing data from study E-MTAB-3102 (https://www.ebi.
ac.uk/arrayexpress/) for two HEK293 replicates (ERR688856 and ERR688857) and
two K562 replicates (ERR688855 and ERR68885) to hgl9 human genome reference
with STAR version 2.4.2 (ref. 25). We used Samtools version 1.2 and bcftools2®27
to call genotypes at all SNPs with allele count of at least 1,000 from release 0.3 of
the Exome Aggregation Consortium (ExAC) database (142,659 sites in total). A set
of stringent filters on differences genotype likelihood and coverage of both alleles
was used to identify opposite homozygotes in the two cell lines. This resulted in a

set of 87 SNPs. To improve the comparability of the dilution curves for different
SNPs, our goal to select genes that were expressed in both cell lines at similar levels.
We selected the 32 SNPs for which the genes had the smallest difference in
normalized coverage between the two cell lines. We first exhaustively generated all
possible smMIPs covering these SNPs using the Ensembl (version 75) transcripts as
targets. The probes were positioned such that in each transcript the targeted
sequence was 100 bp. We used Burrows-Wheeler Alignment (BWA) tool to
estimate the genome copy number count of each probe independently, and
considered only smMIPs where both probes had genome copy count of 1. We then
used version 2.0 of the MipGen software to calculate the predicted performance
score. For each SNP we designed two smMIPs, covering as many annotated
transcripts as possible while always taking the smMIP with the highest predicted
performance score. All 64 selected smMIPs had predicted performance score of
>0.50. The designed cDNA-smMIPs are given in Supplementary Data 3.

smMIP analysis workflow. Briefly, the workflow consists of the following steps:

1. Match each read pair to a designed smMIP probe (allowing two mismatches).

2. Remove likely extension-ligation dimers.

3. For all reads assigned to a given smMIP probe, identify the molecule counts
from the unique molecular identifiers.

4. Determine the read-dependent threshold for UMIs due to sequencing errors.

5. Estimate normalized expression levels from error-corrected molecule counts
integrating replicates using a Bayesian model.

For expression analysis, we determined molecule counts directly from the Fastq
files. We did not first map the reads to a reference sequence to prevent mapping
biases. Although a reference sequence was used to select the probe sequence of the
smMIPs, which may introduce a bias, it is possible that the targeted sequence
contains unannotated (small) exons.

Correction for sequencing errors. Sequencing errors in the UMI sequence of the
smMIP may result in UMIs that are not associated with any cDNA molecule. As a
result, after all UMIs associated with a molecule have been observed, the number of
identified UMISs will continue to increase with sequencing depth until all possible
UMIs have been generated by sequencing errors. This is especially problematic for
low input samples where the number of unique molecules is low. With a
sequencing error rate of 0.2% and a UMI of 9 nucleotides, the probability of at least
one sequencing error is 1.8%. Thus, the error rate may account for a significant
fraction of the UMIs.

We have chosen a simple but robust heuristic to remove UMIs due to
sequencing errors. The idea is that sequencing error UMIs will tend to have low
coverage. Thus, for a given smMIP, we sort all UMIs by their read coverage (that is,
the number of reads with the same UMI) in descending order, and count only the
UMIs for which the coverage is above a threshold R. R is chosen such the UMIs
with coverage greater than or equal to R account for 95% of all the reads observed
for the smMIP. This is effective both for complex libraries (where the majority of
UMIs are observed only once) and libraries with many PCR duplicates.

Bayesian hierarchical statistical model. We constructed a statistical model to
integrate observations from replicates into a single estimate of expression and to
quantify uncertainty in estimates of differential expression. We used a negative
binomial distribution to model the unique molecule counts. We defined expression
for a given probe as the logarithm of the mean of the negative binomial
distribution; this expression value is corrected for probe bias and normalized for
sequencing depth. We assume that the overdispersion factor (relation between
mean and variance) is the same for all probes. We allow for heterogeneity in

the dispersion factor between experiments, as our results indicate that some
experiments show more variability than others. The probe bias is estimated from
differences in normalized counts (molecules per million molecules) between
replicates and then used as a covariate in the model. We used Stan?® to perform
inference in this model using Markov chain Monte Carlo sampling. Stan was run
independently for each condition (a condition is defined as a set of replicate
experiments) to generate 1,000 independent samples. We used these samples from
the posterior distribution to estimate differential expression between conditions.
Details are given in the Supplementary Methods.

Comparison with low-coverage whole-transcriptome RNA seq. A number of
samples in the GEUVADIS Project'® were processed in replicate? in the same
laboratory. We selected two technical replicates for individual HG00117
(1.M_111124_2 and 1.M_120209_1) and two technical replicates for individual
NA06986 (1.M_111124_7 and 1.M_120209_1). These RNA-Seq libraries were all
generated and sequenced at the University of Geneva. We subsampled the
corresponding BAM files downloaded from ArrayExpress 10 times (without
replacement) to total number of sequencing read pairs ranging from 200,000 to
5,000,000. We randomly sampled reads by first sorting on the read identifier and
then selecting reads in contiguous blocks of the desired size. As a result, the
subsampled BAMs also include unmapped reads, as would be expected in a
low-coverage sequencing experiment. We used the individual downsampled BAMs
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to estimate the number of fragments mapping to genes (using htseq-count),

the number of detected genes (genes with mapped read count >0). We used
BWA-MEM? to estimate the number of fragments mapping to the cDNA
subsequences of 120 bp (Ensembl Version 75) targeted by the cDNA-smMIPs, as
we found that BWA-MEM had higher sensitivity for identifying reads with partial
matches than STAR. We determined reproducibility of differential expression
estimates as follows: using DESeq’!, we estimated the log2(fold change) between
samples HG00117.1.M_111124_2 and NA06986.1.M_111124_7 (experiment 1),
and the log2(fold change) between samples HG00117.1.M_120209_1 and
NA06986.1.M_120209_1 (experiment 2). We then computed correlation
coefficients between the log2(fold change) estimates from experiments 1 and

2 across the 12 genes.

Allelic ratio analysis. For allelic ratio analysis, it was necessary to obtain allele
counts for variants with a given reference sequence coordinate. As the UMI may
affect mapability, we first processed the raw Fastq files to remove the UMI
sequence from the read and to add the UMI to the read identifier using a custom
script (Software). We then mapped these processed Fastq files to the reference
sequence using STAR?®. Next, we used a custom Python script to count the
number of molecules covering each allele for the targeted SNPs, given the BAM file
with mapped read pairs. Again, we first assigned each read to a smMIP probe by
matching of the probe sequence to the known smMIP probe sequences (allowing
two mismatches). We then proceed to analyse each target variant one by one. This
is necessary as two different smMIPs may target the same SNP and sequence
fragments with the same UMI but from different smMIPs should be considered as
independent molecules. Then, for a given smMIP probe, we used a majority vote to
call the allele for all reads with the same UML

Allelic ratio dilution curve. cDNA of K562 (ECACC) and HEK293T (ECACC)
cells was combined in a serial dilution. cDNA of K562 and HEK293T cells was
diluted to a final concentration of 1 ngpl~ . The serial dilution started with 75%
K562 ¢cDNA and 25% HEK293T cDNA. For the following steps of the serial
dilution, 75% of the cDNA from the previous step was combined with 25%
HEK293T ¢DNA. This resulted in a series of 8 cDNA samples of which the
concentration K562 cDNA exponentially decreased and the HEK293T cDNA
increased accordingly. One sample with only K562 cDNA and one sample with
only HEK293T cDNA were also included in the experiment. Subsequently, samples
were divided into two 10 pl duplicates containing 10 ng cDNA each. Capture was
performed using the allelic ratio smMIPS.

The HEK cell line is listed in the ICLAC (International Cell Line Authentication
Committee) database of commonly misidentified or contaminated cell lines.
However, any possible contamination is irrelevant to this experiment as the
dilution series provides an internal control.

ERCC control transcripts. The synthetic ERCC controls (Thermo Fisher
Scientific, Waltham, MA, USA) were diluted 1:100, and 46 pl was used for cDNA
synthesis after mixing with human PBMC total RNA using Superscript III Reverse
Transcriptase (Thermo Fisher Scientific). Samples were purified using Qiaquick
(Qiagen, Venlo, The Netherlands) columns, and cDNA was quantified using the
Qubit ssDNA assay (Thermo Fisher Scientific). Of each sample 1 and 2 ng cDNA was
used for MIP capture, and all capture experiments were performed in duplicate.

Culturing of EBV cell lines. EBV cell culturing was performed as described
previously®2. Briefly, human B-lymphoblast cells of two anonymized healthy
individuals were immortalized by transformation with the Epstein-Barr virus>>.
Cells were cultured in RPMI-1640 medium (Sigma, St Louis, MO, USA) containin
10% (vol/vol) fetal bovine serum (Sigma), 1% 10U pl’l penicillin and 10 pgpl =
streptomycin (Sigma), at a density of 0.5 x 10° cells per ml. Fresh medium was
supplied twice a week. The anonymous EBV cell lines were obtained from the
Radboud University Medical Center Human Genetics biobank. The use of the
EBV cell lines is in accordance with the regulations of the Ethical Committee
Arnhem-Nijmegen.

Culturing of HEK cell line. HEK293T cells (ECACC 12022001) were cultured in
100 mm tissue-culture treated culture dishes (Corning, New York, NY, USA) in
Dulbecco’s modified Eagle’s medium containing 10% (vol/vol) fetal bovine serum,
1% penicillin/streptomycin and 1% sodium pyruvate (all from Sigma-Aldrich).
At passage 12, cells were detached using 0.25% Trypsin (BD Biosciences, San Jose,
CA, USA) after which ~3 million cells were used for RNA isolation.

Culturing of K562 cell line. K562 cells (ECACC 89121407) were cultured in
75 cm? cell culture flasks (Corning) in RPMI-1640 medium containing 15% fetal
bovine serum, 2% HEPES and 1% penicillin/streptomycin (all from Sigma-
Aldrich). Approximately 6 million cells were used for RNA isolation.

Mycoplasma contamination of cell lines. All cell lines have been tested for
mycoplasma contamination and were found to be negative.

8

Stimulation of PBMCs. Isolation and stimulation of PBMCs was performed as
previously described®*. In short, venous blood was collected into EDTA tubes and
primary blood mononuclear cells were isolated by density centrifugation of blood
diluted 1:1 in phosphate-buffered saline over Ficoll-Paque (Pharmacia Biotech AB,
Uppsala, Sweden). Cells were washed three times in phosphate-buffered saline and
resuspended in RPMI-1640 (Dutch modified) supplemented with 50 mgl~1
gentamicin, 2 mM L-glutamine and 1 mM pyruvate. Cells were counted in a Coulter
Counter Z (Beckman Coulter, Mijdrecht, The Netherlands) and adjusted to 5 x 10°
cells per ml. Mononuclear cells (5 x 107) in a 2 ml volume were added to round-
bottom 6-well plates (Greiner, Alphen a/d Rijn, The Netherlands) and incubated
with either culture medium (negative control) or HK Candida albicans (1 x 10° per
ml) for 24 h before isolation of RNA using RNeasy mini kit (Qiagen). PBMCs were
isolated from buffy coats obtained after informed consent of healthy volunteers
(Sanquin Bloodbank, Nijmegen, The Netherlands); this is approved by the Ethical
Committee Arnhem-Nijmegen under no. CMO 2010-104.

cDNA synthesis. The isolated total RNA was quantified using the Qubit RNA HS
assay kit (Thermo Fisher Scientific), cDNA synthesis of 2-5 ug of RNA was
performed with iScript (BIO-RAD, Hercules, CA, USA) reverse trancriptase. After
cDNA synthesis, the cDNA was purified using Qiaquick (Qiagen) purification
columns, and cDNA quantity was measured using the Qubit ssDNA assay kit
(Thermo Fisher Scientific).

CaptureSeq. We used the previously published data for the CaptureSeq protocol®.
In that study, ERCC RNA was spiked into RNA from PBMCs from 9 human
individuals (5 for ERCCI and 4 for ERCC2); cDNA synthesis and enrichment
using CaptureSeq was performed separately for each sample: RNA-Seq libraries
were constructed with the TruSeq Stranded mRNA Sample Preparation Kit
(Ilumina) from RNA; each library was assigned to one of two multiplex capture
pools, on which CaptureSeq enrichment was performed using SeqCap EZ
oligonucleotides (Roche Nimblegen, Madison, WI, USA).

smMIP capture. The cDNA smMIP experimental procedure described below is
largely based on the smMIP protocol developed for genomic DNAS13. There are
eight different steps involved in this experimental protocol: (1) smMIP pooling,
(2) smMIP phosphorylation, (3) smMIP capture, (4) exonuclease treatment,

(5) real-time PCR, (6) PCR, (7) sample pooling and purification and (8) Illumina
Nextseq500 sequencing.

Regarding the smMIP pooling, three independent cDNA-smMIP pools were
used for experiments testing differential expression of ERCCs (337 smMIPs),
differential expression of EBVs and PBMCs (95 smMIPs) and allele-specific
expression (64 smMIPs). In all experiments 5 pl of each of the 95 smMIPs were
pooled into one single tube.

The concentration of the smMIP pool was calculated using the following
relation: volume individual smMIP x concentration individual smMIP = volume
smMIP pool x concentration smMIP pool. The used smMIP capture protocol was
altered from the protocol for genomic DNA?® that describes a MIP to gDNA
molecule ratio of 800:1, corresponding to 264,000 MIP molecules per ng gDNA.
For cDNA smMIPs we used 10-fold more smMIPs to compensate for the higher
amount of RNA than DNA molecules per cell, that is, 2,640,000 smMIPs per ng
cDNA. Per sample, 10 ng of cDNA in 10 pl (H,O) and for one blank (empty
capture control) only 10 pl H,O was pipetted in a plate or strip tube. The cDNA
input amount may differ per cell type, and for several samples we used 3 different
input amounts, for example, 1, 10 and 50 ng.

For the smMIP phosphorylation an aliquot of 0.5 ul per smMIP, that is,
one-tenth of the unphosphorylated pool, was used, resulting in 47.5 pl for 95
smMIPs. The mix for the phosphorylation (Supplementary Table 8) reaction
contained: 1.9 ul T4 PNK (1 pl per 25 pul smMIPs, New England Biolabs, Ipswich,
MA, USA), 6 ul 10 x T4 DNA ligase buffer with 10mM ATP (New England
Biolabs) and 4.6 ul H,O. This mix was transferred into PCR tubes, and placed in a
thermocycler (DNA Engine, Bio-Rad, Hercules, CA, USA) to run the the smMIP
phosphorylation program consisting of the following steps: (1) 37 °C for 45 min
and (2) 65 °C for 2 min and (3) samples were cooled down to 4 °C (Supplementary
Table 9).

The smMIP capture master mix was prepared for at least 30 reactions
(due to low volume of required Ampligase DNA ligase). The capture master
mix (Supplementary Table 10) for 30 reactions (450 pl) contained 75 pul 10 x
Ampligase DNA ligase buffer (Epicentre/Illumina, Madison, WI, USA), 9.9 pl of
the phosphorylated smMIP pool (0.833 pM diluted 1:625), 0.96 ul dNTPs
(0.25 mM, diluted from 100 mM, Invitrogen/Thermo Fisher Scientific, Carlsbad,
CA, USA), 9.6 ul Hemo Klentaq (10 units pl ~ !, New England Biolabs), 0.30 pl
Ampligase DNA ligase (100 units pl ~ L Epicentre/Illumina) and 354.3 pl H,O
(added to get to total volume). Then, 15 pul of master mix was added to each cDNA
sample. The lid offset temperature of the thermocycler was adapted to 10 °C,
and the strip tubes were placed in a thermocycler. The capture program
(Supplementary Table 11) contained the following steps: (1) 95°C for 10 min to
denaturate and (2) 60 °C for 24 h. At the end of the capture reaction, the samples
were cooled on ice. The exonuclease treatment was performed immediately after
the capture.
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The exonuclease treatment master mix was prepared for the number of
captured samples. Per sample, the exonuclease mix (Supplementary Table 12)
contained 0.5 il Exonuclease I (20,000 units ml~ !, New England Biolabs), 0.5 pl
Exonuclease IIT (100,000 units ml ~ !, New England Biolabs), 0.2 ul 10 x Ampligase
DNA ligase buffer and 0.8 pul H,O. The total volume of 2 pl mix was added to the
captured samples, and the tube strips were placed back in the thermocycler. The
exonuclease program (Supplementary Table 13) included the following steps: (1)
37 °C for 45 min and (2) 95 °C for 2 min and (3) samples were cooled down to 4 °C.

The real-time PCR (Rotorgene, Qiagen) was used to determine the amount of
PCR cycles needed for sufficient amplification; this was variable among different
cell types and different smMIP pools. Per sample the real-time PCR mastermix
(Supplementary Table 14) contained 12.5 ul iProof HF Master mix (Bio-Rad),
0.125 pl Mlumina PE FOR (100 uM forward primer, Supplementary Data 4),
0.125 pl Tllumina PE BC1 (100 pM reverse primer, Supplementary Data 4), 0.125 pl
SYBR green (10,000 x in dimethylsulphoxide, Thermo Fischer Scientific) and
7.125 pl H,O. The total of 20 pul master mix was added to and mixed with 5 ul of
exonuclease treated sample for the real-time PCR. The real-time PCR program
(Supplementary Table 15) included: (1) 98 °C for 30, (2) 98 °C for 10s, (3) 60 °C
for 30's, (4) 72 °C for 30s, (5) return to step 2 for a total of 35 cycles, (6) 72 °C for
305 and (7) cool down to 25 °C. Supplementary Fig. 15 shows an example image of
the real-time PCR results; here, the estimated optimal number of PCR cycles was
21 cycles.

For the PCR reaction, 10 pl of each exonuclease-treated sample was pipetted
into a strip tube and 1.25 pl of a different barcoded reverse primer (Supplementary
Data 4) was added. The PCR mastermix (Supplementary Table 16) contained:
12.5 ul iProof HF Master mix (Bio-Rad), 0.125 pl Illumina PE FOR (100 uM
forward primer, Supplementary Data 4) and 1.125 pl H,O. The total of 13.75 pul
master mix was added to and mixed with the 11.25 pl of combined sample and the
barcoded reverse primer. The PCR program (Supplementary Table 17) included:
(1) 98°C for 30, (2) 98 °C for 10, (3) 60 °C for 30s, (4) 72 °C for 30s, (5) return
to step 2 for a total of 21 cycles, (6) 72 °C for 30s and (7) cool down to 4 °C. The
PCR product was verified on agarose gel (Supplementary Fig. 16).

Before the Ampure XP bead purification, the bottle of AmpureXP beads
(Beckman Coulter, Brea, CA, USA) was shaken thoroughly, since these beads settle
overnight. The estimated volume to use was transferred to an Eppendorf tube, and
let to adjust to room temperature for 30 min. Then, 70% ethanol was prepared
freshly for each purification. An equal amount (5 pl) of each amplified sample was
pooled into one Eppendorf tube, with a maximum of 96 samples per tube. The total
volume of all samples in one tube was used to calculate the volume of Ampure XP
beads to be added (0.85ul Ampure XP beads per 1 pl sample). After adding the
beads to the samples, a vortex was used to mix, and the mixture was incubated at
room temperature for 10 min, and placed on a magnetic rack for 5min. The beads
were washed twice with 700 pl 70% ethanol; after the second wash, all ethanol was
removed from the tube. The tube was left open to evaporate the residual ethanol
and dry the beads. To elute the DNA, 25-50 pl (depending on amount of samples
in the pool) of low TE was added to the beads and a vortex was used to resuspend
all beads. Subsequently, the mixture was spun down, and placed on the magnetic
rack for at least 1 min. The supernatant (now containing the DNA) was transferred
to a new Eppendorf tube.

The final results of the smMIP capture were analysed on the Tapestation
(Agilent Technologies, Santa Clara, CA, USA) (Supplementary Fig. 17) using the
D1000 High sensitivity kit (Agilent Technologies). The final concentration of the
smMIP-captured pool was measured in duplicate using the Qubit fluorometer
(Thermo Fisher Scientific) and the Qubit dsDNA high sensitivity kit (Thermo
Fischer Scientific). After quantification, the sample pool was diluted to 4 nM in
20 pl for sequencing on the Illumina Nextseq500.

Sequencing of smMIP libraries on the Illumina Nextseq500 requires spike in of
custom primers. Therefore, 9 pl of custom primer ‘MIPBC_SEQ_FOR’ to cartridge
position 20 (Readl), 9 pl of custom primer ‘MIPBC_SEQ_REV’ to cartridge
position 21 (Read2) and 9 pl of custom primer ‘MIPBC_SEQ_INDX’ to cartridge
position 22 (Index Readl) were added. The run was performed with 2 x 80 cycles,
that is, 2 x 79 bp paired-end reads, and an 8 bp index read. Custom primer
sequences as published previously were used (Supplementary Table 18, IDT,

100 uM, IDTE buffer).

All reagents used are specified in Supplementary Table 19; all equipment
used is specified in Supplementary Table 20. The protocol is also described as a
step-by-step procedure in the Supplementary Methods.

Software. Instructions, example of data sets and open-source software to design
and analyse cDNA-smMIPs are available from https://github.com/keesalbers/cdna-
smmips.

Data availability. All data are available in GEO under accession number
GSE94800. This study used RNA sequencing data from study E-MTAB-3102
(https://www.ebi.ac.uk/arrayexpress/) for two HEK293 replicates (ERR688856 and
ERR688857) and two K562 replicates (ERR688855 and ERR68885), as well as
samples from the GEUVADIS Project': two technical replicates for individual
HGO00117 (1.M_111124_2 and 1.M_120209_1) and two technical replicates for
individual NA06986 (1.M_111124_7 and 1.M_120209_1). All other data are
available from the authors on reasonable request.
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