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Defining stem cell dynamics and migration during
wound healing in mouse skin epidermis
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Wound healing is essential to repair the skin after injury. In the epidermis, distinct stem cells

(SCs) populations contribute to wound healing. However, how SCs balance proliferation,

differentiation and migration to repair a wound remains poorly understood. Here, we show

the cellular and molecular mechanisms that regulate wound healing in mouse tail epidermis.

Using a combination of proliferation kinetics experiments and molecular profiling, we identify

the gene signatures associated with proliferation, differentiation and migration in different

regions surrounding the wound. Functional experiments show that SC proliferation, migration

and differentiation can be uncoupled during wound healing. Lineage tracing and quantitative

clonal analysis reveal that, following wounding, progenitors divide more rapidly, but conserve

their homoeostatic mode of division, leading to their rapid depletion, whereas SCs become

active, giving rise to new progenitors that expand and repair the wound. These results have

important implications for tissue regeneration, acute and chronic wound disorders.

DOI: 10.1038/ncomms14684 OPEN
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T
he skin epidermis is a stratified epithelium that acts as a
barrier protecting the animals against infections, trauma
and water loss1. When the skin barrier is disrupted,

a cascade of cellular and molecular events is activated to repair
the damage and restore skin integrity. Defects in these events can
lead to improper repair causing acute and chronic wound
disorders2.

Wound healing (WH) is organized in three stages1–4: the
inflammation stage starts immediately, and is associated with the
formation of the blood clot and the recruitment of inflammatory
cells. The second stage is the regenerative phase associated with
re-epithelialization of the wound, the creation of new epidermal
cells and the formation of the granulation tissue. Finally, the last
stage, which can last for months, involves the remodelling of the
epidermis, dermis and extracellular matrix (ECM). Different
epidermal SCs coming from the hair follicle (HF), isthmus,
infundibulum and interfollicular epidermis (IFE) contribute to
WH5–12. However, it remains unclear how different SCs
populations can balance proliferation, differentiation and
migration during the healing process, and whether they
conform to the same proliferative dynamics. It also remains
unclear whether these cells simply increase their proliferation
rate, maintaining a homoeostatic mode of division, or whether
they switch to a proliferative mode of division leading to more
symmetrical cell duplication to facilitate the expansion of newly
formed skin.

Here, using whole-mount tail epidermis, we identify and
characterize molecularly and functionally two spatially distinct
epithelial compartments surrounding the wound: a proliferative
hub and a migrating leading edge (LE). We define the
spatiotemporal dynamics of these two compartments over the
re-epithelialization stage. We uncover the molecular signatures
associated with these two distinct epidermal compartments and
demonstrate that proliferation, migration and differentiation can
be uncoupled during the early stage of wound repair. To
understand the mode of division and the cellular hierarchy of
different populations of epidermal cells, we perform a detailed
quantitative clonal analysis and mathematical modelling of the
individual behaviour IFE and infundibulum cells during WH. We
show that at the beginning of WH, because of the incapacity of
progenitors to switch from homoeostatic (asymmetric cell fate
outcome at the population level) to a proliferative (symmetric
renewal) mode of division, the important increase in cell
proliferation leads to minimal tissue regeneration with a massive
loss of progenitors through differentiation. As SCs become
activated, they undergo rapid asymmetric cell fate outcome
generating new SCs and progenitors that promote tissue
expansion, visible as streaks of cells spanning from the
proliferative hub to the centre of the wound. This clonal dynamic
is very similar for different populations of epidermal SCs coming
from different skin regions, suggesting that this cellular behaviour
helps to maximize the regenerative process.

Results
Spatiotemporal proliferation and migration during WH. To
define the role of cell proliferation during the regenerative stage of
WH, we performed a 3mm punch biopsy in the tail skin of adult
mice and analysed the result of short-term BrdU incorporation by
confocal microscopy on whole-mount epidermis at different time
points during WH (Fig. 1a). Immediately after wounding, there
was no increase in BrdU incorporation. However, at day 2 (D2)
and even more at D4 following wounding, we found that BrdU
incorporation was increased by 5-fold in a zone spanning from
500mm to 1.5mm from the LE, with 40% of basal cells entering
into cycle during a period of 4 h (Fig. 1b). The width of the

annulus of cells that proliferated around the wound progressively
decreased with time (Fig. 1a,c,d). We found that epidermal cells at
the LE, spanning a distance of 500 mm from the wound front, did
not incorporate BrdU at any time point from D2 to D7 following
wounding (Fig. 1a–c). This showed that cells at the LE of the
epidermal sheath, which ensures skin regeneration, do not pro-
liferate actively, but migrate to the centre of the wound. These
results confirm the existence of a migrating LE that has been
hypothesized for several decades based on the histological
examination of wounded tissues and ex-vivo skin explants3.
Reaching a maximal size at D4 following wounding, the size of
the non-proliferating LE zone progressively decreased over time,
suggesting that the specification and differentiation of LE cells
occurs only during the early stage of WH (Fig. 1a,d). After D14,
the wound edges fused at midline and proliferation resumed at
the centre of the wound region (Fig. 1a,e).

As wound contraction contributes to wound closure13,
we assessed the relative importance of epidermal regeneration
and wound contraction to the overall wound repair. As de novo
HF formation only occurs with more extensive wounding and at a
later stage14, wound contraction was measured by the distance
between the HF and the wound centre at D0 minus the same
measurement at a given time point, while the newly formed
epidermis was measured by the difference between the radius at
D0 (1.5mm) and the radius at any time point minus the
contraction. Surprisingly, we found that the distance between
HF triplets and the centre of the wound after the punch biopsy
did not decrease significantly from D0 to D7, where proliferation
was maximum, suggesting that proliferation is not very
productive during the initial stage of wound repair (Fig. 1e,f).
From D10 to D14, this distance decreased linearly in time
until re-epithelialization was completed (Fig. 1e,f). At this stage
the average distance between the HF triplets and the wound
centre is 0.9mm, suggesting that an epithelial regeneration
contributes approximately to two-thirds of the healing
process, and wound contraction (0.6mm) is responsible for the
remainder.

Cell shape and polarity during WH. The shape and size of the
epidermal cells, which is the reflection of the forces that epi-
dermal cells experience during the regeneration process, was very
different depending on the wound region and the time point
following wounding (Fig. 2a–c). At D0, the basal cells of the LE
appeared less compacted (Fig. 2a), consistent with a relaxation in
the force exerted on the wound edge. At D1, the LE cells were
elongated toward the wound centre (Fig. 2a), as previously
shown15, consistent with the active migration of the LE cells
toward this point. At D4, basal cells far from the wound presented
a regular cuboidal/hexagonal shape (Fig. 2b). The density of basal
cells in the proliferative zone was increased, leading to a more
compressed cell shape (Fig 2b,d). In contrast, in the
non-proliferative zone, the basal cells were bigger, polarized in
the same direction, and elongated along an axis perpendicular to
the direction of the wound closure (Fig. 2b). This suggests that, at
D4 and thereafter, the movement of the LE is a passive process
possibly mediated by the proliferating cells (Fig. 2b). Consistent
with this notion, blocking epidermal cell proliferation by
5-fluorouracil (5-FU), which inhibited the re-epithelialization
process and WH (Fig. 2e), prevented the perpendicular
polarization of the LE at D4 (Fig. 2f). These data demonstrate
that the two distinct epidermal compartments, the proliferative
hub and the LE, present different cell shape and polarity that
change with time, likely reflecting the difference in the physical
forces that these different zones experience at the different stages
of WH.
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Molecular signature of LE and proliferation hub during WH.
To define the molecular features associated with the formation of
the proliferative hub and the LE, we performed transcriptional
profiling of different concentric rings of the wound using
different sizes of punch biopsy and fluorescence-activated cell
sorting (FACS) sorting. A first punch biopsy of 4mm in diameter
around the wound was used to enrich for LE cells (spanning two
times 500mm, the average width of the LE), and a second punch
biopsy (6mm) was enriched for the proliferative hub of the
wound (Fig. 3a; Supplementary Fig. 1). We performed a third
biopsy far from the wound corresponding to control normal
unwounded epidermis. We performed duplicate microarrays of
these three skin regions at D4 and D7 post-wounding. We found
genes upregulated in both wound regions at the two different
time points, which correspond to a generic wound-healing sig-
nature. This gene signature included genes regulating cell adhe-
sion (for example, Dsc2), cytoskeleton (for example, Krt6, Krt17),
inflammation (for example, Il24, Il33 S100a8/a9), cell signalling
(for example, Areg, Ereg, Emb, Epgn), (Supplementary Fig. 2a)
and cell cycle-related genes (for example, Ccna2, Ccnb1) (Supple-
mentary Fig. 2b). For some genes, such as Krt6 (refs 3,16–19), in
which expression was confirmed by immunofluorescence
(Supplementary Fig. 2c), Il24, S100a8/a9 or the EGFR ligands,
their role in the regulation of WH has previously been descri-
bed20–23. In other cases, including Fscn1, Emb, Sprr1b and Sprr2h,
genes were not known to be involved in skin WH.

We next defined which genes were preferentially upregulated
and downregulated in the LE as compared with the proliferative
hub (the LE signature) (Supplementary Fig. 2d–f). We found
that a5-integrin was highly enriched in the LE signature
(Supplementary Fig. 2e); consistent with a previous study that
showed that a5-integrin was expressed at the LE of human skin
explants ex vivo24–27 and at the LE during eyelid closure,
a developmental process that involves epidermal cell migration28,
reminiscent of the LE during WH. Whole-mount immuno-
staining confirmed the rapid upregulation of a5-integrin in the
non-proliferative cells of the LE in vivo (Fig. 3b). To refine the
molecular signature of the LE without contamination of
proliferative cells, we isolated a5-integrin positive cells from a
4mm punch biopsy by FACS at D4 following wounding
(Supplementary Fig. 3) and performed microarray analysis in
triplicates. These molecular analyses confirmed the preferential
expression of many of the previously described genes expressed
during WH, validating the approach used here and allowing for
the first time to distinguish the spatial localization of these genes
at the LE and/or in the proliferative hub. In addition, the gene
signatures of the proliferative and LE cells during wounding
uncover many novel genes not previously described during WH
and tissue regeneration (Fig. 3c–j). Gene Ontology Enrichment
(GO) analysis revealed that the genes upregulated in the
LE comprised genes regulating cell adhesion, cytoskeleton
organization, epidermal differentiation, cell migration and other
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Figure 1 | Respective contribution of cell proliferation and migration during WH. (a) Representative immunostaining of K14 (red) and BrdU (green) in

whole-mount skin epidermis of the wounded region at the different time points. Dashed lines limit the wounded area, the LE and the proliferative hub. Scale

bar, 500mm. (b) Quantification of the percentage of BrdU positive cells according to the distance from the wound centre (n¼ 5,000 cells/region counted

from three different mice). (c) Descriptive scheme showing the situation in the early days after wound and the localization of the two different areas around

the wound between 2 and 7 days after wound. (d) Measure of the width of the LE (orange line) and the proliferative hub (green line) overtime. Five

measures were taken per wound (n¼ 3 mice). (e) Measure of the average wound radius overtime. Five different measures were taken per wound

(n¼ 3 mice). (f) Measure of the distance between the nearest HF and the LE (red line) and the distance between the HF and the wound centre (blue line).

Five different measures were taken per wound (n¼ 3 mice).
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wound compare to a control area. Arrows indicate the direction of the wound. Scale bar, 20mm. (b) Left and middle panels: representative confocal analysis

of whole-mounted epidermis stained for F-actin with phalloidin (green) and b4-integrin (white) showing the shape of the basal (left) and suprabasal

(middle) cells in the different regions, 4 days after wound. Right panel: immunostaining for BrdU (green) and K14 (red) in the different regions 4 days after

wound. (c) Representative confocal pictures of whole-mounted epidermis immunostained for F-actin with phalloidin (green) showing the shape of the basal

and suprabasal keratinocytes in the control area, proliferative hub (2–3mm) and LE (0–2mm) 7, 10 and 14 days after wound. Nuclei are stained with

Hoechst (blue). Scale bar, 20mm. (d) Percentage of cell density at 0, 4 and 7 days post wound in the proliferative hub normalized by a control area. Five

different measures were taken per wound (n¼4 mice). (e) Measure of the wound radius after 5-FU topical treatment compared to control-untreated mice

(n¼ 3 mice). (f) Representative confocal pictures of whole-mounted epidermis stained for F-actin with phalloidin (green) showing the elongated cells at
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processes involved in WH (Fig. 3c). The most upregulated genes
of the LE signature were genes coding for proteins regulating cell
migration including several metalloproteinases (MMPs) (Mmp9,
Mmp13, Mmp1b) (Fig. 3d), whereas Timp3, an inhibitor
of metalloproteinase, was the most downregulated gene
(Supplementary Fig. 2f), suggesting that the high level of MMPs
expressed by the cells of the LE promote the remodelling of the
ECM at the wound front allowing the front cells to progress
toward the centre. MMPs also help the breakdown of the hemi
desmosomes that anchor the cells at the basal membrane and are
therefore essential for the movement of basal cells. MMPs

deletion in flies and mice results in wound-healing defects due to
defective cell elongation, cytoskeleton and basal membrane
remodelling as well as cell migration29–33. The migrating zone
also expressed high level of urokinase (Plau) and plasminogen
activator (Plaur) (Fig. 3e), two key fibrinolytic proteins
contributing to the remodelling of the blood clot during WH34.
The LE also expressed high level of Ephb2 and Efnb1 (Fig. 3d), a
receptor and its ligand, which have recently been shown to
control WH35 as well as other genes such as Cxcr4, C5ar1, Myh9,
Procr, Wnt5a, Elk3 (Fig. 3e,g,i,j), which regulate cell migration in
other cellular contexts. We found that Inhibin-ba, a subunit of
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Activin A was overexpressed preferentially at the LE (Fig. 3j),
in good accordance with in-situ hybridization of Inhibin-ba
during WH36 and the previously reported role of Activin A
during WH in mice37–42.

Our LE signature encompassed many genes controlling cell
adhesion, including several protocadherins (Pcdh7, Pcdhb19,
Pcdhga1) (Fig. 3f), integrins (Itga5, Itga6) (Fig. 3f) and some of
their ECM ligands (Fn1, Lama3, Lamb3, Lamc2) (Fig. 3h),
desmosomes (Cdsn)43 and gap junction proteins (Gjb6/Cx30 and
Gjb2/Cx26) (Fig. 3f). Corneodesmosin (Cdsn), a desmosome
protein of the wound edge signature (Fig. 3f) was reported to be
expressed using transgenic reporter mice in the wound edge and
in the inner root sheath (IRS) of the hair44.

Many genes controlling cell cytoskeleton and actin remodelling
including actin regulators (Fscn1, Cald1, Nav2, Fmnl2), myosin
(Myo1b, Myo5b, Myh9, Tpm1, Tpm2) and tubulin (Tubb2a,
Tubb3, Tubb6), were preferentially overexpressed at the LE
(Fig. 3i), and Tubb6 was previously shown to be upregulated
during wounding19. These genes may control the morphology,
polarity, rigidity of the cell cortex and migration during WH.

Several genes that might regulate the quiescence of the LE
surfaced from the microarray analysis. Gprc5a, an orphan G
protein coupled receptor, acting as tumour suppressor genes in
the lung by negatively regulating EGFR and Stat3 signalling45–47,
was strongly upregulated at the LE (Fig. 3j.). The upregulation of
E2f7 (ref. 48) or Fgf18 (ref. 49), genes that promote cell
quiescence in other contexts may also contribute to shut down
of proliferation in the wound LE (Fig. 3g,j).

Spatiotemporal expression of the LE signature during WH.
Immunostaining performed against several of these newly
identified markers of the LE signature including cell adhesion,
receptor and cytoskeleton proteins (Flrt2, Gprc5a, Tubb2, Myo1b,
Itga5) confirmed their preferential enrichment at the LE of the
wound as predicted by our microarray analysis (Fig. 4a–e). Itga5
was expressed preferentially in the basal cells of the LE (Fig. 4a).
Flrt2, a repulsive guidance protein that regulates the migration of
neuronal progenitors during embryonic development50 was more
expressed in the cells of the wound edge than in the proliferation
zone, but was not present in the normal skin epidermis (Fig. 4b).
Gprc5a was expressed at the LE of the wound at D4 (Fig. 4c), and
similarly to Cdsn44, Flrt2 or Tubb2, to the IRS or precortex cells
of the HFs (Fig. 4b–d; Supplementary Fig. 4a–c). Myosin 1b,
a tension-sensitive myosin was also expressed in all cell types of
the LE (Fig. 4e), which by regulating actin foci stability, controls
cell migration or repulsion. Myosin 1b was also expressed in the
bulge and outer root sheath (ORS) of the HFs (Supplementary
Fig. 4d). The expression of all these newly identified molecular
markers of the wound LE signature decreased overtime and at
D14 post-wound, when the opposite margin of epidermal cells
fused together, these markers were not expressed anymore
(Fig. 4a–e). These data demonstrate the transient nature of this
wound LE structure.

Uncoupling proliferation and differentiation during WH. To
gain further insights into the mechanisms that specify these two
distinct regions, we determined whether the fate and the differ-
entiation programme of the LE are linked to cell division, by
assessing the impact of blocking cell proliferation on the fate of
LE cells. Topical application of 5-FU, which strongly decreased
epidermal cell proliferation, did not prevent or impair the
expression of LE markers (Fig. 5a–c), demonstrating that the
particular differentiation programme of the LE is specified
independently of cell division.

As inflammation plays an important role in orchestrating the
early step of WH1,2,51, we assessed the impact of blocking
inflammation on these two distinct epidermal compartments
during re-epithelialization. Interestingly, treating the wounded
mice with dexamethasone, a potent anti-inflammatory drug,
reactivate proliferation in the LE without impairing its particular
gene expression signature (Fig. 5d–g) demonstrating that, the
LE-specific gene signature is not associated with terminal
differentiation (Fig. 5f,g). These data show that glucocorticoid
treatment suppresses a negative regulator of cell cycle acting on
the LE. As glucocorticoid can also directly act on keratinocytes52,
this negative regulator may originate either from the
keratinocytes or from the inflammatory cells and the
granulation tissue. Although, these data do not allow to
discriminate whether the inhibition of proliferation at the LE is
regulated by an intrinsic or an extrinsic mechanism, these results
provide compelling evidence that the LE-specific cellular
quiescence and gene expression signature can be functionally
and molecularly uncoupled.

Clonal analysis of IFE SC during WH. To follow the progeny of
the basal epidermal cells, and study their cellular dynamics at the
single cell level, we performed clonal analysis on K14CREER/
Rosa Confetti mice targeting preferentially IFE SCs12 (Fig. 6a).
We administrated Tamoxifen (TAM) 14 days before wounding
and analysed the respective clonal contribution during the
healing process (Fig. 6b). At the end of the re-epithelialization,
K14-labelled cells gave rise to long streaks of labelled cells
directed toward the LE of the wound (Fig. 6c–e). With a clone
merger probability estimated at roughly 5% (Fig. 6f;
Supplementary Note 1), we deduced that streaks labelled with
the same fluorescent protein were clonal in origin, derived from
single SCs. The clonal lines were often interrupted by unlabelled
cells (Fig. 6d,e), suggesting that a cycle of active SC proliferation
followed by cell intercalation from neighbouring clones (or clonal
fragmentation) occurs repetitively during WH. Interestingly, all
of these fragmented clonal streaks originate from the proliferative
hub previously described (Fig. 6g). Quantification of the clonal
persistence revealed that more than 90% of IFE-labelled clones
were lost during the first week following wounding (Fig. 6h),
consistent with the majority of progenitors maintaining
homoeostatic behaviour, leading to a progressive decrease in
the labelled cell fraction12,53,54. Importantly, this clonal dynamic
contrasts with that reported for oesophagus, where repair seems
to involve a switch of progenitors to a proliferative mode of
division55, or following in vitro culture of human keratinocytes56.
Consistent with a major increase in the rate of terminal
differentiation, as measured by clonal persistence, the epidermal
thickness increased during the same period (Fig. 6i).

Three-dimensional analysis of labelled clones revealed that, in
contrast to clones in the control regions that are composed of
stacks of cells that lie on the top of each other (Fig. 6j), at D4
K14CREER IFE SCs gave rise to basal and suprabasal cells that
migrate toward the wound edge (Fig. 6k). The restriction of the
basal footprint of the clone at the trailing edge suggest that
marked SCs undergo predominantly asymmetric cell division,
giving rise to a steady production of progenitors. Interestingly,
despite the high rate of proliferation observed in the first days
following wounding, at this time point, K14CREER clones are not
on average bigger as compared to D0, suggesting that the effect of
SC renewal is not yet observed at the population level.

By D14, most of the persisting K14CREER clones became
enlarged in their basal attachment and were composed of a
majority of suprabasal cells (Fig. 6l), while others formed long
streaks of basal cells and suprabasal cells (Fig. 6m), suggesting
that these clones produced an increased number of basal
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progenitors leading to basal cell expansion. Interestingly, these
streaks originate from a minority (41%) of K14CREER-induced
cells and seem to be responsible for only part of the wound
regeneration (for details see Supplementary Note 1).

It has been proposed that, during wounding, differentiated
suprabasal cells can revert back to a progenitor state and actively
contribute to repair57,58. To test this possibility, we administrated
TAM to InvCREER/RosaYFP that labelled suprabasal cells and
rare basal cells (Supplementary Fig. 5a,b), performed a punch
biopsy and analysed the contribution of labelled suprabasal cells
during wounding. Ten days after wounding, most of the lineage
labelled suprabasal cells had been shed from the skin surface or
remained present as spinous or granular cells. Despite the high
frequency of suprabasal cell labelling, we found only very rare
basal cells initially targeted by the InvCREER, and these
contribute minimally and transiently to the wound repair as
previously described3. We found no evidence that suprabasal cells
can revert back to a progenitor-like state, as the density of basal
cells contributing to the wound repair is much lower compared to
that of basal cells labelled at induction (Supplementary Fig. 5a,b).
These data suggest that dedifferentiation of differentiated
suprabasal cells does not contribute to WH in the tail epidermis.

Clonal analysis of infundibulum SC during WH. To assess
whether different types of SCs arising from distinct epidermal
regions present different clonal dynamics during WH,
we performed clonal analysis on Lrig1CREER/Rosa Confetti mice
targeting the upper HF SCs that include cells from the
infundibulum, junctional zone and sebaceous gland, and that
have been shown to contribute to WH8 (Fig. 7a,b). At D14, most
of the Lrig1-labelled cells give rise to long streaks of progeny from
the infundibulum to the LE (Fig. 7c) with the clones presenting
the same fragmentation reported for the K14 tracing (Figs 6d,e
and 7c). The 3D reconstruction showed that the Lrig1 clones,
starting from D7, had an analogous cellular composition as the
K14 with long streak of basal and suprabasal cells emanating
from the infundibulum and directed toward the wound centre
(Fig. 7d–f).

Similar clonal dynamic of different epidermal SCs during WH.
To gain further insight into the clonal dynamics of the IFE
and the HF-derived SCs populations, we used a previously
validated biostatistical framework59–61 to infer with high
confidence the number of cells and cellular composition of
clones (basal versus suprabasal cells) arising from single K14 and
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Lrig1CREER/Rosa Confetti-targeted cells (Fig. 8a–e; Supplemen-
tary Note 1). To define how SCs balance proliferation and
differentiation in the proliferative hub surrounding the wound
edge, we analysed the clonal composition of K14 and
Lrig1CREER/Rosa Confetti-derived clones from D0 to D14 after
wounding. From D4 to D14, the basal size of clones of both K14
and Lrig1CREER grew remarkably linearly (Fig. 8a,c). At first
sight, this behaviour could indicate neutral competition, as has
been reported for uninjured epidermis12,62. However, adapting
the standard model of balanced stochastic progenitor cell fate, the
observed rate of increase in the average basal size would translate
to an unreasonably fast cell cycle time of 46 h. Rather,
in this case, the linear increase indicates the labelling of an
asymmetrically dividing subpopulation that drives the basal
expansion through the steady production of progenitors
(Supplementary Note 1). On the basis of the quantitative clonal
analysis, we find that the data are consistent with a proliferative
hierarchical model in which, during WH, a putative SC
population at the apex divide perfectly asymmetrically giving
rise to self-renewing progenitors in which the frequency
of symmetrical duplication is balanced by symmetrical
differentiation (Fig. 8f). Indeed, the existence of a persistent
(SC) and a transient (progenitor) basal subpopulation might
explain the fragmentation of clonal streaks. From the modelling
of the clonal dynamics, we found that such model indeed predicts
not only the increase in average basal clone size (Fig. 8c) but also
recapitulates the detailed distributions of basal clones sizes in the
K14CREER assay (Fig. 8d; Supplementary Note 1). Notably, such
a hierarchical model coincides with that inferred from the study
of homoeostatic turnover of interscale epidermis, but where the
proliferation rate of SCs and progenitors have been massively
increased54. Surprisingly, the conserved linearity of the average
basal clone size and the shape of the size distribution suggested
that Lrig1CREER targets SCs belonging to the same hierarchy as
that targeted by K14CREER, but where a burst of proliferative
activity at the earliest stages of regeneration expands the average
number of SCs in each clone (Fig. 8c–f; Supplementary Note 1).
Altogether, these data suggest that, irrespective of the epidermal
origin, the regenerative stage of WH involves a sustained increase
in proliferative activity of a minority of SCs, while keeping the
fate behaviour and lineage relationship of SCs and progenitors
largely unperturbed from their homoeostatic dependences.

Discussion
Our study uncovers the clonal dynamics and individual
contribution of SCs coming from different epidermal

compartments during skin WH in mice. In contrast to what
has been proposed for oesophagus repair and the growth of
human keratinocytes in vitro55,56, our data show that WH does
not increase the self-renewal capacities of progenitors, but rather
leads to their massive depletion as proliferation increases.
The repair of the skin epidermis does not induce a change in
the cellular hierarchy of SCs and progenitors, or a change in the
balance between renewal and differentiation but rather involves
an increase in the proliferation rate of a small population of SCs
that gives rise to progenitors upon asymmetric division leading to
a linear increase in the individual clone size over time.
Interestingly, IFE and infundibulum SCs present very similar
clonal dynamics during wound repair, despite the fact that they
are recruited from different regions of the epidermis.

Our study confirms the existence of two distinct epidermal
zones during wound repair; a proliferative hub composed of the
IFE and HF-derived SCs and their progeny and a LE composed of
non-proliferative cells3, and uncovers the timing, gene expression
signature and mechanisms that specify these two distinct
compartments during WH (Fig. 9). We propose that the
non-proliferative LE of the wound acts as a scaffold allowing a
harmonious healing process, by creating a platform secreting high
level of enzymes that remodel the surrounding ECM and fibrin
clot allowing tissue regeneration to progress toward the centre of
the wound and protecting the SCs and their progeny from the
immediate vicinity of the wound front and infection.

A similar wound margin structure with elongated migrating
cells has been described during the early stages of WH following
incisional wound in humans63, supporting the notion that this
mode of wound repair has been conserved during evolution.
Further functional studies will be needed to refine the respective
role of the genes identified here in the LE signature. The high
level of expression of several of these genes in patients with
chronic ulcers64,65 suggests that defects in the formation and/or
function of this structure may induce wound-healing problems
leading to chronic ulcer formation.

Methods
Mice. K14CREER transgenic mice were provided by Fuchs66. Lrig1-CreERT2 mice
were a kind gift from Jensen67. Involucrin-CreERT2 were previously described12.
Rosaconfettimice were provided by Clevers68. Rosa YFP69 mice were obtained from
Jackson Laboratory. All animals were mixed strains. No statistical methods were
used to predetermine sample size. The experiments were not randomized. The
investigators were not blinded to allocation during experiments and outcome
assessment. Mice colonies were maintained in a certified animal facility in
accordance with European guidelines. The experiments were approved by the local
ethical committee (CEBEA).
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Targeting Confetti or YFP expression in wound experiments. For lineage
tracing experiment, K14CreER/RosaConfetti, Lrig1-CreERT2/RosaConfetti and
Involucrin-CRERT2/Rosa-YFP male and female adult (between 2 and 6 months
old) mice were induced at 2 months with 0.03mg g� 1, 0.27mg g� 1 or
0.08mg g� 1 of TAM (Sigma-Aldrich), respectively, by intra-peritoneal (IP)
injection. For K14-CreER and Lrig1-CreERT2 tracing, 2 weeks after TAM

induction, mice were anesthetized (5% xylazine 10% ketamine in PBS) and circular
pieces of epidermis were removed from the tail epidermis using a 3mm
diameter biopsy punch (Stiefel, Ireland). For Involucrin-CRERT2/Rosa-YFP mice
the wound was performed 4 days after TAM injection to analyse the contribution
of suprabasal cells. Each mouse was subjected to three different punches in the tail
and at least five mice per time points were analysed.
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Proliferation experiments. For BrdU experiments, CD1 male and female adult
(between 2 and 6 months old) mice were wounded, injected with one single
injection IP of BrdU (50mg kg� 1 in PBS) at the different time points and killed 4 h
after. For the quantification at least an area of 1.5mm2 per region per wound was
analysed with Imaris software (Bitplane) to determine the percentage of BrdU
positive cells.

Epidermal whole-mount and immunostaining. Pieces of skin tail surrounding
the wound were incubated in PBS/EDTA (20mM) on a rocking plate at 37 �C for
1 h. Epidermis was separated from the dermis using forceps as an intact sheet and
washed two times with PBS. Pieces of epidermis were pre-fixed in 4% paraf-
ormaldehyde for 1 h at room temperature. Epidermis were rinsed two times with
PBS for 5min and conserved in PBS with 0.2% azide at 4 �C. For the immuno-
fluorescence staining, the entire pieces of epidermis were incubated in blocking
buffer (1% BSA, 5% horse serum, 0.8% Triton in PBS) for 3 h at room temperature
on a rocking plate (100 r.p.m.). The samples were incubated in primary antibodies
overnight at 4 �C. The primary antibodies used were the following: anti-Integrinb4
(rat, 1:200, BD Biosciences), anti-K14 (chicken, 1:2,000, custom batch, Thermo
Fischer), anti-GFP (rabbit, 1:200, Molecular Probes). Samples were then washed
three times in PBS with 0.2% tween during 1 h and incubated in appropriate
secondary antibodies diluted 1:400 in blocking buffer for 1 h at room temperature
on the rocking plate. For BrdU staining, samples were incubated in HCl 1 M at
37 �C for 45min, washed with PBS 0.2% tween, stained with anti-BrdU (rat, 1:200,

Abcam) in blocking buffer and with appropriate secondary antibody. The following
secondary antibodies were used: anti-rat, anti-chicken, anti-rabbit conjugated to
AlexaFluor488 (Molecular Probes), to Rhodamine Red-X or to Cy5 (Jackson
Immuno Research). Alexa488-conjugated phalloidin (Life Technologies) was used
1:200 in blocking buffer to visualize F-actin microfilaments. Nuclei were stained in
Hoechst solution diluted 1:5,000 for 30min and mounted in DAKO-mounting
medium supplemented with 2.5% Dabco (Sigma). Immunostaining pictures of the
whole mounts presented in the figures are representative images of at least five
different experiments.

Microscope image acquisition and measurements. All pictures of section
immunostaining were acquired using the Axio Imager M1 Microscope, the
AxioCamMR3 or MrC5 camera and using the Axiovision software (Carl Zeiss).
Acquisitions were performed at room temperature using � 20 numerical aperture
(NA) 0.4 (Carl Zeiss). All confocal images were acquired at room temperature with
a LSM780 confocal system fitted on an AxioExaminer Z1 upright microscope
equipped with C-Apochromat � 40/1.1 or Plan Apochromat � 25/0.8 water
immersion objectives (Zeiss, Iena, Germany). Optical sections 512� 512 pixels
were collected sequentially for each fluorochrome. The data sets generated were
merged and displayed with the ZEN2012 software (Zeiss). 3D reconstitution
images were processed using Imaris (Bitplane) software.

Histology and immunostaining on sections. Skin epidermis was removed from
tailbone, embedded in OCT and kept at � 80 �C. Sections of 6 mm were cut using a
CM3050S Leica cryostat (Leica Mycrosystems). After fixation in 4% paraf-
ormaldehyde for 10min at room temperature, tissues were washed three times in
PBS for 5min and incubated in blocking buffer (1% BSA, 5% Horse serum, 0, 2%
Triton in PBS) for 1 h at room temperature. Primary antibodies were incubated
overnight at 4 �C. Sections were rinsed three times in PBS and incubated with
secondary antibodies and Hoechst in blocking buffer for 1 h at room temperature.
Sections were again washed three times with PBS. The following primary anti-
bodies were used: anti-K14 (chicken, 1:20,000, custom batch, Thermo Fischer);
anti-K6 (rabbit, 1:6,000, Covance), anti-Flrt2/3 (rabbit, 1:100, Sigma); anti-Gprc5a
(rabbit, 1:100, Sigma); anti-Myo1b (rabbit, 1:100, Sigma) and anti-a5-integrin
(PE-conjugated rat, 1:200, BD or rabbit, 1:200, Abcam). For the anti-Tubb2 (rabbit,
1/1,000, Abcam) staining, fixation was performed in methanol at � 20 �C for
2.5min and the rest of the protocol was performed as described. The following
secondary antibodies were used diluted to 1:400: anti-rabbit, anti-rat, anti-chicken
conjugated to Alexa Fluor 488 (Molecular Probes), to rhodamine Red-X (Jackson
Immunoresearch) or to Cy5 (Jackson Immunoresearch). Nuclei were stained in
Hoechst solution (1:2,000) and slides were mounted in DAKO-mounting medium
supplemented with 2.5% Dabco (Sigma). Immunostaining pictures of the skin
sections presented in the figures are representative images of at least five different
experiments.

Dissociation of epidermal cells and cell sorting. The dermis and epidermis were
removed from the tail bone and micro dissection was performed using two
different sizes of punch biopsy: one punch of 4mm in diameter was done, around
the wound of 3mm in diameter, to remove the LE zone and one punch of 6mm in
diameter was used to remove the proliferative centre, at D4 and D7 after wound.
Another piece of skin was taken, as control, from a region far from the wounded
area. The two replicate samples at each time points were a pull of five CD1 mice.
The samples were incubated in HBSS (Gibco) 0,25% trypsin (Gibco) at 37 �C until
the epidermis was separated from the dermis (30min). Epidermis was then
incubated on a rocking plate (100 r.p.m.) at room temperature for 5min. Basal cells
were mechanically separated from the epidermis by flushing 10 times under the
epidermis. Tissues were then cut in small pieces with a scalpel and incubated again
for 5min on a rocking plate (100 r.p.m.) at room temperature. Trypsin was then
neutralized by adding DMEM medium (Gibco) supplemented with 2% Chelex
Fetal Calf Serum (FCS) and the cells were mechanically separated by pipetting 90
times and filtrated on 70 mm filter (Falcon). Cells were incubated in 2% FCS/PBS
with primary antibodies for 30min on ice, protected from the light, with shaking
every 10min. Primary antibodies were washed with 2% FCS/PBS and cells
incubated for 30min in APC-conjugated streptavidin (BD Biosciences), on ice,
with shaking every 10min. Living epidermal cells were gated by forward scatter,
side scatter and negative staining for Hoechst dye. For the first microarray
analysis, basal IFE and infundibulum cells were stained using PE-conjugated
anti-a6-integrin (clone GoH3; 1/200, ebioscience) and bulge cells were stained with
biotinylated CD34 (clone RAM34; 1:50, BD Biosciences). Basal cells from the IFE
were targeted using CD34 negative and a6-integrin positive gating. For the second
microarray analysis, FITC-conjugated anti-a6-integrin (CD49f) (clone GoH3:
1:200, ebioscience) and PE-conjugated anti-a5-integrin (CD49e) (clone 5H10-27,
1:200, BD Bioscience) and biotinylated CD34 antibodies were used. The cells were
sorted using CD34 negative a6-integrin positive a5-integrin positive gating. Before
sorting, the cells were filtered again on 70 mm filter (Falcon). Fluorescence-activated
cell sorting analysis was performed using FACSAria I at high pressure (70 psi) and
FACSDiva software (BD Biosciences).

Microarray analysis. Sorted cells (300 cells per sample) were collected directly in
45 ml of lysis buffer (20mM DTT, 10mM Tris–HCl pH 7.4, 0.5% SDS, 0.5 mg ml� 1
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proteinase K). Samples were then lysed at 65 �C for 15min and frozen. RNA
isolation, amplification and microarray were performed in the Functional
Genomics Core, Barcelona. cDNA synthesis, library preparation and amplification
were performed as described70. Microarrays were then performed on Mouse
Genome 430 PM strip Affymetrix array at IRB Functional Genomics Core
(Barcelona, Spain). The data were normalized using RMA algorithm. The entire
procedure was repeated in three technical independent samples. Genetic signatures
were obtained by considering genes presenting a fold change greater or smaller
than 2 or � 2, respectively, in each replicates. The accession number for the
microarray data are GEO: GSE76795 and GSE93638.

5-FU and dexamethasone experiments. For the 5-FU experiments, mice were
treated shortly after wound surgery with Efudix 5% cream (Meda Pharma) applied
topically on the upper part of the tail three times per day until the sacrifice. For the
dexamethasone experiments, dexamethasone powder (Sigma) was resuspended at
1mgml� 1 in ethanol 100% and diluted 5� in sterile PBS. The mice were injected
intraperitoneally once per day at the dose of 1mg kg� 1. The treatment started 2
days before the wound surgery and was sustained until the end of the experiment.

Data availability. Data supporting the findings of this study are available within
the article (and its Supplementary Information files) and from the corresponding
author on reasonable request. The accession number for the microarray data are
GEO: GSE76795 and GSE93638.
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