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Chytrid fungus infection in zebrafish demonstrates
that the pathogen can parasitize non-amphibian
vertebrate hosts
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Aquatic chytrid fungi threaten amphibian biodiversity worldwide owing to their ability to

rapidly expand their geographical distributions and to infect a wide range of hosts. Combating

this risk requires an understanding of chytrid host range to identify potential reservoirs

of infection and to safeguard uninfected regions through enhanced biosecurity. Here we

extend our knowledge on the host range of the chytrid Batrachochytrium dendrobatidis

by demonstrating infection of a non-amphibian vertebrate host, the zebrafish. We observe

dose-dependent mortality and show that chytrid can infect and proliferate on zebrafish tissue.

We also show that infection phenotypes (fin erosion, cell apoptosis and muscle degeneration)

are direct symptoms of infection. Successful infection is dependent on disrupting the

zebrafish microbiome, highlighting that, as is widely found in amphibians, commensal

bacteria confer protection against this pathogen. Collectively, our findings greatly expand the

limited tool kit available to study pathogenesis and host response to chytrid infection.
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P
athogens that exhibit a broad host range constitute a
growing threat to biodiversity. This owes to their intrinsic
ability to undergo range expansions through human-

mediated long-distance dispersal, then spill over and cause
subsequent infection of naive hosts1,2. Pathogenic fungi
exhibit the broadest spectrum of host ranges known for any
group of pathogens, with aquatic chytrid fungi in the genus
Batrachochytrium emerging as an extinction threat to amphibian
species worldwide1,3. Two species of amphibian parasitizing
chytrids have thus-far been described, Batrachochytrium
dendrobatidis (Bd) and Batrachochytrium salamandrivorans
(Bsal); of these Bd is known to parasitize all three orders of
amphibians with nearly 700 species of amphibian infected to
date4. Infection by Bsal thus far appears to be limited to caudates
(salamanders) with fewer than 20 species known to be infected5.

The mechanisms underlying the ultra-generalist nature of Bd
compared to its more host-restricted sister species have not yet
been described. However, they likely include the ability to deeply
invade and establish within the epidermal cells of the stratum
corneum through lytic processes and to modulate host immunity
through secreted factors6,7. While Bd infection was originally
assumed to be restricted to amphibians, other non-amphibian
hosts are thought to sustain infections. Key to this argument are
studies showing that crayfish tissues are parasitized by Bd in
nature, that these infections cause crayfish mortality, and that the
infection could be transmitted to co-housed amphibians8. The
nematode Caenorhabditis elegans is thought to also be parasitized
by Bd with attendant mortality, and the keratin-rich toenails of
waterbirds may act as a transient substrate for Bd9,10. However,
more recent research finds no evidence for roles of non-vertebrate
hosts in sustaining infections11. An unexamined factor that may
confound all of these studies is whether commensal bacteria
either interact synergistically with Bd to exacerbate infection
through dysbiosis, or rather protect against infection through the
production of antimicrobial compounds12. A microbial role in
defining host range is likely to be important as an increasing
number of studies are now showing associations between
bacterial communities and Bd infections of amphibians in the
field13–15. Taken together, these studies are important as they
show that we are missing significant aspects of the biological
interactions that define the host range of Bd.

A thus-far unexamined aspect of Bd’s epidemiology is its
potential ability to infect other aquatic vertebrates, principally
freshwater fish. If Bd were able to successfully parasitize fish, then
this would represent an unparalleled opportunity for studying
infection through use of the widely available zebrafish (Danio
rerio). Recent studies have uncovered host immune responses of
Bd infection in amphibians, though most of this work focused on
adaptive immunity despite research suggesting an important role
of the innate immune system, especially at the early stages of
infection16–21. The fully developed innate immune system present
in zebrafish larvae, along with its natural transparency, make it
possible to easily study host-pathogen interactions in real time
using non-invasive live-cell microscopy22–25. Furthermore, the
immediate environment of the zebrafish larvae can easily be
manipulated with antibiotics, allowing the role of commensal
bacteria in disease dynamics to be studied. Thus, a zebrafish
larvae infection model would present a novel opportunity to
study pathogenesis and innate immune responses during Bd
infection in vivo.

Here we tested whether zebrafish larvae can act as carriers of
Bd by developing a 3-day dose-dependent model in which
infection can be detected and quantified. We show that different
stages of Bd infection can be observed on zebrafish larvae using
histopathology and confocal microscopy, alongside symptoms of
infection that are comparable to those observed in amphibians.

These results show that zebrafish larvae undergo an infection
process similar to that of Bd’s native amphibian hosts,
highlighting the utility of zebrafish larvae as an important model
to study this emerging panzootic infectious disease.

Results
Bd infection of zebrafish larvae. To investigate if zebrafish larvae
at three days post fertilization (d.p.f.) can be infected with Bd
zoospores (that is, the infectious stage of Bd), a bath water
infection model was developed (Supplementary Fig. 1a). To
investigate infection burden, we quantified the amount of Bd
DNA on infected larvae using quantitative PCR (qPCR), an assay
typically used to detect Bd infection in vivo using swabs or toe
clips18,26. Initial experiments clearly showed an important role of
commensal bacteria in mitigating against Bd’s ability to infect
larvae. In the presence of antibiotics, intensities of infection were
significantly greater when compared to larvae without antibiotic
treatment (Fig. 1a, Supplementary Fig. 1b). Subsequently, all
further experiments on zebrafish larvae were carried out in the
presence of antibiotics. Samples tested show significantly higher
genomic equivalents (GE) of Bd DNA on Bd-infected larvae
compared to their bath water alone. We observed significantly
higher GE of Bd DNA on larvae infected with 4200 zoospores
per ml (zsp per ml; herein referred to as high dose) of Bd zoospores
when compared to those infected with o200 zsp per ml (herein
referred to as low dose) of Bd zoospores, suggesting a dose-
dependent nature of infection (Fig. 1b, Supplementary Fig. 1c).
We performed qPCR time-course studies and detected Bd DNA
on larvae up to 96 h post infection (h.p.i.; Fig. 1c; Supplementary
Fig. 1d). To test whether we could extend our findings to include
other species of fish, juvenile ornamental guppies (Poecilia
reticulata) were infected with Bd zoospores. A qPCR time-
course study performed on these guppies showed significantly
higher GE of Bd DNA on guppies infected with live zoospores
compared to those infected with the same dose of heat-killed
zoospores at 5 days post infection (d.p.i.; Supplementary Fig. 1e).
However, the GE of Bd DNA in live zoospore treated guppies
became increasingly similar to control values at later time points
(12 and 19 d.p.i., respectively), suggesting that infection is unable
to persist in this host.

We observed that zebrafish larvae infected with a low dose of
Bd zoospores show 100% survival, whereas larvae infected with a
high dose of Bd zoospores show significant mortality from 0 to 72
h.p.i., supporting that infection is dose dependent (Fig. 1d;
Supplementary Table 1). To visualize Bd infection in larvae we
performed histopathology using methods commonly employed
to confirm infection in amphibians27. We observed different
life-history stages of Bd on infected larvae, including mature
zoosporangia (that is, the reproductive stage of Bd) and empty
discharged sporangia with a discharge tube protruding out of
infected tissue. These images prove that Bd is able to both encyst
and proliferate within the skin of zebrafish larvae (Fig. 1e), a
finding that is consistent with the increased detection of GE of Bd
by qPCR on infected larvae up to 96 h.p.i. The morphology of
these Bd life-history stages are consistent with those found widely
on Bd-infected amphibians, such as Xenopus laevis7,28. Taken
together, these results show that zebrafish larvae can be infected
with Bd in the presence of broad spectrum antibiotics, and that
Bd infection of larvae resembles that of amphibians.

Symptoms of Bd infection in zebrafish larvae. Bd infection in a
wide range of amphibians can be accompanied by hyperplasia,
hyperkeratosis of the skin, lethargy and loss of righting reflex29.
Infected larvae showed erosion of tail fin, disruption of
smooth muscle striations and blistering of skin at 72 h.p.i.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15048

2 NATURE COMMUNICATIONS | 8:15048 | DOI: 10.1038/ncomms15048 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


(Supplementary Fig. 2a). To test whether these phenotypes are
dose dependent, fin erosion was quantified by measuring two
different widths of zebrafish larva caudal tail fin at 72 h.p.i.
(Fig. 2a). When compared against control larvae, low or high dose
infected larvae showed a 1.7±0.3- or 7.3±3.5-fold decrease in
dorsal fin length, and a 1.6±0.1- or 7.1±2.7-fold decrease in
ventral fin length, respectively. To investigate the onset of these
infection phenotypes, time-course imaging experiments were
performed and showed that morphological changes appeared
between 48 and 72 h.p.i. (Fig. 2b). To test whether these
phenotypes were caused by a factor associated with increased
organic matter or zoospore secreted toxins in Bd-infected water,
we performed time-course imaging studies with exposure of
larvae to heat-killed Bd zoospores or Bd zoospore supernatant.
Both treatments showed fin erosion similar to control larvae at all
time points tested (Supplementary Fig. 2b,c). These results
suggest that fin erosion is largely a consequence of Bd infection,

although the precise roles of pathogen invasion and/or release of
cytolytic factors from adherent Bd in establishing this phenotype
remains to be determined.

A hallmark of chytrid infection in amphibians includes
the presence of zoosporangia and rhizoid-like structures in
the keratinized epidermal tissue layers of host skin28,30. To
investigate symptoms of zebrafish larvae infection, Bd-infected
larvae were labelled with calcofluor white (CFW). We first
observed that CFW clearly labelled the chitinous cell wall of Bd
sporangia in broth culture (Supplementary Fig. 2d). At 72 h.p.i.,
infected larvae showed fluorescent punctae (bright round spots)
throughout the entire body and fin (Fig. 2c). Time-course
imaging experiments showed that these phenotypes appeared
within 48–72 h.p.i. (Fig. 2c), consistent with the appearance of fin
erosion (Supplementary Fig. 2c). We quantified the number of
CFW-positive punctae on each larva and observed that larvae
infected with a high dose of Bd zoospores show significantly more
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Figure 1 | Bd infection of zebrafish larvae. (a) Zebrafish larvae bath water without (�AB, open circles) or with (þAB, open squares) 1% penicillin/

streptomycin was inoculated with three doses of Bd zoospores. Bath water changed at 24 h post infection (h.p.i.) and larvae incubated for 72 h.p.i. Zebrafish

DNA was extracted and amplified by qPCR. Data from 1 experiment shown, using n¼ 12 per treatment. Mean±s.e.m. are shown. Significance testing

performed using unpaired Student’s t-test (two tailed), ns P40.05, *Po0.05. See Supplementary Fig. 1b for replicate experiments. (b) Zebrafish larvae

bath water was inoculated with low (o200 zsp per ml) or high (4200 zsp per ml) dose Bd zoospores and incubated for 72 h.p.i. Zebrafish DNA was

extracted and amplified by qPCR. Data from two experiments plotted here, using n¼ 12 per treatment. Mean±s.e.m. are shown. Significance testing

performed using unpaired Student’s t-test (two tailed), ***Po0.001. See Supplementary Fig. 1c for replicate experiments. (c) Zebrafish larvae bath water

was inoculated with low dose Bd zoospores and incubated for 1, 24, 48, 72 or 96 h.p.i. Zebrafish DNA was extracted as in a; Data from one experiment are

plotted here (dose¼80 zsp per ml), using n¼ 3 per time point. Mean±s.e.m. are shown. See Supplementary Fig. 1d for replicate experiments. (d) Survival

curve of zebrafish larvae bath water inoculated with mTGhL (control, open circles, n¼420), low (filled circles, n¼ 84) or high (filled squares, n¼ 336) dose

Bd zoospores. Larvae were incubated for 72 h.p.i. Data pooled from twenty-five experiments. Mean±s.e.m. are shown. Significance testing performed by

Mantel–Cox (log-rank) test. ns P40.05, *Po0.05. See Supplementary Table 1 for replicate experiments. (e) Zebrafish larvae bath water was inoculated

with control or high dose Bd zoospores and incubated for 72 h.p.i. Representative longitudinal histological sections shown here. 1, encysted zoosporangium;

2, mature sporangium with internal zoospores; 3, empty zoosporangium with discharge tube protruding out of epithelial cells exhibiting extensive

hyperplasia. Scale bars, 20mm. GE, genomic equivalents.
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(4.7±0.6-fold) CFW-positive punctae compared to controls
(Fig. 2d, Supplementary Fig. 2e). Larvae infected with a low
dose of Bd zoospores show similar values to controls, highlighting
the dose dependent nature of infection. Moreover, CFW-positive
punctae colocalized with blister-like structures on eroded muscle
of infected larvae (Fig. 2e), suggesting that both CFW-positive
punctae and blistering of skin are symptoms of infection by Bd.

Consequence of Bd infection on zebrafish larvae host tissue.
We used confocal microscopy to investigate the consequence of

Bd infection on zebrafish larvae. Bd-infected larvae were
fluorescently labelled with CFW and Evans Blue (EB) to detect
tissue damage. CFW-positive punctae were observed on the fins
and muscle of low dose infected larvae, which colocalize with
EB-positive tissue damage (Fig. 3a, Supplementary Fig. 3a).
Moreover, both CFW-positive punctae and EB-positive tissue
damage were found to colocalize with fin erosion and blister-like
structures on Bd-infected larvae (Supplementary Fig. 3b).

Recent studies have shown that exposure to Bd results
in apoptosis of amphibian cells in vitro6,31. To test whether
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Figure 2 | Symptoms of Bd infection in zebrafish larvae. (a) Zebrafish larvae bath water was inoculated with mTGhL plate washings (control, open

circles), low (o200 zsp per ml, filled circles) or high (4200 zsp per ml, filled squares) dose Bd zoospores. Larvae were incubated for 72 h.p.i., where dorsal

and ventral fin length was measured (as depicted by red line in cartoon above each graph). Each point represents an individual larva. Data pooled

from three experiments per dose, using n¼4–12 per treatment. Mean±s.e.m. are shown. Significance testing performed using unpaired Student’s t-test

(two-tailed), ns P40.05, ***Po0.001. (b) Zebrafish larvae bath water was inoculated with control, low or high dose Bd zoospores, incubated for 72 h.p.i.

and imaged by stereomicroscopy. Representative images with cyan outline showing presence or erosion of fin over time. (c) Zebrafish larvae bath water

was inoculated with control, low or high dose Bd zoospores and incubated for 24, 48 or 72 h.p.i., then labelled with calcofluor white (CFW; for chitin, green)

and imaged by fluorescent stereomicroscopy. Representative images with dotted outline of larvae showing (CFW)-labelled punctae on infected larvae.

(d) Enumeration of CFW-labelled punctae from zebrafish larvae whose bath water was inoculated with control (open circles), low (filled circles) or high

(filled squares) dose Bd zoospores and incubated for 72 h.p.i. Each point represents an individual larva. Data pooled from three experiments per dose, using

n¼ 12 per treatment. Mean±s.e.m. are shown. Significance testing performed using Mann–Whitney test (two tailed), ns P40.05, ***Po0.001. See also

Supplementary Fig. 2e for replicate experiments. (e) Zebrafish larvae bath water was inoculated with high dose Bd zoospores and incubated for 72 h.p.i.,

then labelled with CFW (green) and imaged by fluorescent stereomicroscopy. Representative images with insets showing colocalization of CFW-labelled

punctae with blisters.
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Bd-infected zebrafish larvae show a similar phenotype in vivo,
TUNEL staining for apoptotic cells was performed. Infected
larvae showed a 3.0±0.4-fold increase in number of TUNEL-
positive apoptotic cells compared to controls (Fig. 3b). Apoptotic
cells were mostly observed around fin edges and on the surface of
larvae (Supplementary Fig. 3c), thus were likely to be epithelial
cells where keratin is highly expressed32. Transmission electron
microscopy showed necrotic epithelial cells sloughing off in
infected larvae, as compared to healthy skin cells in control larvae
(Fig. 3c; Supplementary Fig. 3d). Together, these results strongly
suggest that Bd is damaging host tissue during infection of
zebrafish larvae.

By 72 h.p.i., infected larvae showed disruption of clear muscle
striations (Supplementary Fig. 2a). To further investigate this
phenotype, larvae were fluorescently labelled with phalloidin to
visualize actin filaments in vivo. Infected larvae showed striking
muscle degeneration (Fig. 3d). Severity of muscle degeneration
was classified into three categories based on the number of
key phenotypes larval muscle fibres possessed, including loose
packing, thinning, crumpling and deep tissue degeneration
(Supplementary Fig. 3e). Using this classification system,
high-dose-infected larvae show a higher percentage of severe
muscle degeneration compared to Bd zoospore supernatant
treated larvae, and both of these treatments show a higher
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Figure 3 | Consequence of Bd infection on zebrafish larvae host tissue. (a) Zebrafish larvae bath water was inoculated with low (o200 zsp per ml) dose
Bd zoospores and incubated for 72 h.p.i., then labelled with calcoluor white (CFW; for chitin, green) and evans blue (EB; for tissue damage, red), and

visualized by confocal microscopy. Images taken at �40, maximum intensity projection of Z-stack shown here. Cartoon depicts imaged region.

Representative images with insets highlight colocalization of CFW-labelled punctae with EB positive tissue damage. Scale bars, 50 mm. See also

Supplementary Fig. 3a for more examples. (b) Enumeration of apoptotic cells from larvae whose bath water was inoculated with mTGhL plate washings

(control, open circles) or low (filled circles) dose Bd zoospores and incubated for 72 h.p.i., then fixed and labelled with TUNEL. Each point represents

an individual larva. Data pooled from three experiments, using n¼ 3 per treatment. Mean±s.e.m. are shown. Significance testing performed using

Mann–Whitney test (two tailed), **Po0.01. (c) Zebrafish larvae bath water was inoculated with high dose Bd zoospores and incubated for 72 h.p.i., then

fixed for electron microscopy (EM). 1, Sloughing necrotic cell. 2, sloughed necrotic cell. Scale bars, 1 mm. See also Supplementary Fig. 3d for EM images of

larvae treated with control. (d) Zebrafish larvae bath water was inoculated with control, high (4200 zsp per ml) dose Bd zoospore supernatant or high dose
Bd zoospores and incubated for 72 h.p.i., then fixed, labelled with phalloidin (for F-Actin; red) and visualized by confocal microscopy. Images taken at 40X,

maximum intensity projection of Z-stack shown here. Representative images of larva with no, mild or severe muscle degeneration are shown here.

(e) Proportion of larvae with no (white), mild (grey) or severe (black) muscle degeneration when prepared as in d. (f) Zebrafish larvae bath water was

inoculated with control or high dose Bd zoospores and incubated for 72 h.p.i. Representative longitudinal histological sections shown here. White outline

highlights skin of larvae, which in infected image shows hyperplasia of epithelial cells with mature and discharged sporangia.
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percentage of severe muscle degeneration compared to controls
(Fig. 3e). These results indicate that muscle degeneration may, at
least in part, be the result of toxins secreted by Bd following
infection. Histopathology on infected larvae also showed
hyperplasia of skin where sporangia have formed, adjacent to
severe muscle degeneration (Fig. 3f). These results demonstrate
that Bd infection in zebrafish larvae is underpinned by severe
tissue damage caused by secreted toxins and the infection process.

Intracellular colonization by Bd in zebrafish larvae. To deter-
mine how symptoms of infection in zebrafish larvae are related to
the colonization of Bd on larvae skin, we labelled infected larvae
at 72 h.p.i. with a novel Bd-specific monoclonal antibody, mAb
5C4. This antibody binds to a carbohydrate epitope on an
extracellular antigen produced by Bd33, labelling both Bd
zoospores and zoosporangia with minimal background labelling
in vivo (Supplementary Fig. 4a,b). Infected larvae present areas of
skin harbouring the Bd secreted antigen (Fig. 4a). Antibody
labelling also colocalizes with blisters and actin reorganization on
infected larvae, showing disruption of host tissue in response to
Bd infection (Fig. 4a,b, Supplementary Fig. 4c). These results are
consistent with the pattern of CFW-labelled punctae described
above, indicating that mAb 5C4 is suitable for highly specific,
in-depth analysis of the Bd infection process. Indeed, various
stages of Bd infection can be visualized in infected larvae by
72 h.p.i. (Fig. 4c), including germ-tubes invading epidermal cells,
encysting zoospores and intracellular zoosporangia amongst
hyperplastic epithelial cell build-ups. These results show that
zebrafish larvae undergo an infection process similar to that of
amphibians, and that Bd infection of zebrafish can be powerful
model system to study the invasion and proliferation of Bd
in vivo.

Discussion
Our study shows that Bd is able to infect and multiply on
zebrafish larvae treated with antibiotics in a dose dependent
manner that mimics the process of infection seen in amphibians.
This demonstration of a non-amphibian vertebrate host being
infected by Bd widens the host range previously known to be
exploited by this hypervirulent chytrid lineage. Using a Bd
monoclonal antibody (mAb 5C4), we were able to image the
different stages of Bd infection with unprecedented resolution
in vivo. Collectively, these results validate zebrafish larvae as a
powerful aquatic model system within which these host-Bd
interactions can be more fully explored. Furthermore, our
observations that treating zebrafish with antibiotics results in
higher burdens of infection highlight the use of probiotic bacteria
to combat Bd infection34.

Although the specific host factors necessary for Bd infection
remain to be discovered, Bd is commonly found to parasitize the
keratinized tissue of both amphibian and non-amphibian
hosts8,9,35,36. Consistent with these observations, we found Bd
parasitizing zebrafish larvae structures known to express high
levels of keratin, such as the edges of the caudal fin32, where we
observed fin erosion, tissue damage and apoptotic cells. These
observations are in agreement with studies showing widespread
apoptosis of amphibian skin cells in response to Bd infection6,31.
However, in common with many macroparasite disease
systems37, not all larvae became infected and mortality is
heterogeneous among experiments (Supplementary Table 1),
suggesting that there are unknown factors underlying the
susceptibility of zebrafish larvae to Bd.

Heterogeneity in susceptibility of zebrafish larvae to infection
may arise from a number of intrinsic and extrinsic factors,
investigation of which will likely prove to be fruitful areas of

future research using this model. Intrinsic factors include host
immune responses and their underlying genetic determinants.
Testing the expression of key inflammatory components
caspase-1, interleukin 1b (il1b) and tumour necrosis factor a
(tnfa) on Bd-infected zebrafish larvae cDNA showed no
significant difference from controls (Supplementary Fig. 5a). This
result is consistent with data from other studies highlighting a
complex, immunosuppressive effect on the host immune system
that is possibly caused by proteases released by zoospores on
infection and by maturing sporangia within the infected
epidermis6,38. As innate immune mechanisms are thought
to be highly conserved from zebrafish to man25,39, the zebrafish
response to Bd infection is likely to be similar to their amphibian
counterparts. The variable expression of inflammatory markers in
infected zebrafish may explain some of the heterogeneity that
underlies the intensity of parasitism and mortality across our
experiments. Owing to destructive sampling of whole larvae for
either pathogen DNA or zebrafish RNA, we could not determine
associations between the intensity of infection and expression of
immunity markers. A future refinement of the model should
include the development of an RNA-based marker for Bd so that
concurrent associations between the intensity of parasitism and
onset or type of immunity can be determined. Moreover, the
natural translucency of zebrafish larvae enables non-invasive
in vivo imaging of individual cells and Bd-leukocyte interactions
at high resolution throughout the organism22,24,40. Strikingly, the
major pathogenic events that lead to chytridiomycosis in
amphibians29, such as hyperplasia of epithelial cells, apoptosis
of skin cells and sloughing of infected cells are faithfully
reproduced in our zebrafish model. Exploiting this, we have for
the first time the ability to examine the biogenesis, architecture,
coordination and resolution of the innate immune response to
Bd in vivo.

Toxins have emerged as critical molecular determinants of
tissue damage during fungal infection5. We observe that larvae
infected with live Bd show a greater extent of muscle degeneration
when compared to larvae treated with Bd zoospore supernatant,
and we propose that toxins secreted after sporangia have
established in larvae skin play a role in this phenotype. Indeed,
studies have shown that Bd zoosporangia (in comparison to
zoospores) show higher expression levels of genes involved in
metabolism and pathogenicity, for example, the carbohydrate-
binding module family 18 (CBM18), M36 metalloproteases
and crinkler-like virulence effectors41–44. Using the breadth of
fluorescent probes available for zebrafish larvae, our Bd infection
model will greatly enable the in vivo investigation of known and
unknown pathogenicity factors.

Extrinsic factors, including the virulence of the zoospore
suspension, can influence the heterogeneity of infection
phenotypes including mortality. Other factors that can influence
the outcome of the host-pathogen interactions include the
zebrafish microbiome and free-living aquatic predators that prey
on infectious Bd zoospores45. Bacterial flora on amphibian skin
has been shown to influence the outcome of Bd infection, and
probiotic methods to control infection are being widely
explored34,46,47. Future work should profile the zebrafish
microbiome to better understand its role in governing the
process of Bd-zebrafish infection, and manipulate the larvae
microbiome to dissect the role of component bacterial species in
determining the probability of Bd infection. To explore these
issues, the use of gnotobiotic zebrafish larvae would provide a
refinement to the model that has been described here48. CFW
labelling showed the presence of rare punctae in unexposed
control fish; these punctae may signify the presence of fish-
associated oomycetes (Saprolegniales) or aquatic fungi other than
Bd. The addition of low concentrations of antibiotics to zebrafish
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larvae water during infection is unlikely to remove the natural
fungal fauna (the mycobiome) of the larvae in our infection
model. Whether or not these commensal eukaryotes have a role
in determining infection by Bd remains to be investigated. Finally,
free-living rotifers are often found inhabiting zebrafish colonies
before larvae are washed. Research has shown that aquatic
microfauna can predate on the free-living infectious zoospores of
Bd, thereby lessening the probability of establishing an infection
in amphibians45. The ability to co-culture rotifers with zebrafish
larvae presents an opportunity to further explore the potential
manipulation of aquatic microfauna as a method of increasing the
resilience of ecosystems to colonization by Bd.

Mathematical epidemiological models have shown that the
highly virulent nature of Bd and its on-going persistence in
ecosystems following host extirpations is a function of this
parasite’s ability to reduce the severity of density-dependent
regulation through saprobic growth or parasitism of alternative,

more tolerant, hosts2,35,49,50. Our finding that Bd can infect and
proliferate on zebrafish larvae provides evidence that larval fish
may represent an alternative reservoir of infection in nature.
We tested the extent to which fish are an alternative zoonotic
reservoir by infecting a second species, ornamental guppies,
which represent a more mature developmental stage than 3 d.p.f.
zebrafish larvae. Guppies treated with live Bd showed significantly
increased GE of Bd at 5 d.p.i. compared to those treated with heat
killed zoospores, however this signal was lost at 12 and 19 d.p.i.
suggesting that infection is unable to persist in this host
(Supplementary Fig. 1e). The increasing number of studies that
have now shown conflicting evidence for the importance (or
otherwise) of various non-amphibian hosts in acting as reservoirs
of Bd is intriguing8–11. Therefore, the challenge that lies ahead is
to more closely examine the biotic and abiotic factors that govern
the ability of Bd to parasitize alternative hosts, and to understand
their contribution to the dynamic nature of chytridiomycosis
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Figure 4 | Intracellular colonization by Bd in zebrafish larvae. (a) Zebrafish larvae bath water was inoculated with high (4200 zsp per ml) dose Bd

zoospores and incubated for 72 h.p.i., then fixed and labelled with Hoechst (for DNA; blue) and mAb 5C4 (for Bd; green) for visualization by confocal

microscopy. Images taken at 63 X, maximum intensity projection of Z-stack shown here. Cartoon depicts imaged region. Representative images with arrows

highlight colocalization between Bd and blisters on larvae skin. Scale bar, 50mm. (b) Zebrafish larvae bath water was inoculated with high dose Bd

zoospores and incubated for 72 h.p.i., then fixed and labelled with Hoechst (for DNA; blue), mAb 5C4 (for Bd; green) and phalloidin (for F-Actin; red) for

visualization by confocal microscopy. Images taken at �63, maximum intensity projection of Z-stack shown here. Cartoon depicts imaged region.

Representative images with insets highlight Bd adjacent to host cell actin rearrangements. Scale bar, 50mm. See also Supplementary Fig. 4c for host cell

actin in control treated larvae. (c) Zebrafish larvae bath water was treated as in a. Images taken at �40 or � 63, maximum intensity projection of

Z-stack shown here. Images showing different stages of Bd invasion and infection on larvae, also depicted using cartoons in the right column. 1, rhizoid-like

germ tube attached to encysting zoospore, 2, chytrid thallus growth on zebrafish larvae skin, 3, encysted sporangium amongst hyperplasic epithelial cells.

Scale bars, 10mm.
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across various ecological settings. Contributing to this end, we
here show that zebrafish larvae represent a tractable and powerful
model aquatic system within which to explore the epidemiology
and biology of this destructive chytrid.

Methods
Ethics statement. Animal experiments conducted at Imperial College or Cardiff
University were performed according to the Animals (Scientific Procedures) Act
1986, and were approved by the Home Office (Project Licenses: PPL 707446 or
302876, respectively).

Zebrafish care and maintenance. Wild-type AB stock was purchased from the
Zebrafish International Resource Center (Eugene, OR). Eggs were obtained by
placing breeding boats at the base of adult zebrafish tanks overnight, then bleached
according to protocols described in The Zebrafish Book51. From 0 d.p.f. larvae were
kept in petri dishes containing embryo medium (E2) without methylene blue,
prepared as described in The Zebrafish Book and washed daily up to and including
3 d.p.f. Larvae were anaesthetized with 400 mgml� 1 tricane (Sigma-Aldrich)
during in vivo imaging.

Growth of Batrachochytrium dendrobatidis. The strain used in this project,
JEL423, was first isolated in 2004 from Phyllomedusa lemur in Panama and is the
isolate from which the Broad Institute Bd reference genome was sequenced52.
To prepare Bd zoospore suspension, mTGhL agar plates (8 g typtone, 2 g gelatin
hydrosylate, 4 g lactose and 10 g agar to 1,000ml of water) were seeded with
actively growing Bd from mTGhL broth culture (0.5ml). These plates were sealed
and incubated for 4–7 days at 17 �C. Zoospores were collected by flooding plates
with autoclaved MilliQ (MQ) water (1ml), rocked back and forth to dislodge
zoospores, and left to stand for 10–15min before collecting the supernatant; plates
were flooded twice when necessary. A similar process was repeated with
uninoculated control plates to obtain mTGhL plate washings (control). Zoospore
concentration was determined by counting zoospores using a haemocytometer.
Heat-killed Bd zoospores were obtained by heating zoospore suspension at 60 �C
for 10min (zebrafish experiments) or 90 �C for 15min (guppy experiments). Bd
zoospore supernatant was obtained by filtering Bd zoospore suspension through a
0.45 mm filter to remove all zoospores. All infections were performed within 2 h of
collecting zoospores to ensure survival of zoospores when inoculated into fish bath
water36.

Zebrafish larvae infections. At 3 d.p.f. individual wild-type AB zebrafish larvae
were transferred into 24-well culture plates and infected with Bd zoospores (100 ml)
in E2 without methylene blue (1ml), containing 1% penicillin/streptomycin
prepared no more than 5 h before infection. Penicillin/streptomycin is commonly
used to isolate Bd from infected amphibians53. Larvae infected with Bd were then
incubated at 21 �C. All infection experiments were incubated with the initial
inoculum of Bd, with no changes of water except in experiments conducted in
Fig. 1a and Supplementary Fig. 1a where water was changed at 24 h.p.i. All
experiments were terminated at 72 h.p.i. unless stated otherwise. Doses are
categorized as follows, low dose¼ final Bd zoospore concentrationo200 zsp per ml;
high dose¼ final Bd zoospore concentration4200 zsp per ml. Control larvae
represent larvae treated with 100ml of mTGhL plate washings. Un-inoculated
larvae represent larvae incubated in E2 only for the entire duration of the
experiment.

DNA extraction and Bd qPCR. Genomic DNA from zebrafish swabs was extracted
using the bead-beating protocol published by Boyle et al.26 and adapted for
zebrafish larvae as follows. Anaesthetized larvae at 1, 24, 48, 72 and/or 96 h.p.i.
together with 10ml of their infected bath water were transferred into 1.5ml screw
top centrifuge tubes containing 50 ml of PrepMan Ultra (Applied Biosystems) and
30–40mg of 0.5mm silica beads. Note that in time-course experiments, samples
containing larvae and infected bath water were frozen at � 20 �C until 96 h.p.i.,
when extraction was performed on all samples. Samples from dose dependent
studies were also extracted in parallel. Larvae were homogenized for 60 s in a mini
beadbeater, and then centrifuged for 30 s at 1.3� 104 r.p.m. in a microfuge.
Homogenization and centrifugation was repeated twice. Samples were heated to
100 �C in a heat block, cooled for 2min, then centrifuged for 3min at 1.3� 104

r.p.m. before collection of the supernatant. This process was repeated with 10 ml of
infected bath water alone as a control for each sample, and with control treated
larvae and bath water as a control for the experiment. A 1/10 dilution in autoclaved
MQ water of all supernatants were made before freezing extracted samples and
dilutions at � 20 �C, kept for a maximum of 48 h post extraction.

Guppy DNA was extracted from samples suspended in 100% ethanol using
DNeasy Blood and Tissue Kit (Qiagen), following the manufacturer’s protocol.
Extracted DNA samples were used without dilution and kept at � 20 �C.

Real-time Taqman-qPCR assays to amplify Bd DNA were performed with
Applied Biosystems 7300 using 25 ml reactions containing 2xTaqman Master Mix
(Applied Biosystems), primers 5.8S (50-AGCCAAGAGATCCGTTGTCAAA-30)

and ITS-1 (50-CCTTGATATAATACAGTGTGCCATATGTC-30), TaqMan
MGB probe (6FAM 50-CGAGTCGAACAAAAT-30 MGBNFQ)26. Bovine serum
albumin (BSA) at 400 ng ml� 1 was included to increase the yield of the qPCR.
Quantifications were performed on duplicate wells. Each 96-well assay plate
included standard reactions containing Bd DNA at 1,000, 100, 10 and 1 genomic
equivalents (GE) as well as negative controls containing no DNA template. Samples
with greater than 0.1 GE were considered positive for Bd.

To eliminate background upregulation due to residual Bd DNA in zebrafish
larvae bath water, data showing GE of Bd on zebrafish was normalized using the
following formula for all qPCR figures (except in Fig. 1a and Supplementary Fig. 1b
where bath water was changed at 24 h.p.i.): GE of Bd on zebrafish¼ (larvae
homogenized with 10ml of its infected bath water)� (10 ml infected bath
water alone).

Histologic sections. Zebrafish larvae at 72 h.p.i. were fixed with 4% paraf-
ormaldehyde overnight at 4 �C. Larvae were washed three times in PBS and
mounted in 1% agarose. The agarose was dehydrated in a series of ethanol from 70
to 100% and then in 100% xylene and embedded in paraffin. Longitudinal sections
of tail were stained with haematoxylin and eosin. Haematoxylin and eosin-stained
tissues were imaged with an Axio Lab.A1 microscope (Carl Zeiss MicroImaging
GmbH, Germany), and images acquired using an Axio Cam ERc5s colour camera
and computer processed using AxioVision (Carl Zeiss MicroImaging GmbH,
Germany).

Microscopy of zebrafish. In vivo imaging of Bd was performed by staining
infected zebrafish larvae with Fluorescent Brightener 28 (F3543, Sigma),
also known as calcofluor white (CFW). CFW stains chitin and cellulose and
is commonly used to detect Bd and other fungal pathogens. Larvae were
anaesthetized at 24, 48 and/or 72 h.p.i. with 400 mgml� 1 tricaine and stained
with 250 mgml� 1 CFW prepared in autoclaved MQ water, for 20min at 21 �C in
the dark, only larvae that were alive at the time of microscopy were analysed.
To label apoptotic cells in Bd-infected larvae, TUNEL staining was performed on
anaesthetized 72 h.p.i. larvae using in situ Cell Death Detection Kit (Roche)
following the manufacturer’s protocol. Images of whole larvae were taken using a
Leica M205FA fluorescence stereomicroscope, Leica Macrofluor Z16 APOA (zoom
16:1) equipped with a Leica PlanApo 2.0� lens, and a Photometric CoolSNAP
HQ2 Camera.

For high resolution confocal live imaging of Bd, infected larvae were stained at
72 h.p.i. with 1mgml� 1 CFW containing Evans Blue (Sigma) for 10min at 21 �C
in the dark. Evans Blue is a stain used to detect myofibre tissue damage54. Larvae
were positioned in 35mm glass bottom dishes (MatTek) and covered with 1%
low-melting-point agarose. The immobilized larvae were subsequently covered
with E2 (2ml) containing tricaine.

For antibody labelling, anaesthetized zebrafish larvae were fixed overnight at
4 �C in 4% paraformaldehyde, washed for 3� 5min in PBSþ 0.4% triton, then
washed for 1� 20min in PBSþ 1% triton to permeabilize larvae. Anti-Bd mAb
5C4 tissue culture supernatantþ 0.1% sodium Azide (primary antibody) was
applied to larvae overnight at 4 �C. Larvae were washed for 4� 15min in
PBSþ 0.1% Tween. GFP anti-mouse (to label for Bd) and phalloidin (to label for
filamentous actin) were diluted 1/200 in PBS and applied to larvae overnight at
4 �C. Larvae were washed for 4� 15min in PBS þ 0.1% Tween. Nuclei were
stained with Hoechst diluted 1/500 in PBS, and applied to larvae for 10min. Larvae
were then washed again for 4� 15min in PBS þ 0.1% Tween. Fluorescently
labelled larvae were cleared by progressive transfer to 80% glycerol. Larvae were
positioned in 35mm glass bottom dishes and imaged using a Zeiss LSM 710
confocal microscope.

Images were processed using ImageJ software version 10.2 (ref. 55). To measure
fin length, images of individual larva were each spatially calibrated using ‘set scale’
function (Fig. 2a; Supplementary Fig. 2c). CFW-labelled punctae and TUNEL
positive apoptotic cells were also counted using this software (Figs 2d and 3b).
To categorize severity of muscle degeneration, larvae were ranked by two observers
based on the number of phenotypes larvae possessed when labelled with phalloidin
(as described in Supplementary Fig. 3e), none¼ 0, mild¼ up to 2 and severe¼ 3 or
more (Fig. 3e).

Electron microscopy. For ultrastructure analyses zebrafish larvae at 72 h.p.i. were
fixed in 0.5% glutaraldehyde in 200 nM sodium cacodylate buffer for 2 h, washed in
buffer and secondarily fixed in reduced 1% osmium tetroxide and 1.5% potassium
ferricyanide for 60min. The samples were washed in distilled water and stained
overnight at 4 �C in 0.5% magnesium uranyl acetate, washed in distilled water and
dehydrated in graded ethanol, infiltrated with propylene oxide and then graded
Epon/PO mixtures until final embedding in full Epon resin in coffin moulds
(allowing different orientations) and polymerized at 56 �C overnight. Semi-thin
survey sections were cut and stained, final ultrathin sections (typically 50–70 nm)
and serial sections were collected on Formvar coated slot grids then stained with
Reynold’s lead citrate and examined in a FEI Tecnai electron microscope with CCD
camera image acquisition.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15048

8 NATURE COMMUNICATIONS | 8:15048 | DOI: 10.1038/ncomms15048 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Guppy (Poecilia reticulata) infections. Adult ornamental guppies (Poecilia
reticulata) purchased from a commercial supplier were maintained in glass aquaria
with suitable refugia containing 50 l of dechlorinated water at 26 (±0.5) �C and
12 h light:12 h dark cycle. Fish were kept in mixed sex (1 male: 16 females) stocks
and fed ad libitum commercial tropical fish flakes and freshly hatched Artemia
naupli. Fry were collected twice daily from breeding tanks and transferred to plastic
jars containing 800ml dechlorinated water. Fry were maintained in shoals of five
per jar under the same temperature and lighting conditions in a temperature-
controlled incubator until the start of the experiment. Seven days before first
inoculation, guppies were acclimated to 16 �C over 24 h. These juveniles were aged
between 14 and 21 days at time of first inoculation, fed daily and maintained at
16 �C for the duration of experiment. Each group of fish was transferred to a glass
crystalizing dish containing 50ml of dechlorinated water and either 3� 106 live or
heat-killed Bd zoospores. After 3 h, guppies and zoospore solutions were gently
poured into plastic jars containing 750ml of dechlorinated water. After 24 h, water
was completely changed in each jar. The inoculation process was repeated 48 and
96 h after the initial dose. Guppies were monitored for a total of 19 days. At 5, 9,
and 19 days post inoculation 24–33 guppies (17–23 live-Bd exposed, 7–10
heat-killed exposed) were killed and preserved in 100% ethanol for subsequent
qPCR analysis.

RNA extraction and host real-time qPCR. Total RNA was extracted from three
anaesthetized larvae per sample at 72 h.p.i. using RNAqueous-Micro Total RNA
Isolation Kit (Ambion), following the manufacturer’s protocol, cDNA was obtained
using QuantiTect Reverse Transcription Kit (Qiagen) from 1 mg of RNA per
reaction. Quantitative PCR was then performed on a Rotor-GeneQ (Qiagen)
using SYBR Green PCR Master Mix (Applied Biosystems). Primers used include
caspase-1 (FW-50-CTCCATGCAGCCAGCAATTT-30 and RV-50-GCAAGGCCAG
TCGTTTTCTG-30), il1b and tnfa from Stockhammer et al.56 Quantifications were
performed on duplicate wells. To normalize cDNA amounts, we used the
housekeeping gene gadph (FW-50-TGGGCCAATGAAGGGAATTCTGGGAT-30

and RV-50-TAACAGGTCAGCAACACGATGGCT-30) and analysed results via the
2�DDCT method57. For example, in the case of tnfa, 2�DDCT is calculated in three
steps: (1) change in cycle threshold (CT) value of tnfa compared to housekeeping
gene (DCTtnfa)¼CTtnfa of a sample�CTgadph of the same sample; (2) change in
CT value of control against infected samples (DDCTtnfa)¼DCTtnfa of
controls�DCTtnfa of an infected sample; (3) calculate 2DDCTtnfa for each sample.
These calculations were similarly performed for other cytokines and plotted in
Supplementary Fig. 5a. Fold induction from all infected samples were also
normalized against values from un-inoculated larvae from the same experiment.

Statistics. These data were statistically analysed with using GraphPad Prism
version 7.00 for Mac OS X, GraphPad Software, La Jolla, California, USA,
www.graphpad.com (ref. 58). All data were expressed as mean±s.e.m. Significance
testing performed by log-rank (Mantel–Cox) test (Fig. 1d), unpaired Student’s t-
test (two tailed) (Figs 1a,b and 2a; Supplementary Figs 1c,e,2c and 5a) and Mann–
Whitney test (two tailed; Figs 2d and 3b; Supplementary Fig. 2e).

Data availability. The data that support the findings of this study are available
from the corresponding authors on reasonable request.
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