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The scaffold protein p140Cap limits ERBB2-
mediated breast cancer progression interfering
with Rac GTPase-controlled circuitries
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The docking protein p140Cap negatively regulates tumour cell features. Its relevance on

breast cancer patient survival, as well as its ability to counteract relevant cancer signalling

pathways, are not fully understood. Here we report that in patients with ERBB2-amplified

breast cancer, a p140Cap-positive status associates with a significantly lower probability of

developing a distant event, and a clear difference in survival. p140Cap dampens ERBB2-

positive tumour cell progression, impairing tumour onset and growth in the NeuT mouse

model, and counteracting epithelial mesenchymal transition, resulting in decreased metas-

tasis formation. One major mechanism is the ability of p140Cap to interfere with ERBB2-

dependent activation of Rac GTPase-controlled circuitries. Our findings point to a specific role

of p140Cap in curbing the aggressiveness of ERBB2-amplified breast cancers and suggest

that, due to its ability to impinge on specific molecular pathways, p140Cap may represent a

predictive biomarker of response to targeted anti-ERBB2 therapies.
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B
reast cancer is one of the most common cancers with
greater than 1,300,000 cases and 450,000 deaths each
year worldwide1,2. Clinically, breast cancer is classified

into three basic therapeutic groups: the oestrogen receptor
(ER)-positive group, the ERBB2 (also called HER2)-positive
group, and the triple-negative breast cancers (TNBCs, also called
basal-like), lacking expression of ER, progesterone receptor (PR)
and ERBB2 (ref. 2).

The ERBB2 oncogene (the human V-Erb-B2 Avian Erythro-
blastic Leukemia Viral Oncogene Homolog 2) is a tyrosine kinase
receptor, which belongs to the ERBB family. ERBB2 gene
amplification and receptor over-expression are causally
linked to oncogenesis in B20% of breast cancers and define
a molecular breast cancer subtype characterized by an adverse
clinical outcome3–5. ERBB2 amplified tumours are a biologically
non-homogeneous subgroup of breast cancers6. Indeed, although
the ERBB2 gene is located in the most highly rearranged segment
in chromosome 17 (17q12-q21)7, the amplification of the
surrounding genomic region is a highly variable process that
leads to a complex pattern of amplicons. The genes included in
the amplicons may significantly contribute to ERBB2 tumour
progression and treatment efficacy7–11.

ERBB2 tyrosine kinase activation at the plasma membrane
triggers key signalling pathways that direct general tumorigeni-
city, including escape from apoptosis, increased cell proliferation
and migration, and epithelial to mesenchymal transition
(EMT)12–15.

We have previously described the p140Cap adaptor protein as
a molecule that interferes with adhesion properties and growth
factor-dependent signalling, thus affecting tumour features
in breast cancer cells16–19. Recent reports have underlined
that p140Cap regulates proliferation and migration in colon,
lung, gastric, cutaneous squamous carcinoma and osteosarcoma
cancer cells19–24. Indeed, in a cohort of breast cancer patients,
p140Cap expression was linked to a less aggressive breast cancer
disease25, leading to the hypothesis that in these tumours
p140Cap may counteract tumour fitness. However, it was not
possible to assess the relevance of p140Cap expression
for patient survival in that cohort25, thus leaving open
the question of the relevance of p140Cap to breast cancer
prognosis.

In this work, we set out to tackle the relevance of p140Cap in
human breast cancer by analysing a large consecutive cohort of
patients with invasive breast cancer and we demonstrated
a strong association between p140Cap and improved survival of
ERBB2 patients. We also found that the p140Cap coding gene,
SRCIN1, located on Chromosome 17, one million base pair
centromeric from the ERBB2 gene, is amplified together with
ERBB2, in 460% of ERBB2 patients. We took advantage of
the NeuT mouse model of mammary breast cancer, and of
human ERBB2 breast cancer cells, to address the role of p140Cap
protein in the ERBB2-related breast cancer disease. Altogether,
our results argue for a key role of p140Cap in curbing
the aggressiveness of the ERBB2 tumours, counteracting in
vivo tumour growth, epithelial mesenchymal transition and
metastatic lesions.

Results
Decreased metastatic risk in ERBB2 tumours expressing
p140Cap. In a previous study, we showed that p140Cap expres-
sion was linked to a less aggressive breast cancer disease25.
However, the lack of complete clinical follow-up for the cohort
used in that study did not allow to assess the prognostic relevance
of p140Cap expression in breast cancer. Here, we analysed
p140Cap expression, by immunohistochemistry (IHC), on a

consecutive cohort of 622 invasive breast cancers available in a
tissue microarray (Supplementary Table 1). Data for p140Cap
expression were available for 515 out of 622 samples (Fig. 1a;
Supplementary Table 2). Positive p140Cap status (IHC scoreZ1)
was associated with good prognosis markers, such as negative
lymph node status (P¼ 0.014, where P¼Pearson w2-test), ER and
progesterone receptor (PgR)-positive status (P¼ 0.0002
and P¼ 0.0049, respectively), small tumour size (pT1 versus
pT2–pT4, Po0.0001), low grade (Po0.0001), low proliferative
status (Ki67, P¼ 0.0013), and ERBB2-positive status (P¼ 0.0344).
Positive p140Cap status was also associated to breast cancer
molecular subtypes, being expressed in 485% of Luminal
A tumours, 77% of Luminal B, and only 56% of triple-negative
tumours (Supplementary Table 2).

In univariate analysis, a positive p140Cap status was associated
with a lower risk of developing distant metastases, and of
death from breast cancer in the entire breast cancer cohort
(Fig. 1b). However, a more in-depth analysis revealed that the
prognostic effect of p140Cap in the consecutive cohort of
breast cancer patients was to be ascribed to its performance in
the subgroup of ERBB2-amplified breast cancers (Fig. 1c), in
which a high p140Cap status predicts a significantly lower
probability of developing a distant event (left panel), and a clear
difference in survival (right panel). By contrast, no significative
differences could be observed in patients not harbouring ERBB2
amplification (Fig. 1d). The prognostic power of p140Cap was
lost in a multivariate analysis, indicating that p140Cap is not an
independent prognostic marker in breast cancer (Supplementary
Fig. 2A; Supplementary Table 2). However, in the ERBB2-
amplified subgroup, the lymph node status was the sole
independent predictive marker, in multivariate analysis. When
this group of tumours was subjected to a bivariate analysis,
with nodal status and p140Cap expression, the two variables
were found to be independent of each other in their association
with prognostic outcome (Supplementary Fig. 2B).

In conclusion, p140Cap expression associates with reduced risk
of metastasis (and death from cancer), in the ERBB2-amplified
subgroup of breast cancer patients, arguing for a possible role of
p140Cap in counteracting the migratory and/or metastatic ability
of ERBB2-amplified tumour cells.

SRCIN1 is co-amplified with ERBB2 in ERBB2 amplified
patients. p140Cap is encoded by the SRCIN1 gene, located at
Chromosome 17q12, one million base pair centromeric to the
ERBB2 gene. Several genes included in the amplicons have been
reported to play a role in ERBB2 tumour progression7–11.
However, the co-amplification of SRCIN1 gene in the context of
the ERBB2-related disease has not yet been deeply investigated.

To assess how frequently SRCIN1 gene may be included in the
ERBB2 amplicon, BAC array Comparative Genomic Hybridiza-
tion (aCGH) was performed. The analysis of 200 ERBB2-
amplified tumours from a large Swedish Cohort8, showed
that the SRCIN1 gene is altered in 70% of cases, with 123 cases
(61.5% of the total) showing a copy number (CN) gain for
SRCIN1 (Fig. 2a). Kaplan–Meier analysis of these tumours
showed that SRCIN1 amplification correlates with significantly
improved survival (Supplementary Fig. 3). Moreover, mRNA
expression and SRCIN1 gene CN from 50 of the 200 ERBB2
amplified tumours were significantly correlated, giving a Pearson
correlation of 0.77 (Fig. 2b).

Further, we analysed by FISH a consecutive series of 77 breast
cancer patients at diagnosis with a mix of probes for SRCIN1 and
the centromeric region (CEP17) of chromosome 17. While in
43 ERBB2-negative breast cancers SRCIN1 CN was never altered,
in ERBB2-amplified tumours26, 56% of the specimens were
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Figure 1 | Prognostic relevance of p140Cap expression in breast tumours. (a) p140Cap expression was measured by IHC on tissue microarray (TMA)

samples. For the purpose of correlation with clinical and pathological parameters, tumours were classified based on the intensity of p140Cap staining as

0.5–3: p140Cap-Low (IHC scoreo1) and p140Cap-High (IHC score Z1). Images are representative of p140Cap expression scoring according to intensity

staining in TMA. In tumour tissues, the IHC signals were associated with the tumour cell component and not with the adjacent or infiltrating stroma.

TMA data analysis was performed using JMP 10.0 statistical software (SAS Institute, Inc). Scale bar, 100mm. (b) p140Cap expression in the whole

cohort: Distant Recurrence Free Interval (DRFI)65 (left panel: hazard ratio: 0.57, P¼0.036); and Death Related to Breast Cancer (DRBC; right panel: hazard

ratio: 0.53, P¼0.020). (c) p140Cap expression in ERBB2-positive patients: DRFI (left panel: hazard ratio: 0.30, P¼0.018); and DRBC (right panel:

hazard ratio: 0.29, P¼0.006). (d) p140Cap expression in ERBB2-negative patients: DRFI (left panel: hazard ratio: 0.74, P¼0.347); and DRBC (right panel:

hazard ratio: 0.41, P¼0.795). P¼ Pearson w2-test.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14797 ARTICLE

NATURE COMMUNICATIONS | 8:14797 | DOI: 10.1038/ncomms14797 |www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


amplified for SRCIN1 (Fig. 2c). These data indicate that
alterations at the level of the SRCIN1 locus are strictly linked to
chromosomal rearrangements that result in ERBB2 amplification.
Altogether, these results show that the SRCIN1 gene is frequently,
but not obligatorily, co-amplified with ERBB2 in breast cancers,
arguing for a potential role of SRCIN1 as a determinant of
the clinical heterogeneity of ERBB2 tumours. These observations
also provided us with the testable hypothesis that the presence
of SRCIN1 may attenuate the intrinsic biological aggressiveness
of breast tumours with ERBB2 alterations.

p140Cap limits tumorigenicity of NeuT-driven breast tumours.
To test the above hypothesis, we generated a transgenic (Tg)
mouse model in which p140Cap expression is driven under the
control of the MMTV promoter (MMTV-p140Cap; Fig. 3a), to
cross them with a well-characterized model of ERBB2-dependent
breast carcinogenesis, the Tg MMTV-NeuT mouse model27,28.
We selected two MMTV-p140Cap lines with a strong p140Cap
expression in the mammary gland (see Supplementary Fig. 4 for
detailed characterization of the Tg mice) that were crossed with
both FVB-MMTV-NeuT29 and BALB/c-MMTV-NeuT27,28 mice,
which display different tumour onset times, to generate p140-
NeuT mice. p140Cap expression in tumours derived from these
mice was confirmed by Western blot analysis (Fig. 3b). When
compared to either FVB-NeuT or BALB/c-NeuT mice, the

corresponding p140-NeuT mice showed a significant delay in
the appearance of the first tumour (Fig. 3c, Fisher’s exact test,
Two sided, P¼ 0.0022; P¼ 0.0056) associated with a significant
decrease in the total tumour burden (Fig. 3d, unpaired t-test:
Po0.001, Po0.05). Histological analyses showed morphological
differences in the appearance of the two types of tumours
(Fig. 3e). NeuT tumours were composed of large solid nodules,
separated by delicate bundles of stromal tissue, with necrosis
often evident in the centre of the largest nodules (Fig. 3e, panels
a,b). Tumours developed in p140-NeuT mice consisted of smaller
nodules and sheets of cells separated by more abundant stroma,
with cancer cells extending into the stroma in nest-like
formations showing distinctive holes between the cancer cells
(Fig. 3e, panels c,d). Both tumour types were strongly positive for
NeuT ((Fig. 3e, panels e–h) and for cytokeratins CK8/18 (see
Supplementary Fig. 5A). A larger percentage of NeuT tumour
cells were positive for the proliferation marker PCNA (Fig. 3e,
panels i,j), compared to p140-NeuT tumour cells (Fig. 3e, panels
k,l). PCNA quantification is shown on the right of Fig. 3e
(32±1,560 versus 18,65±2,141). Angiogenic infiltration, as
assessed by CD31 marker staining, was also decreased in p140
tumours (9,648±351.5 versus 5,344±232.8; Supplementary
Fig. 5B). Not significant differences were detectable in
activated Caspase3 staining, in which only a few cells were
positive in both tumour types (7,694±2,257 versus 7,381±2,408;
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Fig. 3e, panels m–p). Activated Caspase3 quantification is shown
on the right of Fig. 3e. Altogether, these results show that
p140Cap expression attenuates the phenotype of NeuT tumours
in vivo, resulting in the development of smaller and lower grade
mammary carcinomas.

p140Cap reverts the NeuT effects on mammary morphogen-
esis. It is well known that activation of the ERBB2 oncogene is
sufficient to disrupt the morphogenetic program that drives the
formation of the mammary gland acini in vitro30,31. Indeed,
normal mammary epithelial cells embedded into three-
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dimensional (3D) Matrigel-Collagen cultures give rise to
hollow glandular-like acini displaying features of luminal
differentiation32–34. In contrast, ERBB2 transformed cells escape
apoptosis responsible for the cavitation process and originate
aberrant filled-type structures, a phenotype linked to the cellular

transformation with loss of apical–basal polarity30,31. On the
basis of our evidence that p140Cap is able to curb NeuT-driven
tumorigenesis in vivo, we set out to evaluate whether p140Cap
also counteracts the disruption of the mammary morphogenetic
program caused by ERBB2. To this aim, we established primary
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epithelial cancer cells from NeuT and p140-NeuT tumours in the
BALB/c background. Two populations for each genotype, which
expressed comparable levels of NeuT (NeuT-1 and NeuT-2) or
p140Cap (p140-1 and p140-2; Fig. 4a), were chosen for further
experiments. The cell lines, even if in standard culture condition
did not show difference in proliferation (Supplementary Fig. 6A),
displayed a distinct behaviour in apoptosis assays. Indeed,
p140Cap primary tumour cells showed increased percentage of
cells expressing the apoptosis marker Annexin 5 and increased
expression of cleaved Caspase 3, when subjected to apoptotic
stimuli, such as starvation or matrix cell detachment in culture
conditions (Supplementary Fig. 6B). Moreover, they retained in
transplantation assays the characteristics of the parental tumours,
as evidenced by reduced tumour burden (Fig. 4b) and a more
differentiated appearance of tumours (Fig. 4c), comparing
p140 to NeuT cells.

When these cells were plated in 3D Matrigel-Collagen cultures
for 15 days, NeuT-1 and NeuT-2 cells yield large multi acinar,
apolar structures of irregular shape (Fig. 4d) that sometimes
displayed protrusions (see arrows), suggestive of invasive features.
These structures frequently did not show a lumen. In contrast,
p140-1 and p140-2 cells formed smaller acinar-like structures
with regular borders, without protrusions, which frequently
displayed a lumen (Fig. 4e). Figure 4f,g show a quantification
of these two phenotypes. Biochemically, these events were
measured via the decreased expression of the proliferation
marker Cyclin D1 (Fig. 4h), which is consistent with the
decreased PCNA levels detected in p140-NeuT tumours in vivo.
Moreover, p140Cap expression resulted in a substantial increase
in the levels of activated Caspase3 in 3D cultures (Fig. 4h).
Overall, in 3D conditions, p140Cap restores the dynamic
equilibrium between cell proliferation and cell death which is
typical of normal mammary epithelial cells during tissue
morphogenesis35.

The observed morphological features were mirrored by
restoration of apical–basal polarity. Polarity properties were
dissected in cells grown in 3D Matrigel-Collagen cultures for
15 days, via staining with the apical Golgi marker GM130 and the
basal marker beta1 integrin30. The structures formed by the NeuT
cells showed loss of Golgi marker GM130 orientation towards the
lumen, and beta1 integrin mis-localization (Fig. 4h). In contrast,
in p140 cells, GM130 always localized in the inner part of the
acini, oriented towards the lumen, while beta1 integrin was
clearly restricted in the outer part of the acini, to define the basal
compartment (Fig. 4i). Thus, at least under the conditions of
in vitro assays, the mitigating effect of p140Cap on ERBB2
tumour growth could be correlated with the re-enactment by
p140Cap of the differentiation program disrupted by ERBB2.

p140Cap limits EMT in the NeuT cells. EMT is integral to
several steps of the metastatic process15,36. In keeping with
this, we found that the presence of p140Cap was associated
with a marked down-regulation of an EMT transcription
program, as witnessed by the significantly reduced expression
of mRNA transcripts for the EMT transcription factors Snail,
Slug and Zeb1 (Fig. 5a), and for the mesenchymal cell-cell
adhesion protein N-cadherin in p140 cells compared to NeuT
cells. Consistent with these findings, p140 tumour cells also
displayed up-regulation of the mRNA levels for the epithelial
E-cadherin mRNA (Fig. 5b). The overall inhibitory effect
of p140Cap on EMT was further confirmed by western blot
analysis that showed, in p140 versus NeuT cells, reduced
expression levels of Snail and N-cadherin proteins combined
with increased levels of E-cadherin (Fig. 5c). Immunofluorescence
staining of E-cadherin on tumour sections (Fig. 5d), confirmed
the increased expression of E-cadherin at the cell membrane in
p140 tumours compared to NeuT tumours. Altogether, the
sum of these data argues that p140Cap may effectively decrease
pathways related to the progression of ERBB2 tumours,
contributing to increased patient survival.

p140Cap limits metastasis in NeuT expressing cells. On the
basis of the association between p140Cap status and reduced risk
of distant metastasis in ERBB2 breast cancer patients, and on the
down-regulation of the EMT transcription program, we addres-
sed the putative protective role of p140Cap against the metastatic
risk. In a spontaneous metastasis assay from primary tumours, we
did not detect lung metastasis from neither NeuT or p140
xenotransplants. To address this point, we moved to the NeuT-
TUBO cells, an additional transplantable primary NeuT cell
model derived from a tumour arisen in BALB/c-MMTV-NeuT
mice37. Upon infection with empty or p140Cap retroviruses, we
generated NeuT-TUBO (as mock cells), and p140-TUBO cells
(Supplementary Fig. 7A). We showed that p140Cap expression
significantly limited tumour cell growth upon transplantation
(Supplementary Fig. 7B). In the experimental metastasis assays
upon tail vein injection, NeuT-TUBO cells gave rise, after 25
days, to numerous large lung metastases substituting B80% of
lung tissue area. At the same time point, p140-TUBO cells were
grown to occupy only B54% of lung tissue area (Fig. 6a). Since
this assay is only a proxy to measure the metastatic potential of
cells, we moved to the spontaneous metastasis assay from primary
tumours, comparing metastasis formation from tumours of the
same size. As shown in Fig. 6b, tumours originated from p140-
TUBO cells gave rise to a significantly reduced number of lung
metastases over tumours grown from NeuT-TUBO cells.

Figure 4 | Primary p140 cancer cells restore mammary epithelial acina morphogenesis in 3D Matrigel-Collagen cultures. (a) Protein extracts from two

independent primary cancer cells for each genotype (NeuT-1, NeuT-2, p140-1 and p140-2) were run on 6% SDS–PAGE and stained with antibodies to NeuT,

p140Cap and actin for loading control. (b) 106 cells as in a were injected in the left and right fat pads of nude mice. Tumour diameters were measured every

week for 8 weeks. Two independent experiments were performed using five mice per group. Differences in tumour diameter were evaluated using two-way

analysis of variance (ANOVA) followed by Bonferroni multiple comparison post hoc tests (***Po0.001). (c) Paraffin-embedded sections were prepared at

the end of the experiments from tumours derived from mice as in b. Sections were analysed for Hematoxylin–Eosin (a,e), and for immunohistochemistry

with antibodies to NeuT (b,f), PCNA (c,g) and activated Caspase3 (d,h). Representative images are shown. Scale bar, 50mm. (d,e) Primary cancer cells for

each genotype (NeuT-1, NeuT-2, p140-1, and p140-2) were plated in Matrigel/Collagen I 1:1 and left to grow for 15 days. Day 15 acina are shown as phase

images in the left panels, or as Dapi nuclei staining (bright grey) in right panels. Arrows indicate the presence of invasive protrusions. Representative

images from three independent experiments are shown. Scale bar, 50mm. (f) The histogram represents the area of the acina quantified by the computer-

generated software Zeiss Axiovision 4.5 and shown in arbitrary units (a.u.). (g) The histogram represents the percentage of acina structures with an

internal lumen. The lumen has been manually quantified. In f and g, statistical significative differences were evaluated using unpaired t tests. Error bar:

s.e.m. (***Po0.001). (h) Primary cancer cells as in d were plated in Matrigel/Collagen I 1:1 and left to grow for 12 days. Protein extracts were run on 4–12%

SDS–PAGE and stained with antibodies to Cleaved Caspase 3, Cyclin D1 and Actin for loading control. (i) Primary cancer cells as in d were analysed as day

15 acinar structures by immunostaining for a cis-Golgi matrix protein, GM130 (green), and a basal marker protein, beta1 integrin (red). Nuclei were co

stained with DAPI (blue). Representative images are shown. Scale bar, 50mm.
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Moreover, the immunohistochemical staining with anti NeuT/
ERBB2 and anti p140Cap antibodies of lungs with p140-TUBO
metastases showed that while all the metastases were positive for
the NeuT protein, p140Cap strong expression was conserved only
in small metastases (Fig. 6c). Interestingly, larger metastases
expressed only low levels of p140Cap and, accordingly,
showed a less nodular histological structure similar to those
developed from NeuT-TUBO tumours (Fig. 6d, compare upper
and lower panels). Overall, these data indicate that p140Cap
counteracts metastasis formation.

p140Cap attenuates ERBB2-driven Rac-dependent circuitries.
The sum of results from (i) the analysis of the clinical cohort
(reduction of metastatic risk in ERBB2 tumours), (ii) the
experiments performed in vivo (reduced tumour masses, reduced
‘metastatic’ ability and decreased expression of EMT markers in
the animal model) and (iii) in vitro (reduced protrusive ability of
acini and restoration of polarity in the 3D-morphogenetic assays),
points to a counteraction of p140Cap on ERBB2-dependent
tumour progression. All these data show that p140Cap dampens
tumour features, affecting tumour growth, sensitivity to apoptosis
and metastatic properties of ERBB2-positive cancer cells. In
search of a molecular mechanism, we decided to exploit SKBR3
breast cancer cells as a model of ERBB2 gene amplification rele-
vant to human breast cancer. In these cells, we both over-
expressed and silenced p140Cap, without altering ERBB2

expression (Supplementary Fig. 8A,B), and tested the effects of
these perturbations first on migratory abilities. In a transwell
assay, migration was significantly decreased in p140Cap-over-
expressing cells (oe p140; Fig. 7a) and increased in p140Cap-
silenced cells (si p140; Fig. 7c). Increased migration of p140Cap-
silenced cells was also observed in MDA-MB-453 breast cancer
cells, another model of ERBB2 gene amplification relevant to
human breast cancer (Fig. 7e; Supplementary Fig. 8C). Con-
sistently, the migration of murine p140 cells lines, derived from
transgenic mice, was profoundly inhibited, when compared to
NeuT lines (Fig. 7g).

Furthermore, we examined whether p140Cap can control
potential downstream signalling mechanisms. We have already
shown that p140Cap can control Src activation16,19. Interestingly,
both in NeuT and in SKBR3 cells, p140Cap expression did not
affect the activation of the Src kinase and the phosphorylation of
its effectors, p130Cas and paxillin, compared to MDA-MB-231
(ref. 19; Supplementary Fig. 9), suggesting that in ERBB2
transformed cells, p140Cap acts on additional pathways for the
control of cell migration.

Several Rho GTPases are frequently altered in tumours
and metastases and this often correlates with poor prognosis38,39.
In particular, Rac is an essential effector pathway for ERBB2-
mediated breast cancer progression to metastasis40–43. In SKBR3
cells, inhibition of ERBB2 activation by Lapatinib treatment
significantly impaired both ERBB2 phosphorylation on Tyr 1,248
and Rac activation (Supplementary Fig. 10), confirming that
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Rac is a downstream effector of ERBB2 also in our experimental
system44. In the same cells, consistent with defective migration,
Rac activity was significantly decreased upon p140Cap over-
expression (Fig. 7b) or enhanced upon p140Cap silencing
(Fig. 7d,f). These data mirrored those obtained in NeuT
tumour-derived cells (Fig. 7h; Supplementary Fig. 11A),
indicating that p140Cap affects Rac activity in both human
and mouse ERBB2 transformed cells.

Treatment of NeuT cells with the Rac inhibitor NSC23766
(ref. 45) phenocopied the effects of p140Cap expression on the
3D morphogenetic program of NeuT cells, yielding acinar
structures that were significantly smaller in size compared to
those observed in the NeuT cells, and that frequently displayed
a polarized phenotype (Fig. 7i). Finally, expression of
a constitutively active mutant of Rac (RacV12) into p140 cells
(Supplementary Fig. 12), caused a significant increase in the
size of acini, accompanied by an almost complete loss in polarity
and an enhancement in invasive protrusions (Fig. 7j). This latter
set of data shows that Rac is epistatic to p140Cap, a scenario
compatible with the possibility that p140Cap is an upstream
regulator of Rac.

p140Cap limits Rac GEF Tiam1 activation in cancer cells. To
probe into the hypothesis that p140Cap may act upstream of Rac,
we focused on the Rac specific activator, the Guanine Exchange
Factor (GEF) Tiam1, also in light of the fact that the Rac inhibitor
NSC23766, which phenocopies p140Cap expression in NeuT cells
(Fig. 7i), is a selective inhibitor of the interaction between Tiam1
and Rac45. In both p140 and NeuT expressing cells (Fig. 8a;
Supplementary Fig. 11B) and in human p140Cap overexpressing
SKBR3 cells (Fig. 8b), we found that p140Cap and Tiam1 co-
immunoprecipitated, arguing for their physical interaction
in vivo. We then investigated whether p140Cap could affect
Tiam1 activity in both cell systems. This was established by
in vitro pull-down experiments using as bait GST-RacG15A, a
nucleotide-free Rac mutant that selectively interacts with active
Tiam1 (ref. 46). Indeed, in p140 cells, we observed a marked
decrease in the recovery of activated Tiam1 by GST-RacG15A, in
comparison to NeuT expressing cells (Fig. 8c; Supplementary
Fig. 11C). These data were mirrored by those obtained in SKBR3
cells, in which Tiam1 activity was significantly decreased upon
p140Cap over-expression (Fig. 8d) or enhanced upon p140Cap
silencing (Fig. 8e). Increased Tiam1 activity was also observed in
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p140Cap-silenced MDA-MB-453 cells (Fig. 8f). Overall, these
data indicate that Tiam1 activity is dependent on p140Cap in
these cells.

Taken together, these data show that p140Cap interferes with
the Rac circuitries that control ERBB2 tumour progression, by
binding to Tiam1, leading to both Tiam1 and Rac inactivation.

Discussion
We herein show for the first time that the expression of
the p140Cap adaptor protein is clinically relevant to the
naturally occurring ERBB2-related breast cancer disease. Indeed,
ERBB2 patients who display a positive p140Cap status have
significantly higher survival rate, with lower probability of
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developing a distant recurrence. The clinical evidence that
p140Cap correlates with a favourable outcome in ERBB2 breast
cancer patients suggest that p140Cap is able to curb the intrinsic
biological aggressiveness of ERBB2 tumour (Fig. 8g). Indeed,
p140Cap confers to ERBB2 transformed cells limited in vivo
tumour growth ability and spontaneous lung metastasis
formation. This less aggressive phenotype is likely linked to
reduced cell proliferation, assessed by a decreased staining of
the proliferative marker PCNA in tumours, increased sensitivity
to apoptosis, and strong inhibition in the EMT program observed
in p140Cap expressing tumour cells.

To characterize the role of p140Cap in the NeuT preclinical
model, we generated new Tg mice over-expressing p140Cap
into the mammary gland under the MMTV promoter.
MMTV-p140Cap Tg mice do not show any defects in the
development or the differentiation of the mammary gland that
could impair tumour growth (Supplementary Fig. 4). In the
double Tg mice, expressing both NeuT and p140Cap, p140Cap
expression reduces tumour burden, indicating that p140Cap is
causative in limiting ERBB2 tumorigenic features in vivo. Indeed,
p140Cap expression delays spontaneous tumour appearance
and show decreased tumour masses, consistent with a decreased
staining of the proliferative marker PCNA, with respect to
NeuT mice. In addition, p140Cap expressing tumours show
a different histology, reminiscent of that observed in the less
aggressive human breast carcinoma47,48. When explanted,
p140Cap Tg tumours do not display significant differences in
apoptotic markers versus NeuT tumours. However, it is highly
conceivable that the difference in total tumour burden reflects not
only impaired tumour cell growth, but also the occurrence of
local apoptotic events with remodelling of tumour structures,
during tumour development. The in vivo analysis and the
3D Matrigel-Collagen cultures from primary cancer cells, suggest
that p140Cap may limit the aggressiveness of ERBB2 tumours,
both increasing tumour differentiation, restoring ‘normal’
mammary epithelial tissue morphogenesis49,50 and differentially
affecting the local tumour microenvironment51. In particular,
upon apoptic stimuli and in 3D Matrigel-Collagen cultures, we
observed that p140Cap cells have increased sensitivity to
apoptosis. In the 3D conditions, p140Cap expression confers
the ability to activate the apoptotic program and to give rise to
internal lumen, typical of normal mammary epithelial cells
during tissue morphogenesis35.

The effect on EMT program is witnessed by the marked
down-regulation of major EMT transcription factors, such as
Snail, Slug and Zeb1 (ref. 36), accompanied by a reversion of the
so-called ‘cadherin switch’ (that is, increase of the mesenchymal
marker N-cadherin and a concomitant decrease of the epithelial

marker E-cadherin), which is a canonical hallmark of EMT in
cancer15,36,52. Indeed, p140 tumours display a homogeneous
increased level of membrane E-cadherin, compared to NeuT
tumours. Overall, the results point to the ability of p140Cap to
counteract the EMT invasive program of ERBB2 tumour cells.

Notably, p140Cap expression significantly limits the ability of
ERBB2 transformed cells to give rise to metastasis, both in
experimental and in spontaneous metastasis assays. Indeed, when
comparing tumours of the same size, p140Cap tumours give rise
to a significantly lower number of spontaneous lung metastasis
compared to NeuT tumours, suggesting that p140Cap affects
metastatic spread. However, when analysing the metastatic
lesions from p140Cap tumours, we observed a strong p140Cap
expression only in smaller lung metastasis, rather than in
larger ones, suggesting that p140Cap has also a strong effect on
local metastatic growth. Therefore, from these data we can
conclude that p140Cap significantly impairs metastasis acting
both on tumour cell spreading and on metastatic growth, due to
its ability to down-regulate tumour cell growth and to enhance
apoptotic events.

Rac GTPase is a well-known mediator of human ERBB2 breast
cancer progression40–43, affecting signalling pathways impinging
on tumour cell proliferation, apoptosis and acinar structure53, as
well as metastasis dissemination54. Here we show that p140Cap
strongly impairs Rac activation in both human and mouse
ERBB2 transformed cells. Indeed, in 3D Matrigel-Collagen
morphogenetic assay, the Rac inhibitor NSC23766 (ref. 45)
consistently decreased the area of the NeuT organotypic
structures and restored cell polarity disrupted by the oncogene,
thus recapitulating the effect of p140Cap expression. Of note,
expression of a constitutively active form of Rac in p140Cap cells
was able to rescue the aggressive ERBB2 phenotype, increasing
acinar area and decreasing the percentage of polarized structures.
These results further point to the mechanistic relevance of
p140Cap/Rac counteraction as an essential step for limiting
ERBB2 tumour progression. In the presence of p140Cap, only
a constitutive alteration of Rac activation can reinstate the
aggressive ERBB2 phenotype, suggesting that p140Cap may
limit ERBB2 oncogenic features until at least significant
Rac disregulation occurs.

Rac specific GEFs, like Dock, Tiam1 and PRex1, have also
been shown to play a relevant role in breast cancers42,54–56.
In particular, Tiam1 activation has been recently linked to
the ERBB2 oncogene57, where Tiam1-mediated Rac activation
leads to uncontrolled actin dynamics that may compromise
E-cadherin junctions, promoting metastasis57–59. Here working
out the mechanisms underlying the observed decrease in Rac
activation when p140Cap is expressed, we found a significant

Figure 7 | p140Cap negatively controls ERBB2-driven migratory ability and Rac GTPase activity. (a,c,e,g) Representative images of Transwell migration

assays. 105 cells were left to migrate for 24 h in the presence or the absence of 15% FBS, fixed, stained and counted. Histograms represent on the y axes the

fold increase (ratio between the number of cells migrated in the presence and in the absence of FBS), from three independent experiments, performed in

triplicate. Error bar: s.e.m. (a) p140Cap over-expressing (oe p140) or mock SKBR3 (mock) cells. (c) SKBR3 cells transiently transfected with ON-TARGET

plus human SRCIN1 small-interfering RNA (si p140) or ON-TARGET plus non-targeting siRNA (Dharmacon RNAi; si ctrl). This patented approach strongly

prevents off-target effects. (e) MDA-MB-453 cells transiently transfected with ON-TARGETplus small-interfering RNA as in c. (g) Primary NeuTand p140

cancer cells. (b,d,f,h) Active Rac pull-down from cells like in (a,c,e,g). Eluted material (upper panels) and cell extracts (lower panels) run on 12% SDS–PAGE

revealed with anti Rac antibodies. Histograms show the ratio between active and total Rac protein levels in arbitrary units (a.u.) from five independent

experiments. Statistical significative differences were evaluated using umpaired t tests (*Po0.05; **Po0.01). Error bar: s.e.m. (i) Primary NeuTcells were

grown in Matrigel/CollagenI 1:1 for 1 week, before seven days treatment with 80mM Rac1 inhibitor NSC23766 and acini immunostained for GM130 (green),

beta1 integrin (red) and DAPI for nuclei. Scale bar, 50mm. Histograms represent quantification of acina area (left) and polarity (right) from three

independent experiments. Differences in acina area were evaluated using a Mann–Whitney non parametric t-test (***Po0.001). Error bar: s.e.m.

(j) p140 primary cancer cells were infected with retroviral particles that express Rac1-V12 or empty vector (retro Ctrl). Cells were plated in

Matrigel/Collagen I 1:1 and day 15 acinar structures were immunostained as in i. Scale bar, 50mm. Quantification of acini area in a.u., percentage of

polarized acina and percentage of acina with protrusions are reported. The values from two independent experiments are reported. Differences were

evaluated using a Mann–Whitney non parametric t-test (***Po0.0001; *Po0.05). Error bar: s.e.m.
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decrease in the activation of Tiam1 in p140Cap tumour cells.
The observation that p140Cap associates in a molecular complex
with Tiam1, suggests that this interaction reduces the activity
of Tiam1 as a Rac GEF and that this could represent one
major upstream event in negatively regulating Rac downstream
pathways.

Data on the regulation of expression of p140Cap gene are
currently limited. We show here that the p140Cap coding gene,
SRCIN1, at chr17; 17q12-q2, is co-amplified in the ERBB2
amplicon in almost 60% of ERBB2 amplified patients. SRCIN1
amplification is caused by its proximity to the ERBB2 gene,
and correlates with p140Cap mRNA levels and with patient
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outcome. Interestingly, the aCGH data draw attention to
a percentage of patients in which the SRCIN1 gene is deleted
(around 4–5% of the ERBB2 patients). These data highlight
that in ERBB2 tumours, amplification of the ERBB2 locus may
lead to SRCIN1 amplification or loss, thus contributing to the
biological heterogeneity of this breast cancer subgroup7–11.
However, besides amplification, additional mechanisms can
account for alteration of p140Cap protein expression. Presently,
data on the epigenetic regulation of p140Cap expression are not
available. miR-150, miR-211, miR374a and miR346 have very
recently been described as direct regulators of the p140Cap
protein in lung, gastric and cutaneous squamous carcinoma
cells20–23, providing the first clues which link miRNAs to
epithelial cancer cell features via the inhibition of p140Cap
expression. Data on the ability of SRCIN1 to inhibit the
osteosarcoma tumour cells proliferation have also been very
recently reported24.

In conclusion, our data are consistent with p140Cap exerting
a suppressive function on ERBB2 oncogenic features and
with it having a regulatory impact on molecular pathways that
ERBB2 exploits for tumour progression (Fig. 8g). Moreover,
p140Cap expression is advantageous for patient survival, strongly
suggesting that p140Cap is still causal in limiting ERBB2 tumour
aggressiveness within the complexity of the ERBB2 amplicon.
Indeed, our data provide the first evidence, to our knowledge,
that a gene in the ERBB2 amplicon may counteract ERBB2
oncogenic properties in breast cancer. Altogether, these data
highlight the potential clinical impact of p140Cap expression
and of p140Cap-regulated pathways in human ERBB2 breast
tumours as new therapeutic targets.

Methods
Antibodies and cell lines. Mouse monoclonal antibodies to p140Cap were pro-
duced at the Antibody production facility of the Dept of Molecular
Biotechnology and Health Sciences, University of Torino. A recombinant p140Cap
protein, obtained in Escherichia coli by fusing the sequence corresponding to
amino acids 800–1,000 of mouse SRCIN1 gene to the Glutathione S-transferase
(GST) was incubated with 4% paraformaldehyde in 1� PBS—pH 7.4 for 30min,
at a concentration of 750mgml� 1, dialysed, and injected into p140Cap KO mice60

for enhancing immunogenic activity. The resulting purified monoclonal antibodies
were characterized by western blotting and IHC as shown in Supplementary Fig. 1.
For western blot analysis, the following antibodies were used: anti Snail
(#3895, 1:1,000), anti Caspase-3 (9,665, 1: 1,000), anti phospho Paxillin
(Tyr118; #2541, 1:1,000), anti Paxillin (#2542, 1:1,000), anti phospho p130Cas
(Tyr410; #4011. 1:1,000) and anti phospho-Src (Tyr416; #2101, 1:1,000; Cell
Signaling, Beverly, MA), anti N-cadherin (ab10203, 1:1,000) and anti GFP
(ab13970, 1:500; Abcam, Cambridge, UK), anti c-ErbB2/c-Neu (Ab-3, OPL15,
1:1,000; Calbiochem, Merck KGaA, Darmstadt, Germany), anti Rac1 (#05–389
clone 23A8, 1:2,000), anti GAPDH (MAB374, 1:8,000) and anti p1248Y ERBB2
(#06–229, 1:1,000; Millipore, Billerica, MA, USA), anti beta1 Integrin CD29-PE
(12-0299-41, 1:200; eBioscience, San Diego, CA, USA), anti GM130 (6,10,823,
1:300), anti p130Cas (6,10,272, 1:2,500) and E-Cadherin (6,10,182, 1:2,500;
BD Transduction Laboratories, Franklin Lakes, NY), anti Tiam1 (C-16, 1:1,000),
anti Actin (I-19, 1:1,000), anti Src (B-12, 1:1,000), and anti Cyclin D1
(H-295, 1:1,000; Santa Cruz Biotechnologies, Palo Alto, CA, USA), and anti

Tubulin (T5168, 1:8,000; Sigma-Aldrich Co, Italy). Secondary antibodies
conjugated with peroxidase were purchased from GE Healthcare. Alexa Fluor
Dye secondary antibodies were obtained from Invitrogen (Carlsbad, CA, USA). For
immunohistochemistry, slides were stained with the following primary antibodies:
rabbit polyclonal anti-HER2 (A0485, 1:700, Dako, Carpinteria, CA, USA), mouse
monoclonal anti-PCNA (M0879, 1:800, Dako, Carpinteria, CA, USA), rabbit
polyclonal anti-Caspase3 (af835, 1:350, R&D System, Minneapolis,MN, USA), rat
monoclonal anti-CD31 (5,50,274, 1:40, BD Pharmingen, San Jose, CA, USA)
mixed with rat monoclonal anti-CD105 (5,50,546, 1:40, BD Pharmingen, San Jose,
CA, USA), rabbit polyclonal anti-Keratin 5 (PRB-160 P, 1:2,000, Covance, USA),
guinea pig polyclonal anti-Keratins 8/18 (GP11, 1:750, PROGEN Biotechnik
GmbH, Heidelberg, Germany) and mouse monoclonal antibody anti-p140Cap
(1:500, see above) followed by the appropriate secondary antibodies.
Immunoreactive antigens were detected using streptavidin peroxidase
(Thermo Scientific UK) and the DAB Chromogen System (Dako, Carpinteria,
CA, USA) or alkaline phosphatase conjugated streptavidin (Thermo Scientific UK)
and Vulcan fast red chromogen (Biocare Medical, Concord, CA, USA). For
immunofluorescence, slides were stained with the mouse anti-human E-cadherin
antibody (M3612, 1:50, Dako, Carpinteria, CA, USA) followed by secondary
antibody conjugated with Alexa 488 (A11029, 1:200, Invitrogen, Life Technologies,
Monza, Italy). Lapatinib was bought from Selleckchem (Munich, Germany).
Rac inhibitor (NSC23766) was bought from Calbiochem (Merck KGaA,
Darmstadt, Germany. Glutathione-Sepharose, Protein G-Sepharose, PVDF, and
films were obtained from GE Healthcare (Buckinghamshire, UK). Culture media
were from Invitrogen (Carlsbad, CA, USA). Fetal Calf serum (FCS) was from
EuroClone (Pero, Milano, Italy). SKBR3, MDA-MB-453 and MDA-MB-231 cells
were obtained from ATCC (LGC Standards S.r.l.—Italy Office, Italy). SKBR3 cells
were cultured in McCoy’s 5a medium, supplemented with 15% FCS. MDA-MB-453
cells were cultured in DMEM 10% FCS. MDA-MB-231 cells were cultured in
DMEM 10% FCS. NeuT-TUBO cells were derived from a spontaneous breast
tumour arisen in a female BALB/c-MMTV-NeuT mice37 and cultured in
DMEM 20% FCS.

Human breast cancer immunohistochemical analysis. IHC analysis of p140Cap
expression was performed on formalin-fixed paraffin-embedded tissue microarrays,
prepared with tumour breast specimens, using a mouse monoclonal antibody
anti-p140Cap (Supplementary Fig. 1), which was used at a dilution of 1:1,000
following an antigen retrieval procedure in EDTA pH 8.0. Immunocomplexes were
visualized by the EnVisionþ HRP Mouse (DABþ ) kit, DAKO (K4007), and
acquired with the Aperio ScanScope system (Leica Biosystems). Informed consent
was obtained from all subjects. For the purpose of correlation with clinical and
pathological parameters, tumours were classified based on the intensity of p140Cap
staining as p140Cap-Low (IHC score o1) and p140Cap-High (IHC score Z1).

aCGH and gene expression analyses. Normalized aCGH profiles from
200 ErbB2 breast cancers together with matching gene expression profiles from
50 cases were obtained from the data described in ref. 8. Correlation analyses
between gene CN, determined by aCGH, and mRNA expression for SCRIN1 were
performed using the Pearson correlation as described in refs 8,61.

FISH analysis of SRCIN1 gene status. A specific SRCIN1 locus probe was
prepared from the BAC RP11-606B22 (17q12) clone, obtained from BAC PAC
Resources Center (Children’s Hospital, Oakland Research Institute, USA). The
BAC was directly labelled with red SpectrumAqua-dUTP (Abbott Molecular,
Europe), using the BioPrime DNA Labeling System (Invitrogen Corporation, USA)
according to manufacturer’s instructions. An alpha satellite probe specific for
chromosome 17 (CEP17; Abbott Molecular) directly labelled with green
fluorocrome, was used as a control probe. To further analyse the position and
strength of the signal, the presence/absence of background, cross-hybridization
and, finally, the hybridization efficiency, the BAC clone was tested on metaphase
and interphase healthy donor cells obtained using conventional cytogenetic

Figure 8 | p140Cap expression negatively regulates Tiam1 activity. (a,b) Extracts from NeuTand p140 expressing cancer cells, and p140 overexpressing

(o.e.), or mock (mock) SKBR3 cells were immunoprecipitated with antibodies to p140Cap (upper panels) or Tiam1 (lower panels). Cell extracts and

immunoprecipates were run on 6% SDS–PAGE and blotted with antibodies to p140Cap and Tiam1. Representative images from five independent

experiments are shown. (c–f) The level of active Tiam1 was determined using the active Rac-GEF assay kit in NeuT, p140 primary cancer cells, p140 o.e. or

mock (mock) SKBR3 cells, and p140 silenced SKBR3 (si p140) and MDA-MB-453 (si p140) cells. Equal amount of extracts were incubated for 1 h at 4 �C
with Rac G15A agarose beads. Active Tiam1 and total Tiam1 levels were determined using an anti-Tiam1 antibody for western blot detection, from eluted

material and input fractions, respectively. Antibodies to tubulin and GAPDH were used as loading controls. The histogram represents the quantification

of active Tiam1 in three independent experiments, normalizing active Tiam1 levels to the corresponding total Tiam1 levels in arbitrary units (A.U.).

In c–f, statistical significative differences were evaluated using unpaired t-tests (*Po0.05; **Po0.01). Error bar: s.e.m. (g) p140Cap exhibits a suppressive

function on ERBB2 tumour features. In ERBB2 cancer cells, when p140Cap is expressed, proliferation, EMT, migration and metastasis formation are impaired

and cancer cells enhance apoptosis and restore the proper mammary epithelial tissue morphogenesis disrupted by the ERBB2 oncogene. Moreover, the

Tiam1/Rac signalling pathway is strongly decreased, through the ability of p140Cap to associating with Tiam1 and to downregulating its activity. On the

contrary, when p140Cap is undetectable, Tiam1/Rac signalling pathway is active, and cancer cells exhibit an aggressive phenotype. The molecular

mechanisms here reported link p140Cap expression with decreased metastatic risk in ERBB2 patients.
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methods. The PathVysion ERBB2 DNA probe kit was used (Abbott Molecular,
Europe) for the ERBB2 locus. FISH with the two probes mix, SRCIN1/CEP17
and ERBB2/CEP17, was routinely performed on formalin-fixed paraffin-embedded
tissue. Red (SRCIN1) and green (CEP7) spots on significant selected areas
were automatically acquired, using Metafer, by a MetaSystem scanning station
(Carl Zeiss MetaSystems Gbmh), equipped with an AxioImager epifluorescence
microscope. The first automatic lecture of the slides, made using the PathVysionV2
software, was performed on the acquired images with Isis software (Zeiss). The
ASCO/CAP 2013 Guideline Recommendations for ERBB2 Testing in the Breast
were used for the interpretation of both FISH probes: positive for amplification
with ERBB2—SRCIN1/CEP17 ratio 42.0 or with average ERBB2—SRCIN1
CN 46; negative for amplification with ERBB2—SRCIN1/CEP17 ratioo2.0 or
ERBB2—SRCIN1 copyo4. Gene loss was considered to occur when an average
ERBB2—SRCIN1 CNo1.8 was found and gene gain when CN was 43o6. Finally,
when heterogeneity was present (such as the presence in the same sample of
amplified and not amplified cells), we considered samples where the amplified cell
population consisted of 410% tumour cells as being amplified.

Generation of the MMTV-p140Cap transgenic mice. Full-length mouse
p140Cap cDNA was inserted into pspT2 MMTV-LTR plasmid and microinjected
at 3.4 ng/microliter in the pronucleus of fertilized eggs from FVB/NJ mice
(Charles River, Calco, Italy) according to standard protocols62. Transgene
integration was tested via PCR analysis of genomic DNA, with the primers:
50-TGGCCCTGCGAGGTCAGCAGGACA-30 , 50-ATCCTGCTGAAGC-CCAG
GGGCAGC-30 . Heterozigous mice carrying the mutated rat HER-2/neu
oncogene driven by the MMTV-LTR promoter (MMTV-NeuT mice), either on
FVB/NJ (FVB-MMTV-NeuT) or BALB/c (BALB/c-MMTV-NeuT) background,
are well-characterized transgenic models of spontaneous NeuT mammary
adenocarcinoma27–29,63. p140Cap/Neu-T double transgenic mice were generated
by crossing MMTV-p140Cap transgenic female (FVB background) with either
FVB-MMTV-NeuT or BALB/c-MMTV-NeuT. The progeny was screened for both
the transgene by PCR. The mice that were positive for both transgenes were
included in further analyses, while animals positive only for the NeuT transgene
were used as controls (n¼ 12 for each group). The size of the tumours was
evaluated weekly using calipers in blind experiments. The project had been
approved by the Internal Bioethical Committee of the Department of Molecular
Biotechnology and Health Sciences of the University of Torino. The handling of
mice in our animal house meets the requirements of Italian law (authorization
D.M. no. 279/95B 27/11/1995 and Ministry of Health 49/2014-PR to PD) and
follows the dispositions of ‘D.L. no. 116, 27/1/1992 in relation to animal use and
protection in scientific research’.

Immunohistochemistry and immunofluorescence analyses of NeuT tumours.
Tumour samples were fixed in 10% neutral buffered formalin and embedded
into paraffin or fixed in 4% PFA and frozen in a cryo-embedding medium
(OCT, BioOptica); 5 mm slides were cut and stained with Hematoxylin (BioOptica)
and Eosin (BioOptica) for histological examination. The percentage of PCNA
or Caspase3-positive cells was evaluated on digital images of 3 tumours per group
(4–6� 200 microscopic fields per sample); clear brown nuclei were regarded as
positive cells and the percentage of labelling index (number of positive cells/total
cells � 100) was calculated for each field, by two pathologists, independently,
and in a blind fashion. The vascularization was analysed evaluating CD31-105þ
endothelial cells on digital images of 3 tumours per group (6� 200 microscopic
fields per sample) with Adobe Photoshop by selecting red stained vessels with the
Magic Wand Tool and reporting the number of pixels indicated in the histogram
window. For both experimental and spontaneous lung metastasis assay, lungs were
fixed in 10% neutral buffered formalin and paraffin-embedded. To optimize the
detection of microscopic metastases and ensure systematic uniform and random
sampling, lungs were cut transversally, to the trachea, into 2mm thick parallel
slabs with a random position of the first cut in first 2mm of the lung, resulting in
5–8 slabs for lung. The slabs were then embedded cut surface down and sections
were stained with Hematoxylin and Eosin (BioOptica, Milan, Italy). The metastatic
lung tissue was evaluated with Adobe Photoshop by selecting metastases with
the lasso tool and reporting the number of pixels indicated in the histogram
window as percentage of the total lung area. For immunofluorescence, slides
were stained with the mouse anti-human E-cadherin antibody followed by
secondary antibody conjugated with Alexa 488. Image acquisition was performed
using Zeiss LSM 510 META confocal microscope. The E-cadherin mean
fluorescence intensity was evaluated on the digital images of three tumours per
group (4� 200 microscopic fields per sample) with ImageJ, using the Mean Grey
Value: for RGB images, the mean was calculated by converting each pixel to
grayscale using the formula grey¼ 0.30redþ 0.59greenþ 0.11blue if ‘Unweighted
RGB to Grayscale Conversion’ was checked in Edit4Options4Conversions.
Whole-mount preparation were performed as described in ref. 60. The fourth
abdominal mammary glands were analysed from at least three mice for age group.
Only whole mounts that contained the entire ductal network including the primary
duct and were free of mounting artifacts such as tissue folds were used for
subsequent image analysis. A digital photomicrograph was taken of each
whole-mount using a Leica MZ6 stereo microscope fitted with a Nikon
Coolpix colour digital microscope camera. Within each age group, a consistent

magnification was established that allowed the entire epithelial complex to be
captured in a single image. For each age group, the photomicrographic settings
remained constant. Four different measurements were obtained from each
whole-mount image using Photoshop software. TEB count was performed
only on 6 weeks of age glands. Ductal length (pixels) was measured by drawing and
measuring a straight line caliper from the most distal point of the ductal network to
the nipple. Ductal network area tumours from NeuT mice and xenografts were
routinely fixed in 10% formaldehyde buffer (pH 7.4) for 24 h, paraffin-embedded
and processed for immunohistochemical analysis with standard procedures64.

Isolation of primary cancer epithelial cells from mammary gland tumours.
Cells from tumours were isolated as described in refs 29,62. Briefly, tumours
were surgically excised from 17-week-old BALB/c Neu-T and p140-NeuT mice
and finely chopped. Tumour cell aggregates were then incubated in trypsin
(0.25% in EDTA) for 2 h at 37 �C, washed in DMEM, centrifuged at low speed and
then plated in 20% FBS/DMEM. After the sprouting of cells from tissue fragments,
the cultures were periodically and briefly washed (1–3min) with trypsin-EDTA to
detach contaminating fibroblasts without damage to epithelial areas. Two months
after plating, established epithelial cell populations were selected by several
subculturing steps.

Three-dimensional cultures of primary cancer cells. For 3D-Matrigel cultures,
eight-well Chamber slides (Corning) and Growth-factor-reduced Matrigel
(BD Transduction Laboratories) were used. Three-dimensional culture assays
were performed in agreement with protocols reported in: http://muthuswamy-
lab.cshl.edu/protocols. Briefly, NeuT, p140-NeuT primary cancer cells or NeuT and
p140-NeuT stable infected cells were embedded as single cells in Matrigel/Collagen
I 1:1 and left to grow for 15 days. When indicated, the Rac inhibitor (NSC23766)
was added to culture medium for the last 7 days. After 15 days, acini were subjected
to immunostaining as described in http://muthuswamylab.cshl.edu/protocols/IF
protocol.pdf. Images were taken using a Zeiss microscopy (Oberkochen, Germany)
equipped with an Apotome module at � 40 magnitude. For immunoblotting
analysis, NeuT or p140 cells were released from Matrigel-Collagen gels using
BD cell recovery solution (BD Biosciences) and protein were extracted with
RIPA buffer (50mM Tris (pH7.5), 150mM NaCl, 1% Triton X100, 1% Na
Deoxycolate, 0.1% SDS and protease inhibitors). Cell lysates were centrifuged at
13,000 g for 15min and the supernatants were collected and assayed for protein
concentration using the Bio-Rad protein assay method (Biorad, Hercules,
CA, USA). Proteins were run on SDS–PAGE under reducing conditions.

Retrovirus production and cell infection. To over-express p140Cap into
SKBR3, NeuT-TUBO and MDA-MB-231 cells, p140Cap cDNA was cloned into
pBabe-puro. The plasmid that encodes GFP-Rac1V12 was purchased from
Addgene (Cambridge, MA, USA). The retroviruses particles were produced by
the calcium phosphate transfection of Platinum Retroviral Packaging Cell Lines
(Cell BioLabs), in 10 cm dishes. 48 h after transfection, supernatant that contained
the retrovirus particles was collected, filtered through a 45 mm syringe filter and
added directly to subconfluent cells. After 48 h, cells were washed and cultured with
a selection medium containing puromycin (Sigma) at a final concentration of
1 mgml� 1. The efficiency of infection was controlled by western blot analysis.
For SKBR3, NeuT-TUBO and MDA-MB-231 cells, individual clones were isolated
20 days after the start of the selection. Four individual positive clones were pooled
together to rule out clonal artifacts.

In vivo tumour growth and experimental and spontaneous metastasis assay in
NeuTcells. Five-week-old female CD-1 Nude Mouse were purchased from Charles
River Laboratories (Calco, Italy) and treated in accordance with the European
Community guidelines. 1� 106 NeuT or p140 cells were mixed with 150ml DMEM
and then injected subcutaneously into the left and right inguinal region of female
nude mice. The size of the tumours was evaluated weekly using calipers in
blind experiments. For experimental lung metastasis assay, NeuT-TUBO and
p140-TUBO cells were trypsinized, resuspended in PBS, and then 5� 104 cells
(in 0.1ml) were injected via the lateral tail vein of 7-week-old female NSG mice
(NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) from Charles River Laboratories
(Calco, Italy; n¼ 5 for group for each experiment). Mice were killed 25 days after
injection and lungs were fixed in 10% neutral buffered formalin (BioOptica) and
paraffin-embedded. To optimize the detection of microscopic metastases and
ensure systematic uniform and random sampling, lungs were cut transversally, to
the trachea, into 2mm thick parallel slabs with a random position of the first cut in
first 2mm of the lung, resulting in 5–8 slabs for lung. The slabs were then
embedded cut surface down and sections were stained with Hematoxylin and
Eosin (BioOptica).The metastatic lung tissue was evaluated with Adobe Photoshop
by selecting metastases with the lasso tool and reporting the number of pixels
indicated in the histogram window as percentage of the total lung area. For
spontaneous lung metastasis assay, NeuT-TUBO and p140-TUBO cells were
trypsinized, resuspended in PBS, and then 105 cells (in 0.1ml) were injected
into the right fat pad of 7-week-old female NSG mice (n¼ 5 for group for
each experiment). We monitored mammary tumour growth by regular measure-
ments using a digital caliper. Tumours were surgically removed when reached

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14797

14 NATURE COMMUNICATIONS | 8:14797 | DOI: 10.1038/ncomms14797 | www.nature.com/naturecommunications

http://muthuswamylab.cshl.edu/protocols
http://muthuswamylab.cshl.edu/protocols
http://muthuswamylab.cshl.edu/protocols/IF
http://www.nature.com/naturecommunications


a 10mm diameter. After 5 weeks, mice were killed and lungs were explanted and
processed as previously described.

Analysis of EMT markers by qRT–PCR. Total RNA was extracted using the
RNeasy Mini kit (Qiagen, CA) with DNase I treatment and quality controlled by
electrophoresis on 0.8% agarose gel. RT–PCR was performed on 0.5–1 mg total
RNA with the SuperScript ViloTM cDNA Synthesis kit from Invitrogen. Gene
expression was assessed by quantitative real-time PCR with the GeneAmp
7,500 system and Taqman chemistry (Applied Biosystems, CA). Each sample was
tested in triplicate. The D-Ct method was used to calculate relative fold-changes
normalized against three different housekeeping genes. Taqman Gene Expression
Assay IDs (Applied Biosystems, CA) were: Mm00441533-g1 (Snail, snail1,
NM_011427.2), Mm00441531-m1 (Slug, snail2, NM_011415.2), Mm00486906-m1
(E-cadh, cdh1, NM_009864.2), Mm00483213-m1 (N-cadh, cdh2, NM_007664.4),
Mm00495564-m1 (zeb1, NM_011546.2), Mm99999915-g1 (GAPDH),
Mm01197698-m1 (Gusb, NM_010368.1), Mm00607939-s1 (Actb, NM_007393.3).

Immunoprecipitation and immunoblotting. Cells were extracted using a RIPA
buffer (see above). Cell lysates were centrifuged at 13,000 g for 15min and the
supernatants were collected and assayed for protein concentration using the
Bio-Rad protein assay method (Biorad, Hercules, CA, USA). Proteins were run on
SDS–PAGE under reducing conditions. For co-immunoprecipitation experiments,
1mg of proteins was immunoprecipitated with antibodies to p140Cap for 2 h at
4 �C in the presence of 50ml protein G-Sepharose beads. Following SDS–PAGE,
proteins were transferred to PVDF membranes, incubated with specific antibodies
and then detected with peroxidase-conjugated secondary antibodies and the
chemiluminescent ECL reagent. When appropriate, the PVDF membranes were
stripped according to manufacturers’ recommendations and re-probed.

Transient silencing of p140Cap in SKBR3 and MDA-MB-453. Transient
transfections of ON-TARGET plus human SRCIN1 small-interfering RNA
(siRNA) or ON-TARGET plus non-targeting siRNA (Dharmacon RNAi,
GE Healtcare, Buckinghamshire, UK) were performed with Lipofectamine
2,000 (Invitrogen, USA) according to manufacturer’s protocol. This patented
approach is the best strategy to prevent off-target effects caused by both the
sense and antisense strands while maintaining high silencing potency. Briefly,
cells were plated on six-well plate and transfected at 80% confluency. Either 5 ml of
20 microMolar p140Cap siRNA or non-targeting siRNA were added to each well,
and cells were incubated for 48 h at 37 �C in a humidified CO2 incubator.
Transfected cells were used for different assay.

Proliferation and apoptosis assays. To assess the NeuT and p140 cell
proliferation rate, 15� 104 cells were seeded per well in a 24-well plate and counted
at the indicated times. Quantification of Neu-T TUBO cell growth was done by
MTT assay. For apoptosis assays, NeuT and p140 cells were serum-starved for
12 h or detached and kept in suspension for 12 h. Apoptosis was assayed by
annexin V staining (BD Biosciences, San José, CA, USA) or by immunoblotting
with anti caspase-3 antibody (Cell Signaling).

Transwell migration assay. For the migration assay, Transwell chambers
(Corning, Corning, NY, USA) were coated with 10 mgml� 1 type I collagen
(Corning). Cells were detached using 5mM EDTA and suspended in serum-free
medium. The cells were seeded on top of the 8.0 mm pore size at a density of
1� 105 cells per well in 100microliters of serum-free medium 0.1% BSA. As
chemoattractant, 700 ml of medium containing 15% FBS was placed in the lower
chamber. After 24 h, the cells on the top surface of the filter were removed
with a cotton swab, and the migrating cells on the lower surface of the membrane
filter were fixed and stained with Diff-Quick kit (Medion Diagnostics International
Inc, Miami. USA), and counted using a light microscope � 10 magnification.

Rac GTPases in vitro activity assay. Cells were washed twice on ice with PBS and
then lysed in a MLB buffer (25mM EDTA, 150mM NaCl, 2% glycerol, 1% NP40,
1mM EDTA, 10mM MgCl2, 10 mgml� 1 each of leupeptin, pepstatin and
aprotinin). For pull-down experiments glutathione-coupled Sepharose 4B beads
bound to recombinant GST-PAK CRIB domain fusion proteins were incubated
with cell extracts at 4 �C for 30min, eluted in Laemmli buffer and analysed for the
presence of Rac1 by western blot.

Tiam1 activity assay. Assays were performed using the active Rac-GEF assay
kit (Cell Biolabs, San Diego, USA) according to the manufacturer’s instructions.
Briefly, cells were washed twice with ice-cold PBS and lysed in ice-cold 1� Assay/
Lysis Buffer (1mM PMSF, 10 mgml� 1 leupeptin and 10 mgml� 1 aprotinin).
Extracts were incubated with 40 ml of resuspend Rac1 G15A agarose bead slurry
and incubate for 1 h at 4 �C. Beads were washed three times with the 1� Assay/
Lysis Buffer, resuspended in 40 ml of 2� reducing SDS–PAGE sample buffer
and boiled for 5min. Pull-down supernatant were subjected to SDS–PAGE
electrophoresis and western blotting with anti-Tiam1 antibody.

Statistical analysis. Tissue microarray data analysis was performed using
JMP 10.0 statistical software (SAS Institute, Inc). The association between
p140Cap expression and clinico-pathological parameters was evaluated using the
Pearson chi-square test. For univariate and multivariate analysis, hazard ratios and
95% confidence intervals were obtained from the Cox proportional regression
method. Differences in the growth rate of mouse tumours were analysed with
Fisher’s Exact Test, or two-way ANOVA followed by Bonferroni multiple
comparison post hoc test. Differences in acina area were evaluated using
a Mann–Whitney non parametric t-test. For quantification, statistical significative
differences were evaluated using unpaired t-tests. Error bar: s.e.m. using the
Student’s t-test.

Data availability. All other remaining data are available within the Article and
Supplementary Files, or available from the authors upon request.
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