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Structural basis of human PCNA sliding on DNA
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Sliding clamps encircle DNA and tether polymerases and other factors to the genomic

template. However, the molecular mechanism of clamp sliding on DNA is unknown. Using

crystallography, NMR and molecular dynamics simulations, here we show that the human

clamp PCNA recognizes DNA through a double patch of basic residues within the ring

channel, arranged in a right-hand spiral that matches the pitch of B-DNA. We propose that

PCNA slides by tracking the DNA backbone via a ‘cogwheel’ mechanism based on short-lived

polar interactions, which keep the orientation of the clamp invariant relative to DNA.

Mutation of residues at the PCNA–DNA interface has been shown to impair the initiation

of DNA synthesis by polymerase d (pol d). Therefore, our findings suggest that a clamp

correctly oriented on DNA is necessary for the assembly of a replication-competent

PCNA-pol d holoenzyme.
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P
rocessive chromosomal replication requires ring-shaped
sliding clamp factors that encircle DNA and anchor
polymerases and other proteins of the replisome. Prolifer-

ating cell nuclear antigen (PCNA)—the eukaryotic sliding
clamp—is a homotrimeric ring of 86 kDa featuring a central
channel lined with lysine and arginine-rich a-helices through
which DNA is threaded1–3. The central channel of PCNA
is a conserved structural feature among sliding clamps and is
B35Å in diameter, significantly larger than the diameter of the
B-form DNA double helix (B24Å)4. Since the first
determination of the structure of a sliding clamp, the bacterial
b-clamp5, this feature has raised questions regarding the
interaction with DNA and the sliding mechanism. The crystal
structure of b-clamp bound to primed DNA6 showed the
DNA duplex threaded through the clamp at a 22� tilt angle,
making contacts with residues in the channel and on protruding
loops on the back face of the clamp. However, extensive
interactions are also established between the single-strand
portion of DNA and the protein binding pocket of a
crystallographically related b-clamp molecule. The b-clamp-
ssDNA inter-molecular interaction in the crystal is intra-
molecular in solution, and DNA competes with DNA
polymerase binding6.

Despite structural conservation, the absence of patterns
of sequence similarity in bacterial and eukaryotic clamps1 does
not allow a simple correlation among the DNA-binding sites
in the two systems. On the other hand, the positively charged

residues lining the clamp channel are conserved in eukaryotes
and a subset of these residues function in DNA synthesis by
pol d and clamp loading by replication factor C (RFC)7–9,
pointing to the existence of direct interactions between
PCNA and the DNA phosphodiester backbone. In a
crystallographically derived model of yeast PCNA bound to a
10 bp primed DNA, the DNA in the clamp channel protrudes
from the back face at a B40� tilt angle, is held in place
by a crystal contact, and would collide with PCNA if it
was lengthened towards the front face. The PCNA–DNA
interface only shows some charge complementarity and the
protein residues involved largely do not overlap with those
found to have an effect on clamp loading or pol d function7–9,
making it difficult to ascribe this model to a functional state of the
complex. Because of the inherent lability of the PCNA–DNA
interaction, structural and biophysical characterization of
this interface has been challenging. As a consequence, how
eukaryotic clamps recognize DNA has remained controversial
and a molecular mechanism of PCNA sliding on DNA has
not been proposed. Here we have determined the crystal structure
of human PCNA bound to a 10 bp long double-stranded
DNA (dsDNA). We analysed the DNA-induced perturbations
in the solution NMR spectrum of PCNA, and computationally
characterized the interactions in multinanosecond molecular
dynamics (MD) simulations. We show that PCNA recognizes
the DNA structure through a set of basic residues within the ring
channel organized to match the pitch of B-DNA, establishing
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Figure 1 | Structural basis of DNA recognition by human PCNA. (a) 2.8Å crystal structure of PCNA bound to a 10 bp DNA duplex. PCNA and DNA are

shown in surface and ribbon representation, respectively. PCNA subunits are coloured in different shades of blue and DNA in orange. The expansion shows

the complex in ribbon representation. Interacting PCNA side chains and DNA phosphates (interatomic side chain nitrogen—DNA phosphorus distance

o5Å) are shown as sticks and yellow spheres, respectively, and interactions as dashed lines (b) NMR analysis. Left: front- and back-face views of PCNA

surface. PCNA residues whose amide chemical shifts are significantly perturbed by DNA are coloured red. The crystallographic position of DNA is shown in

orange. The interacting region in the clamp channel overlaps with that seen in the crystal structure, whereas in the crystal, the side chains can be

discriminated, in solution the perturbations involve the backbone amides. Right: chemical shift perturbation of the amide signal of PCNA residue T73 at

different DNA concentrations. Fitting was performed using a single-site binding model. Extrapolated dissociation and exchange time constants are

indicated. (c) Model interface from MD simulation. The crystallographic position of the DNA segment is shown in orange, whereas in black the DNA is

shown in a position corresponding to the final state of the 100 ns MD simulation of the complex.
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short-lived polar interactions with consecutive DNA phosphates.
The interacting side chains are able to switch between adjacent
phosphates in a non-coordinated manner, supporting a
helical sliding mechanism in which the clamp rotates and
tilts by keeping a fixed orientation relative to the DNA backbone.
We discuss the implications of these findings for the function
of the PCNA-pol d holoenzyme in DNA replication, and also
for clamp loading by RFC.

Results
Structure of the PCNA–DNA complex. We obtained crystals
of PCNA–dsDNA complex with one PCNA trimer per asym-
metric unit and diffracting to 2.8 Å resolution (Supplementary
Table 1). The dsDNA molecule threads through the PCNA ring
with its longitudinal axis and the C3 axis of the ring forming an
angle of 15� (Fig. 1a and Supplementary Fig. 1). No crystal lattice
contacts between DNA and symmetry-related molecules
are present, and the crystal packing does not affect the DNA
position. The high temperature factors of dsDNA are compatible
with a partial occupancy of dsDNA and/or with the existence
of a subpopulation of complexes with slightly different DNA
orientations. The complex interface involves the side chains of
five basic residues (K20, K77, R149, H153 and K217), distributed
on four a-helices of one PCNA subunit, and the side chain of

another residue (K80) on the proximal a-helix of the adjacent
subunit. The side chains of the PCNA interfacial residues form
a right-hand spiral that closely matches the pitch of B-DNA,
and are involved in polar contacts with five consecutive phos-
phates of a single DNA strand (Fig. 1a).

The dynamic PCNA–DNA interface observed in the crystal
is recapitulated by the NMR analysis of the binding in solution
(Fig. 1b, Supplementary Figs 2a and 2b and 3). Titration of PCNA
with dsDNA shows weak binding (KDB0.7mM) to the inner side
of the ring. In this assay, time averaging of the NMR signal
restores the symmetry of the PCNA ring that is broken in
the crystal. Backbone amide chemical shift perturbations
are small (CSPo0.06 p.p.m.), and the exchange rate is fast
(Fig. 1b, Supplementary Figs 2 and 3). These observations are
consistent with the low affinity of the interaction, the contacts
involving long amino-acid side chains, and the high crystal-
lographic temperature factors of DNA.

Using NMR, we tested the binding of PCNA to the primed-
template DNA (pDNA) substrate (Supplementary Table 2) that
was co-crystallized with the bacterial b-clamp6. In the b-pDNA
structure, the ssDNA template strand is anchored to the main
protein-binding pocket of the clamp, thus competing with
DNA polymerase binding6. Our NMR mapping, however,
shows that pDNA binds the inner wall of the human PCNA
channel but not the protein binding (PIP-box) pocket
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Figure 2 | MD simulation of human PCNA bound to a 30bp DNA. (a) PCNA ring rotation and evolution of DNA tilting relative to the ring C3 axis

(b) Time evolution of contacts between the side chain nitrogens of three representative PCNA interfacial residues and DNA phosphorus atoms at

consecutive positions (c) Two views of the PCNA–DNA complex at the end of the MD trajectory. PCNA is shown as a grey surface and DNA as a black

ribbon. PCNA residues whose side chains are engaged in polar contacts with DNA phosphates for 425% of the MD trajectory are labelled. Residues from

different PCNA subunits are coloured in shades of blue. Residues that exchange between two or three consecutive DNA phosphates for 475% of the MD

simulation are indicated by an asterisk and boxed.
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(Supplementary Fig. 4), suggesting that bacterial and eukaryotic
clamps recognize primed DNA differently.

Dynamics of the PCNA–DNA interaction. A 100 ns
MD simulation of PCNA in complex with a 10 bp dsDNA
predicts a highly dynamic interaction, in agreement with
the experimental observations (Supplementary Figs 5a, 6 and 7).
In the MD trajectory, DNA migrates from the crystallographic
position to an alternative position, and subsequently to a central
location with minimal interactions with the protein, to eventually
collapse into a stable state (Supplementary Movie 1). Critically,
the latter state can be obtained by shifting the crystallographic
DNA model by two bases along the helical axis. Following
this transformation, one DNA strand interacts with equivalent
residues on the adjacent PCNA subunit (Fig. 1c). Distance
analysis of the intermolecular polar contacts along the MD
trajectory points to residues near the back face of the ring that
contribute to driving DNA into its final state (S10, K14, N84;
Supplementary Fig. 5b,c). These interactions are consistent
with the NMR perturbation analysis (Fig. 1b). Thus, in solution
DNA can access regions of the clamp that differ from, but are
correlated to, those observed in the X-ray structure.

Altogether, these results anticipate that a DNA duplex longer
than 10 bp will simultaneously bind two sets of B-helix matching
residues on two PCNA subunits in a dynamic way.
This prediction is supported by our 250 ns MD simulation of a
complex of PCNA bound to a 30 bp dsDNA (Supplementary
Table 2, Fig. 2, Supplementary Figs 6–9 and Supplementary
Movie 2) which, having the fraying DNA duplex ends far from
the ring, better recapitulates the physiological complex. The
DNA at the end of the trajectory (Fig. 2a) shows extensive
interactions with the clamp (Fig. 2c) and a more pronounced

tilting (B30�) compared with the crystallographic one. This
value is slightly larger than the 20� reported for a 25 ns
MD simulation3. In our simulation, however, 25 ns were found
to be insufficient for the system to reach a stable conformation
(Fig. 2a).

Single molecule diffusion data suggest that PCNA
moves along DNA using two distinct modes: by rotationally
tracking the DNA helix or, less frequently, by a faster motion
uncoupled from the helical pitch10. Our MD simulations show
that many of the PCNA interfacial residues can randomly switch
between adjacent DNA phosphates on a sub-nanosecond time
scale (Fig. 2b, Supplementary Fig. 9 and Supplementary Movie 3).
This stochastic process will eventually generate a state where a
sufficient number of contacts with adjacent phosphates in
one direction of the helical axis are simultaneously established,
resulting in a net rotation of the protein and the advancement of
1 bp (Fig. 3a). This ‘cogwheel’ mechanism would allow
DNA backbone tracking in both directions while retaining
DNA–protein contacts that keep the clamp in a defined
orientation relative to DNA (Fig. 3b). On the other hand, the
occasional exchange of DNA among the three equivalent
positions of the PCNA homotrimer may account for the
‘uncoupled’ component of PCNA sliding.

Discussion
The work presented here allows to visualize for the first time
the atomic interactions between human PCNA and dsDNA,
and to follow their time evolution. Our data support a molecular
sliding mechanism that keeps the orientation of the clamp
invariant relative to the DNA backbone. Importantly, we present
results on the interaction of PCNA with primed DNA that reveal
substantial differences compared to the bacterial system.
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Figure 3 | Proposed ‘cogwheel’ mechanism for PCNA sliding. (a) Interacting side chains are able to rapidly switch between adjacent phosphates in a non-

coordinated manner (illustrated by the thin and thick lines). When this stochastic process generates a state in which a sufficient number of electrostatic

contacts are simultaneously established with adjacent phosphates in one direction of the DNA helical axis, a net rotation of the protein occurs and results in

the advancement of one base pair (b) PCNA bi-directional tracking of the DNA backbone, which agrees with the clamp helical sliding mode inferred from

diffusion data measured by single-molecule imaging5. The diffusion coefficient of PCNA (1.16 mm2 s� 1) implies that, on average, PCNA diffuses 8 bp per

microsecond.
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O’Donnell and co-workers6 showed that the single-strand portion
of primed DNA binds the protein binding pocket of b-clamp,
and competes with DNA polymerase III binding. The
data presented here, conversely, do not suggest an interaction
between primed DNA and the polymerase-binding site of
PCNA. Consequently, the functional models proposed for
b-clamp based on this feature cannot be extended to eukaryotic
clamps. In particular, the b-ssDNA contact may function as a
‘placeholder’ that keeps b-clamp near the 30 end of primed DNA
before polymerase binding and initiation of DNA replication6.
Sticking of b-clamp to the 30 end of primer/template (P/T)
junctions of DNA was also observed by single-molecule
experiments11. As we explain below, fast diffusion of human
PCNA on DNA and our proposed sliding mechanism would
bypass the need for such a placeholder function in
DNA replication by the PCNA–pol d complex.

Pol d is a four-subunit B-family polymerase that replicates
the DNA lagging strand by associating to PCNA, forming
a holoenzyme at the P/T junction of nascent Okazaki frag-
ments12,13. Three of the four human pol d subunits interact
directly with PCNA, via PIP-boxes that may bind up to three sites
on the front face of the PCNA homotrimer14–19. Earlier evidence
showed that a single mutation among PCNA residues K20, K77,
K80, R149 and K217 severely reduces pol d ability to incorporate
an incoming nucleotide at the initiation of DNA synthesis7. Data
presented in this paper suggest that these residues are critical
for PCNA–DNA recognition and for orienting the clamp on
DNA. Thus, we propose that this orientation is needed for the
assembly of a functional pol d holoenzyme, able to initiate
replication of a primed Okazaki fragment (Fig. 4). A recent report
showed that, unlike the yeast homologue, human pol d maintains
a loose association with PCNA while replicating DNA,
and suggested that a significant fraction of pol d holoenzymes
may dissociate before finishing an Okazaki fragment20. If pol d
dissociates prematurely from the lagging strand template,

PCNA would be left behind on DNA for some time, where
it would slide freely, until an incoming pol d molecule rebinds
to resume synthesis at the 30 end of the aborted fragment. Thus,
our proposed mechanism for PCNA sliding would ensure that
the incoming polymerase encounters PCNA in the correct
orientation to efficiently restart synthesis (Fig. 4). According
to its diffusion coefficient (B1 mm2 s� 1)10, free PCNA can
slide over a fully formed Okazaki fragment (100–150 nt) in
o0.2ms, while nucleotide incorporation by pol d is much slower
(kpolB100 s� 1)20, suggesting that the sporadic sliding of PCNA
off the P/T junction of an unfinished fragment would
not significantly decrease the speed of replication. Likewise,
pol d dissociates from PCNA upon encounter of a DNA lesion,
and PCNA is left behind before binding to a specialized
translesion synthesis (TLS) polymerase able to replicate past the
lesion20. Therefore, the proposed sliding mechanism of PCNA
may as well be important for the assembly of functional
complexes that involve TLS polymerases. Interestingly, the
binding site of DNA on the inner wall of the PCNA ring partly
overlaps with that of p15PAF, an intrinsically disordered protein
that regulates TLS via its interaction with PCNA21–23. Binding of
p15PAF could modulate the PCNA sliding mechanism and
dynamics, which may play a role in DNA repair.

A high-resolution crystal structure of a PCNA–polymerase–
DNA ternary complex has not yet been determined, likely
because of the inherent flexibility of the system. The medium-
resolution electron microscopy structures of Pyrococcus furiosus
(Pfu) PCNA bound to DNA and PolB or DNA ligase, determined
by Morikawa and co-workers24,25, show that the DNA duplex
passing through PCNA is tilted. A recent computational work by
Ivanov and co-workers26 on the PfuPCNA–PolB–DNA complex
show that the repositioning of the PolB core during the
conformational switch from polymerizing to editing modes
forces the DNA to tilt from one side of the PCNA channel to
the other, suggesting flexibility of the PCNA–DNA interaction.

PCNA is loaded onto primer-template pDNA by the clamp
loader RFC, a five-subunit complex that performs mechanical
work through ATP binding and hydrolysis27–30. ATP binding
enables the clamp loader to bind and open the clamp and bind
pDNA, and ATP hydrolysis leads to the release of the clamp–
pDNA complex, which can then associate to polymerases and
other factors. Mutation of residues R14, K20, R80 or K217 in
yeast PCNA (K14, K20, K80 and K217 in the human sequence)
have been shown to slow binding of pDNA to the RFC–ATP–
PCNA complex, slow clamp closure around pDNA after
ATP hydrolysis, and hasten clamp slipping off pDNA9. Thus,
these residues, which we show take part in the binding of human
PCNA to DNA, may play a role in clamp loading by guiding
DNA through the open clamp and into the clamp loader to form
a tight complex. These residues may also assist in the transition of
the clamp from open spiral to closed planar forms, hence
promoting clamp–pDNA release from the clamp loader27.

Methods
Protein expression and DNA duplexes. Human PCNA (UniProt: P12004) was
produced in E. coli BL21(DE3) cells grown in appropriate culture media to obtain
protein with natural isotopic abundance or uniform enrichment using a clone with
N-terminal His6-tag and PreScission protease cleavage site in a pET-derived
plasmid. For NMR samples the protein was purified from the soluble fraction by
Co2þ -affinity chromatography, cleaved by PreScission protease and polished by
gel-filtration chromatography31 in PBS (137mM NaCl, 2.7mM KCl, 10mM
sodium phosphate, 2mM potassium phosphate) pH 7.0. All columns and
chromatography systems used where from GE Healthcare. Protein elution was
monitored by absorbance at 280 nm and confirmed by SDS–polyacrylamide gel
electrophoresis. The purified protein contained the extra sequence GPH- at the N
terminus. The PCNA sample for crystallization was obtained by introducing two
additional purification steps23. The sample cleaved with PreScission protease was
dialysed against 50mM sodium acetate pH 5.5, 100mM NaCl. After separation of
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some precipitated material, the solution was loaded on a HiTrap Heparin HP
column equilibrated with the same buffer. After column washing, the protein was
eluted with a 0–100% gradient of 50mM sodium acetate pH 5.5, 2M NaCl in 20
column volumes (CV). The protein containing fractions of the major peak were
dialysed against 20mM Tris-HCl buffer pH 7.6, 150mM NaCl and injected into a
HiTrap Chelating HP column loaded with Co2þ cations to remove uncleaved
PCNA. The flowthrough was loaded on a HiTrap Q Sepharose column and eluted
with a 0–60% gradient of 20mM Tris-HCl pH 7.6, 1M NaCl in 5CV. The protein
containing fractions were concentrated and polished using a Superdex 200 26/60
column equilibrated with PBS, pH 7.0, and then exchanged into the crystallization
buffer (20mM Tris-HCl, pH 7.5, 10% glycerol, 2mM DTT) using a PD10 column.
Stock solutions in PBS or crystallization buffer were flash-frozen in liquid nitrogen
and stored at � 80 �C. The protein concentrations were measured by absorbance at
280 nm using the extinction coefficient calculated from the amino acid composition
(15,930M� 1 cm� 1). All indicated concentrations of PCNA samples refer
to protomer concentrations. dsDNA and pDNA duplexes were obtained by mixing
equimolar amounts of the appropriate oligonucleotides in 20 mM Tris-HCl buffer
pH 7.8, 25 mM NaCl, at 93 �C for 2min with subsequent annealing by slow cooling
at room temperature.

PCNA–dsDNA complex structure determination. Stocks of PCNA and dsDNA
solutions were mixed to final concentrations of 0.4mM and 1.1mM, respectively
(1:8 trimer:duplex molar ratio), and incubated at room temperature for 30min
before screening crystallization conditions by the hanging drop vapour diffusion
method. Best diffracting co-crystals grew within 2 days at 20 �C in 2 ml droplets
obtained by mixing 1 ml of the complex solution and 1 ml of a solution containing
11% polyethylene glycol 3350 in 0.1M sodium acetate buffer, pH 4.5. Remote data
collection was performed at the ID30A-3 (MASSIF-3) micro focus beamline
(ESRF). Data processing and reduction was carried out with XDS32,33 and the
CCP4i suite34. Crystals belonging to space group H3 diffracted to 2.8 Å resolution
and contained one PCNA trimer per asymmetric unit. The structure was
determined by molecular replacement with MOLREP33 using the previously
published structure of the PCNA–p1550–77 complex (PDB ID: 4D2G) as search
model after removing the p15 peptide and solvent molecules. Repeated cycles of
refinement using REFMAC5 (ref. 35) and model building using COOT36 were
performed. A global Non Crystallographic Symmetry restraint with TLS and
Jellybody refinements were applied. For optimal modelling of bulk solvent within
the B34Å PCNA ring channel, Babinet’s correction was applied37. The DNA
within the PCNA channel was located in the centre of the ring at a 15� tilt angle by
inspecting the unbiased Fo-Fc Fourier difference map contoured at 2.0–1.5s
(Supplementary Fig. 1). The DNA molecule was modelled and refined as a rigid
body using a single TLS group. PDB_REDO38 was used to check the quality of the
crystallographic structure. Data collection and refinement statistics are listed in
Supplementary Table 1. All figures with molecular models were prepared using
PyMOL (www.pymol.org).

NMR spectroscopy. 1H–15N TROSY spectra were recorded at 35 �C on a Bruker
Avance III 800MHz (18.8T) spectrometer equipped with a cryogenically cooled
triple resonance z-gradient probe. A 400ml sample of 100 mM U-[2H,13C,15N,]
PCNA in 20mM sodium phosphate buffer, 50mM NaCl, pH 7.0, 20 mM
2,2-dimethyl-2-silapentane-5-sulfonate, 0.01% NaN3 and 5% 2H2O was placed in a
5mm Shigemi NMR tube (without plunger) and increasing volumes of DNA stock
solutions were added and mixed (by capping and inverting the tube). The
DNA stocks solutions were prepared as the PCNA samples in the same buffer
(except that no NaN3, DSS or 2H2O was added). For that purpose, and to remove
unwanted salts from the synthetic oligonucleotides, they were dissolved in 20mM
sodium phosphate buffer, 50mM NaCl, pH 7.0 (at a concentration between 0.7 and
4.9mM) and desalted on a PD-10 Minitrap G25 column. For duplex formation,
equimolar amounts were mixed and annealed (2min at 95 �C in a thermoblock
followed by slow cooling down to room temperature). The duplexes were
concentrated by ultrafiltration up to 12.15mM in 44 ml (dsDNA) or 11.21mM in
71ml (pDNA). These volumes were added stepwise to the PCNA samples, causing a
10 and 15% PCNA dilution, respectively. TROSY spectra were measured with
144 or 256 indirect points (alternating between 8 and 14 h total duration). The
PCNA–dsDNA sample remained clear during the 5-day long titration at 35 �C, but
there was an overall decreased in TROSY signal intensity (by about 25% measured
in the most intense signal, the sharp signal of the C-terminal residue) and increased
relative intensity at the central region of the spectrum (coming from both weak
new sharp signals and background broad signals). This suggests that the PCNA
protein was slowly losing structural integrity. The DNA duplex, however, remained
homogeneous as assessed from the imino signals observed in one-dimensional
proton spectra. In the case of pDNA titration, minor protein precipitation started
after the 1:16 ratio addition, but the overall intensity decrease at the end of the
titration (as measured on the C-terminal residue signal) was of the same order as in
the case of dsDNA. This suggests that the largest contribution to the intensity loss
along the titration is the binding of the large and protonated DNA duplexes to
the deuterated PCNA ring. The pH of the PCNA samples was measured at the
beginning and at the end of the titrations inside the NMR tubes and found to
deviate by o0.1 units. Therefore, the small measured shifts are not caused by
differences in pH or ionic strength. The small and steady shifts allowed for an

extensive transfer of NMR signal assignments from the free PCNA to the
DNA-bound PCNA spectra (with a coverage of 90% of non proline residues).
The CSP values were computed as the weighted average distance between the
backbone amide 1H and 15N chemical shifts in the free and bound states39.

MD simulations. Two different systems were set up. First, a PCNA–DNA complex
with the 10 bp DNA duplex, analogous to the system used in the crystallographic
and NMR studies. The initial coordinates for this system were taken from the
crystallographic structure (PDB ID: 5L7C). Second, a PCNA–DNA complex with
the 30 bp DNA duplex. The coordinates of this model were based on the previous
one for PCNA and the central 10 bp DNA segment. Then, the DNA chains were
extended by 10 bp with B-form geometry along each direction using COOT36.
The following steps are the same for both systems. First, the system was protonated
with standard protonation states with Ambertools 15 (ref. 40), and solvated in
a truncated dodecahedron box at least 1.5 nm away from the DNA or protein
atoms. Chlorine and sodium ions were added to the simulation box to achieve
a concentration of 100mM and neutralize the system. Then, the system was
minimized and equilibrated for 100 ps in the NVT ensemble and 100 ps in the NPT
ensemble. Energy equilibration was checked for these steps. We run these initial
steps with position constraints on DNA and protein heavy atoms. Then, we
run a production simulation of 100 ns for the 10 bp system and 250 ns for the
30 bp system. When calculating averages, the first 10 ns (50 ns) were treated as
equilibration and not considered for the 100 ns (250 ns) simulation. The stability
of the simulations was checked by visual inspection of the trajectories and the
RMSD with respect to the starting structure as plotted in Supplementary Fig. 6.
Supplementary Figs 7 and 8 show that the DNA fragment remains in its double
strand form and has a small curvature. We used the recently developed parmBSC1
force field41, and TIP3P for the water model. All calculations were run with
Gromacs 5 (refs 42,43). The superposition of structures and the calculation of the
root mean square fluctuations (RMSF) were done with the Theseus Maximum
Likelihood algorithm44. Theseus down-weights variable regions of the
superposition and corrects for correlations among atoms, producing much more
accurate results, especially for proteins having rigid and flexible regions. The
analysis of DNA H-bonds and curvature (Supplementary Figs 7 and 8) was
performed with 3DNA45 and do_x3dna46.

Data availability. Coordinates and structure factors of the PCNA–dsDNA
complex are deposited in the Protein Data Bank under accession code 5L7C. The
data that support the findings of this study are available from the corresponding
author upon request.
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