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A bromodomain–DNA interaction facilitates
acetylation-dependent bivalent nucleosome
recognition by the BET protein BRDT
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Bromodomains are critical components of many chromatin modifying/remodelling proteins

and are emerging therapeutic targets, yet how they interact with nucleosomes, rather than

acetylated peptides, remains unclear. Using BRDT as a model, we characterized how the BET

family of bromodomains interacts with site-specifically acetylated nucleosomes. Here we

report that BRDT interacts with nucleosomes through its first (BD1), but not second (BD2)

bromodomain, and that acetylated histone recognition by BD1 is complemented by a

bromodomain–DNA interaction. Simultaneous DNA and histone recognition enhances

BRDT’s nucleosome binding affinity and specificity, and its ability to localize to acetylated

chromatin in cells. Conservation of DNA binding in bromodomains of BRD2, BRD3 and BRD4,

indicates that bivalent nucleosome recognition is a key feature of these bromodomains and

possibly others. Our results elucidate the molecular mechanism of BRDT association with

nucleosomes and identify structural features of the BET bromodomains that may be targeted

for therapeutic inhibition.
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T
he basic repeating unit of chromatin is the nucleosome,
consisting of two copies each of four core histones
(H2A, H2B, H3 and H4) wrapped in B147 bp of DNA1.

This repeating unit, and the higher order structures it forms,
serves to regulate DNA accessibility for tight control of all DNA-
templated processes. Access is mediated by epigenetic modi-
fications including histone posttranslational modifications and
DNA methylation, which either directly influence chromatin
structure, or recruit or repel chromatin effector proteins that
harbour modification-specific DNA or histone-binding modules,
such as bromodomains2–4.

The bromodomain and extra-terminal (BET) family (BRD2, 3,
4 and BRDT in human) are multi-functional chromatin effector
proteins, whose critical roles in transcription and chromatin
biology have made them attractive therapeutic targets for a wide
range of malignancies (recently reviewed in refs 5–7). These
proteins have a domain architecture that is conserved from
yeast to human, which features two N-terminal bromodomains
separated by a linker of B110 amino acids, a ‘motif B’ that
mediates BET protein dimerization8, and a characteristic extra-
terminal domain that acts as a protein–protein interaction
module for recruiting cofactors involved in transcriptional
regulation9,10. Additionally, longer isoforms of BRD4 and
BRDT (Fig. 1a) have an extended C-terminus that allows them
to facilitate RNA polymerase II-dependent transcription through
interactions with the positive-transcriptional elongator
complex11,12.

Bromodomains recognize acetylated lysine residues and have
a highly conserved structural fold consisting of four a-helices
(aZ, aA, aB, aC) forming a compact left-handed bundle. Variable
loops connecting helices aZ–aA (ZA loop) and aB–aC (BC loop)
shape the acetyl–lysine binding pocket, thus contributing to
substrate specificity13,14. Structure-based alignments and
phylogenetic analysis of the 61 human bromodomains, which
are found in 46 diverse proteins, divides them into eight distinct
families14. The variability of the acetylated lysine pockets has
recently allowed the development of inhibitors that are specific
against various members of these families, particularly the BETs
(recently reviewed in ref. 15).

Bromodomains typically bind to acetylated lysine residues with
relatively low affinity (micromolar) and relatively poor selectivity
for single acetylated-lysine residues within an isolated peptide14.
However, specificity and affinity are frequently increased in the
presence of multiple modifications. For example, both
bromodomains of BRDT, the testis-specific member of the BET
family that is essential for spermatogenesis, show a preference for
multiply acetylated histone peptides16,17. The first bromodomain
of BRDT (BD1) preferentially binds histone H4 tail peptides
acetylated at lysines 5 and 8 (H4K5acK8ac), while the second
bromodomain (BD2) has highest affinity for histone H3 tail
peptides acetylated at lysines 18 and 23 (H3K18acK23ac). In both
cases, binding to individually acetylated peptides is either weaker
or could not be determined16. Notably, the crystal structure of the
BD1-H4K5acK8ac peptide complex revealed that the single
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Figure 1 | The nucleosome structure augments acetylated histone tail binding by BRDT-BD1 but prevents interaction with BRDT-BD2. (a) Domain

layout of human BRDT. (b) ITC profiles for N-BRDT(1) interactions with either acetylated histone H4 tail peptides or acetylated nucleosomes

(both H4K5acK8ac), as indicated. (c) ITC profiles for BRDT(2) interactions with either acetylated histone H3 tail peptides or acetylated nucleosomes

(both H3K18acK23ac), as indicated.
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binding pocket of BD1 can simultaneously bind to both
acetylated lysines of a K5acK8ac peptide16.

There is increasing recognition that multivalency is a central
component of chromatin biology. Chromatin-binding proteins
and complexes frequently use multiple low-affinity interactions
to achieve affinities, specificities and dynamics that would
otherwise be impossible through monovalent interactions18.
These multivalent interactions can occur either through the
combination of histone or DNA interactions within a single
protein, or within a complex carrying several chromatin-binding
domains (recently reviewed in refs 19,20). Typically these
interactions have been studied using a ‘divide and conquer’
approach, particularly in studies of histone tail binding by
chromatin readers that have predominantly used isolated histone
peptides in place of nucleosomes.

To gain a more comprehensive picture of how BET
bromodomains interact with chromatin, we sought to character-
ize how BRDT, with its tandem bromodomains, interacts with
acetylated nucleosomes. Using a combination of biophysical
methods, including isothermal titration calorimetry (ITC) and
methyl-TROSY NMR, we find that BRDT interacts with
acetylated nucleosomes through BD1 only, while BD2 is
unexpectedly unable to interact with acetylated histones within
a nucleosome. We show that BRDT-BD1 binding to nucleosomes
is bivalent and consists of simultaneous recognition of both
acetylated histone tails and DNA. Importantly, we find that the
bromodomain–DNA interaction is nonspecific and facilitates
recruitment of BRDT to bulk chromatin, where it may assist
BRDT in bringing about chromatin compaction in response to
histone hyperacetylation in cells. We find similar DNA binding in
other members of the BET bromodomain family, suggesting that
this bivalent mode of recruitment is not limited to BRDT. Our
results offer an in-depth characterization of bromodomain
association with acetylated nucleosomes and highlight the
importance of nucleosome components beyond the histone tail
for bromodomain recognition.

Results
Nucleosome structure influences bromodomain binding. The
interactions of the BET bromodomains with chromatin have
largely been studied by two approaches. First, chromatin immu-
noprecipitation experiments and pull-downs have been used to
correlate BET binding with the presence of particular histone
modifications on chromatin in vivo14,21. Alternatively, the
bromodomains have been tested individually by in vitro
experiments, such as peptide arrays and ITC, to investigate
their binding preferences for specifically modified histone tail
peptides14,16. Here we extend these studies and use BRDT to
characterize the interaction of the BET bromodomains with
in vitro reconstituted, site-specifically acetylated nucleosomes.

On the basis of previous characterization of the binding
specificities of the two bromodomains of murine Brdt16, we
utilized a histone semisynthesis approach and native chemical
ligation to reconstitute four types of acetylated nucleosomes
in vitro22,23. These nucleosomes were either unmodified,
acetylated on histone H4 (H4K5acK8ac), acetylated on histone
H3 (H3K18acK23ac) or acetylated on both H3 and H4. The
histone modifications did not interfere with octamer or nucleo-
some refolding (Supplementary Fig. 1) and therefore were used to
investigate how nucleosome structure affects bromodomain
binding to histone tails.

We tested two BRDT bromodomain constructs for their
histone- and nucleosome-binding properties. The first construct
(N-BRDT(1), residues 1–143) included the core bromodomain
fold of BD1 and the N-terminus of BRDT that has been shown to

be essential for BRDT’s ability to compact acetylated chromatin24.
The second construct, (BRDT(2), residues 258–383) was based on
the murine Brdt-BD2 bromodomain crystal structure16.

As expected, ITC showed that N-BRDT(1) requires acety-
lation of histone H4 for binding to histone peptides and
nucleosomes. No binding was detected for unmodified samples
(Supplementary Fig. 2a,b), whereas the dissociation constants
between N-BRDT(1) and H4K5acK8ac acetylated peptides and
nucleosomes were found to be 13 mM and 2 mM, respectively,
(Fig. 1b). These data show that BRDT-BD1 interacts with
nucleosomes with a 46-fold enhancement in affinity compared
with acetylated H4 histone tail peptides alone, and indicates that
the nucleosome structure is an important determinant of histone
tail recognition.

Surprisingly, our ITC data indicated that BRDT(2) cannot
interact with acetylated nucleosomes, despite interacting with the
equivalently acetylated histone H3 peptides (Fig. 1c). This
suggests that the nucleosome structure prevents BRDT(2) from
binding the H3 tail.

To confirm our ITC data and further characterize how BRDT
interacts with nucleosomes, we adopted the methyl-TROSY
NMR methodology that facilitates the investigation of large
complexes25. Here 13C, 1H methyl groups of isoleucine, leucine
and valine in a perdeuterated background were used as sensitive
probes for monitoring interactions between the bromodomains
and acetylated nucleosomes.

Consistent with our ITC data, N-BRDT(1) interacted with
(H4K5acK8ac) acetylated nucleosomes (Fig. 2a), whereas BRDT(2)
showed no interaction with H3K18acK23ac acetylated nucleo-
somes (Supplementary Fig. 2c). For N-BRDT(1), overlaid 13C-1H
methyl-TROSY spectra showed chemical shift perturbations
(CSPs) in residues surrounding the acetylated lysine-binding
pocket when tested with both (H4K5acK8ac) acetylated peptides
and nucleosomes (Fig. 2a,b). In addition, binding of N-BRDT(1)
to acetylated nucleosomes also induced specific CSPs distinct
from those caused by peptide binding alone (Fig. 2a,b). These
perturbations occurred towards the opposite end of N-BRDT(1)
(relative to the histone-binding pocket), and suggest that BD1
may make additional contacts with the nucleosome outside of the
histone H4 tail.

BRDT-BD2 is tethered to acetylated nucleosomes by BD1. We
hypothesized that BRDT-BD2 may require BRDT-BD1 for
recruitment to acetylated nucleosomes and thus may only bind
when tethered by BD1. Therefore, we expressed and purified a
longer BRDT construct encompassing both bromodomains
(BRDT(1-2)) to verify whether both BD1 and BD2 interact with
acetylated nucleosomes when linked.

We first characterized this construct by size-exclusion
chromatography, analytical ultracentrifugation, NMR spectro-
scopy and small angle X-ray scattering (SAXS) (Supplementary
Fig. 3) and found that BRDT(1–2) is a monomeric, elongated and
flexible molecule with the two bromodomains at either end of an
unfolded linker (Supplementary Fig. 3). Comparison of overlaid
1H, 15N HSQC spectra (Supplementary Fig. 3c) and 13C-1H
methyl-TROSY spectra (Supplementary Fig. 4a) of BRDT(1–2)
with individual N-BRDT(1) and BRDT(2) data showed a good
correspondence between peak positions. Our experimental data
therefore give no indication of significant changes in the folds of
these domains when linked, nor of dimerization between them, as
has been proposed for other bromodomains of the BET
family8,26,27. New resonances, which appeared in the BRDT
(1–2) 1H, 15N HSQC spectrum (Supplementary Fig. 3c), were
attributed to the linker; these resonances were predominantly
grouped in the middle of the spectrum and have significantly
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higher intensities, suggesting that the linker is unstructured.
Comparable peak intensities for the resonances of the bromo-
domains in the linked construct, when compared with those of
N-BRDT(1) and BRDT(2) alone, indicate that the two domains
rotate independently of each other.

We then tested how BRDT(1–2) interacts with acetylated
peptides and nucleosomes using leucine and valine 13C-1H
methyl-TROSY NMR. Overlaid spectra of samples containing
BRDT(1–2) and acetylated H3 or H4 histone peptides show CSPs
for both BD1 and BD2 (Supplementary Fig. 4a, lower panels).
The observed CSPs occur in almost identical resonances regar-
dless of the peptide, as would be expected for both peptides targ-
eting the histone-binding pockets. These data therefore show that
both bromodomains bind to both acetylated histone peptides and
highlight the lack of specificity of individual bromodomains for
acetylated histone peptides alone.

In contrast to the peptide binding, we found that only BD1 was
able to interact with nucleosomes uniformly acetylated on both
histones H3 (K18acK23ac) and H4 (K5acK8ac) (Supplementary
Fig. 4b, lower panels). Resonances from the linker and BD2 did
not show evidence of interaction with the nucleosomes and
appear to have remained flexible in solution. This result shows
that tethering of the BD2 to nucleosomes is not sufficient to
induce interaction.

To confirm that the experimental conditions were conducive to
seeing binding between BD2 and nucleosomes, we repeated the
experiments with acetylated histones from the purified octamer
used for nucleosome reconstitution. BRDT(1–2) binding was
tested under the same concentrations and buffer conditions as the
nucleosome experiments (Supplementary Fig. 4b, upper panels).

Here BD2 interacted with the histones, demonstrating that BD2 is
unable to bind to acetylated H3 tails when presented in the
context of a nucleosome.

BRDT interacts non-specifically with DNA through BD1.
Given the proximity of the histone H4 tail to the DNA that
encircles the histone octamer, we investigated whether BRDT-
BD1 might interact with DNA using electrophoretic mobility shift
assays (EMSAs). Strikingly, N-BRDT(1) showed robust binding
to the 167 bp Widom DNA that we use for reconstituting
nucleosomes (15 mM) (Fig. 3a), whereas BRDT(2) did not interact
with the DNA (Supplementary Fig. 5).

To investigate the binding specificity and stoichiometry of
these interactions, we tested N-BRDT(1) binding to 66 and 25 bp
DNA oligonucleotides (Fig. 3b). These oligonucleotides had an
unrelated sequence to the previously tested 167 bp DNA
(sequences in Methods). N-BRDT(1) interacted with each of
the DNAs, showing that it interacts with nucleic acids without
sequence specificity. Quantification of the EMSAs showed that
N-BRDT(1) interacts with 66 and 25 bp DNAs with dissociation
constants of 29mM and 52 mM, respectively. An apparent increase
in affinity as the DNA length increases is expected for a non-
specific DNA-binding protein presented with an increased
number of potential binding sites in longer DNA. Accordingly,
the shifts seen in the EMSAs suggest that at least two N-BRDT(1)
molecules can interact with 66 bp DNA, whereas only a single
shift is seen for 25 bp DNA (Fig. 3b, arrowheads).

Our ITC data (Fig. 1b; Supplementary Fig. 2a,b) suggested that
N-BRDT(1) required acetylation of H4 to bind to nucleosomes,
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however, binding of N-BRDT(1) to free DNA would suggest that
it should also bind non-specifically to nucleosomes, independent
of acetylation. To test this, we performed EMSA experiments with
167 bp Widom DNA and unmodified or acetylated nucleosomes
(Fig. 3c). We found that N-BRDT(1) did indeed show weak
binding to unmodified nucleosomes in a similar manner seen for
DNA. The apparent discrepancy with the ITC result suggests
that—due to limitations in the achievable sample concentra-
tions—the interaction could not be detected under our experi-
mental conditions.

As predicted from our ITC experiments (Fig. 1b), N-BRDT(1)
binds with a significantly higher affinity and apparent
specificity to nucleosomes containing acetylated histone H4
(Fig. 3c). In contrast, BRDT(2) showed no interaction
with unmodified or acetylated nucleosomes (Supplementary
Fig. 5), supporting our findings from NMR and ITC
experiments.

These data demonstrate DNA binding by a bromodomain and
show that BRDT-BD1 interacts non-specifically with DNA and
nucleosomes. BRDT therefore has a significantly different mode
of interacting with nucleosomes than previously envisaged, and
may target bulk chromatin through low affinity, non-specific
DNA interactions, priming it to interact tightly and specifically
following histone hyperacetylation.

BD1 interacts with DNA and H4 through distinct interfaces.
To further characterize the BD1–DNA interaction, we analyzed
the sequences of human BRDT BD1 and BD2 (Supplementary
Fig. 6a), the X-ray crystal structure of BD1 (2RFJ14) and a

homology model of BD2 (generated using the Phyre2 web
server28) (Fig. 4a). These analyses identified a positively charged
patch in BD1 but not BD2 that correlates in location with
residues showing NMR CSPs specific to nucleosome binding
(Fig. 2a,b). We speculated that this region may be responsible for
interacting with DNA and may explain the difference in DNA
binding between BD1 and BD2.

The positively charged patch of BD1 is centered on the first
a-helix (aZ) and features three prominent lysine residues
(K37, K41 and K45) (Fig. 4a). We mutated these three lysines
to serine both individually and in combination to test their effect
on DNA binding.

We recorded 1D NMR spectra to ensure that the mutations
had not affected the folding of the bromodomains and
additionally tested each of the mutated proteins by ITC for
binding to H4K5acK8ac peptides (Supplementary Fig. 6b,c).
Neither mutation of the central lysine, nor triple mutation
significantly altered the 1D NMR spectra or the acetylated histone
H4 peptide-binding affinity in ITC. This is in contrast to a
previously characterized point mutation in the histone-binding
pocket (I155Y) that, despite maintaining the bromodomain fold,
significantly reduced the binding affinity of N-BRDT(1) for
acetylated histone peptides from 13 to 4600 mM (Supplementary
Fig. 6b,c).

Interestingly, individual mutation of each lysine reduced
N-BRDT(1) binding to DNA, with the most pronounced effect
seen by mutating the central lysine (K41S) (Fig. 4b). Double
mutation of lysine residues 37 and 41 (2KS), or triple mutation of
all three (3KS) abolished DNA binding (Fig. 4b).
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The bromodomain is a small domain and given the spatial
proximity between the histone-binding pocket and DNA-binding
interface, we speculated that DNA binding may be influenced
by histone tail binding. We performed quantitative EMSA
titrations comparing N-BRDT(1) binding to 66 bp DNA þ /�
H4K5acK8ac peptides. Peptide binding did not significantly affect
N-BRDT(1)’s affinity for 66 bp DNA (33 mM and 29 mM,
respectively; Supplementary Fig. 7), showing that the two binding
sites function independently. Therefore, the increased binding
affinity between BRDT-BD1 and nucleosomes, when compared
with DNA or histone peptides alone, appears to occur largely
through the entropic benefits of bivalency18, rather than through
allostery or the direct effect of a composite binding interface, such
as seen for the chromodomain of Chp1 (ref. 29).

Next, we tested the affinity of our N-BRDT(1) DNA binding
mutants for H4K5acK8ac nucleosomes, to quantify the role of DNA
binding in nucleosome recognition (Fig. 4c). The single point
mutation of the central lysine (K41S) reduced nucleosome-binding
affinity B3.5-fold (7mM), while triple mutation of all three lysines
further reduced the affinity to 9mM; approaching the affinity of
N-BRDT(1) for H4K5acK8ac peptides alone (B13mM) (Fig. 1b).
These results show that the BD1–DNA interaction contributes to

nucleosome-binding affinity. BRDT-BD1 thus interacts bivalently
with nucleosomes via a combination of acetylation-specific histone
recognition and non-specific DNA binding.

Nucleosome structure influences bromodomain specificity. We
have demonstrated that BRDT-BD1 interacts with both acetylated
histone tails and DNA simultaneously to augment its nucleo-
some-binding affinity; however, we also wanted to address the
issue of whether nucleosome structure contributes to binding
specificity. Bromodomains are promiscuous for binding to
acetylated lysine residues within a variety of sequence contexts14.
Although multiple acetylations within a single peptide enhance
both the specificity and affinity of BET bromodomain binding,
some (particularly BRD4-BD2) are still able to bind to a large
variety of multiply acetylated histone peptides14.

To investigate whether nucleosome structure contributes to
target specificity, we produced chimeric nucleosomes in which
the acetylated histone H4 tail (H4K5acK8ac) was ligated to the
core of histone H3. This allowed us to test the binding affinity of
N-BRDT(1) to nucleosomes containing the optimal acetylated
histone H4 recognition motif (H4K5acK8ac), but in an alternative
position on the nucleosome.
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Our ITC data indicate that N-BRDT(1) interacts with chimeric
nucleosomes with a dissociation constant of 5mM (Supplementary
Fig. 8). Notably, this represents an B2.5-fold enhancement in
binding affinity over the interaction between N-BRDT(1) and the
H4K5acK8ac peptide, but an B2.5-fold decrease in affinity
compared with H4K5acK8ac nucleosomes (Fig. 1b). We propose
that DNA binding localizes the bromodomain to the chimeric
nucleosome in the same manner as for the wild type (WT)
nucleosome, thus enhancing the local concentration and affinity.
However, in the case of the WT nucleosome, the position of the
acetylated histone tail relative to the acetyl–lysine-binding pocket
(orientated by the DNA) is more favourable compared with the
same acetylated sequence in the chimeric location. Therefore, the
affinity for the WT nucleosome is higher and an additional layer of
specificity is generated.

This result shows that the peptide sequence surrounding
acetylated lysines is not the only determinant of bromodomain
specificity. Rather, the nucleosome structure and, specifically, the
position of the acetylated lysines relative to DNA also influence
bromodomain recognition. This demonstrates that the specificity
of a chromatin reader can only accurately be evaluated with
nucleosomes and/or chromatin and cannot be reliably judged at
the level of peptides.

Other BET bromodomains interact with DNA. To investi-
gate whether DNA binding is a general feature of the BET
bromodomains or is specific to BRDT-BD1, we inspected the
electrostatic surface charges of the human BET bromodo-
mains and found that each member (with the exception of
BRDT-BD2) also contains a positively charged patch (Fig. 5a).
Although the residues involved are not identical to those in
BRDT-BD1, the positional conservation of this patch suggests
that this region may also interact with DNA. We therefore
tested the other bromodomains for DNA binding by
EMSA (Fig. 5b). Interestingly, the first bromodomain of BRD2
and the second bromodomains of BRD2, 3 and 4 all interacted
with DNA, demonstrating that bromodomain-mediated DNA
binding is a conserved feature among all members of the BET
family.

Surprisingly, however, the first bromodomains of BRD3 and
BRD4 did not interact with DNA, despite the presence of
the positively charged face. This result shows that inspection of
the electrostatic surface potentials alone is not adequate
for predicting an interaction between the bromodomains and
DNA. The positive charge of this surface is therefore necessary
but not sufficient for DNA interaction and specific residues
and/or conformation must also be important.
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Given the difference we find in the DNA binding ability of
BRD4-BD1 and BRDT-BD1, we wondered if this was reflected in
their nucleosome-binding affinities. We therefore compared
BRD4-BD1 binding to acetylated nucleosomes and histone
peptides by ITC (Fig. 5c). Interestingly, in contrast to BRDT-
BD1, BRD4-BD1 does not bind acetylated nucleosomes with
higher affinity than acetylated histone peptides. This supports our
hypothesis that the BRDT-BD1–nucleosome interaction is
bivalent and is enhanced by simultaneous interaction with
acetylated histone H4 and DNA. BRD4-BD1 does not interact
with DNA, thus, the binding affinities for histone peptides and
nucleosomes are the same.

BD1-DNA binding helps recruit BRDT to chromatin in cells.
Histone binding by BRDT-BD1 is essential for BRDT’s ability to
compact chromatin in an acetylation-dependent manner16,24.
To investigate whether BD1-mediated DNA binding has a similar
functional significance, we assayed WT and mutant BRDT
constructs for their ability to localize to, and compact, hypera-
cetylated chromatin when ectopically expressed in cells. On the
basis of equivalent studies on murine Brdt16,24, we cloned a GFP-
tagged human BRDT construct (aas 1–444; DC-sBRDT) that is
predicted to be highly active in chromatin compaction. We then
made triple lysine to glutamate (3KE) mutations that abolished
N-BRDT(1) DNA binding (Fig. 6a), without interfering with
acetylated histone peptide recognition (Fig. 6b). ITC data indi-
cate that N-BRDT(1)-3KE has a fivefold reduced affinity for
H4K5acK8ac acetylated nucleosomes when compared with WT
N-BRDT(1) (Fig. 6b).

Fluorescence recovery after photobleaching (FRAP) experi-
ments show that WT human and murine DC-sBRDT constructs
have similar fluorescence recovery half-lives (T1/2¼ 5–7 s)
following trichostatin A (TSA)-induced histone hyperacetylation
(Fig. 6c; Supplementary Fig. 9). This suggests that the human
protein interacts with acetylated chromatin in a similar manner to
the murine protein. In contrast, human and murine DC-sBRDT
proteins with mutations in their histone-binding pockets
(I115Y and P50A/F51A/V55A (PFV1)16,24, respectively), and a
DNA-binding deficient human protein (DC-sBRDT-3KE)
showed a significantly faster recovery half-life (T1/2¼B1.5 s);
indicative of reduced association with acetylated chromatin
(Fig. 6c; Supplementary Fig. 9). Double mutation of both the
histone and DNA-binding interfaces of human DC-sBRDT
(3KE/I115Y) did not further decrease the fluorescence recovery
half-life. Mutation of either site alone is therefore sufficient to
prevent acetylated chromatin association in cells (Fig. 6c;
Supplementary Fig. 9). Control FRAP experiments with and
without TSA confirm that human DC-sBRDT 3KE, I115Y and
double mutants are similarly unresponsive to TSA-induced
histone hyperacetylation (Supplementary Fig. 10).

In accordance with the findings above, human DC-sBRDT-
3KE, I115Y and the double mutant are also compromised in their
ability to compact TSA-induced hyperacetylated chromatin in
cells, when compared with the WT protein (Fig. 6d). Instead,
DC-sBRDT with the 3KE and/or I115Y mutations remains diffuse
in the nucleus following TSA treatment. These results support our
finding that BRDT-BD2 cannot associate with nucleosomes;
showing that only a fully functional BD1, capable of bivalent
recognition of both DNA and acetylated histone tails, is able to
recruit BRDT to acetylated chromatin.

Discussion
The BETs are a highly conserved protein family involved in
diverse functions including transcriptional regulation and
chromatin remodelling. Through their bromodomains, they are

known to interact with acetylated histone tails and have a rare
ability to stay associated with chromatin throughout the cell
cycle30–32. Here we have used BRDT as a model for studying the
interactions of the BET bromodomains with acetylated
nucleosomes and find that DNA plays a critical role.

BRDT-BD1 interacts with doubly acetylated histone H4 tails
with a low micromolar affinity and associates with chromatin
in vivo in an acetylation-dependent manner16,24. We find that
BRDT-BD1 also interacts with DNA and this interaction
stimulates the binding of the bromodomain to acetylated
nucleosomes in vitro and acetylated chromatin in cells. Manual
alignment of a Brdt-BD1-H4K5acK8ac peptide crystal structure
alongside the structure of the nucleosome (1AOI1) suggests how
binding affinity and specificity may be enhanced (Supplementary
Fig. 11). Orientation of BD1 with its DNA-binding interface
towards the DNA positions the acetyl–lysine-binding pocket in
the correct orientation for interaction with the histone H4 tail.
The distance of B20 Å between H4R17 leaving the surface of the
nucleosome and the pre-aligned BD1 acetyl–lysine pocket would
be bridgeable for the extended histone tail, allowing BD1 to
recognize H4K5acK8ac.

Under this scenario, the non-specific interaction with DNA
would serve to localize BD1 to nucleosomes and would allow BRDT
to scan chromatin for acetylated histone H4. Stable BD1 binding
would then be dependent on recognition of the appropriate
acetylated lysine residues. BRDT would thus be stabilized on
nucleosomes in a bivalent manner, similar to that of the PWWP
domain of LEDGF, which simultaneously binds H3K36me3 and
DNA to enhance its nucleosome-binding affinity33,34.

A corollary of this model is that the relative position/spacing of
acetylated lysines—relative to the nucleosome core—would
influence bromodomain target specificity. We were able to
demonstrate that this is the case by showing that BRDT-BD1
binds to WT and H3-chimeric nucleosomes containing acetyl–
lysine residues in identical sequence contexts, but different
positions, with differing affinities. Thus, the nucleosome structure
imposes an added layer of specificity to bromodomain binding.

In stark contrast to BRDT-BD1, and predictions on the basis of
peptide-binding studies, we find that BD2 neither interacts with
DNA nor with acetylated nucleosomes. Whereas conservation of
the contiguous positively charged patch on the rest of the BET
bromodomains implies conservation of function, BRDT-BD2 has
a considerably more negative electrostatic surface potential
(Fig. 5a). This may actively repel BRDT-BD2 from DNA, thus
preventing an interaction with acetylated histone H3 tails in
the context of the nucleosome, even when BRDT-BD2 is
physically tethered to the nucleosomes by BRDT-BD1 binding
to acetylated H4.

Although nucleosome binding can be enhanced by tandem
domains bivalently binding nucleosomes (2–3-fold enhancement
for bromo-PHD of BPTF35; 3–11-fold enhancement for two PHD
fingers of CHD4 (ref. 36)), this is not the case for BRDT. Unlike
the structured spacer element that connects the PHD and
bromodomain of BPTF35, or the relatively short linker between
the PHD fingers of CHD4 (ref. 36), we find that the linker
connecting the bromodomains of BRDT is long (B110 aa) and
disordered (Supplementary Fig. 3). Furthermore, it remains so
upon BRDT binding to nucleosomes (Supplementary Fig. 4b).
With this long flexible linker, the two domains are effectively
independent in solution, precluding any binding enhancement
through ‘prepaying’ entropic costs of positioning the domains for
binding18. Despite this, tethering of BRDT to nucleosomes by
BD1 would still increase the relative local concentration of BD2
and would therefore be expected to increase the likelihood of an
interaction, if it were not inhibited. This has been shown to be the
case for BRD4, where a construct encompassing BRD4-BD1 and
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BD2 was found to bind to nucleosomes acetylated on both
histones H3 and H4 with a 2.6-fold increased affinity over BRD4-
BD1 alone37.

Previous research has shown that BRDT localization and its
ability to compact chromatin in somatic cells are primarily
mediated by BRDT-BD1, while BRDT-BD2 is, at least in part,

Kd  = 10 μM

0 1 2 3 4 5
–10.0

–8.0

–6.0

–4.0

–2.0

–0.25
–0.20
–0.15
–0.10
–0.05

0.00

0 10 20 30 40

Time (min)

Molar ratio

N-BRDT(1)-3KE

Kd  = 14 μM

0 1 2 3 4 5

–10.0

–8.0

–6.0

–4.0

–2.0

0.0

–0.40

–0.30

–0.20

–0.10

0.00

0 10 20 30 40
Time (min)

μc
al

 s
–1

Molar ratio

kc
al

 m
ol

–1
 o

f i
nj

ec
ta

nt

H4K5acK8ac
nucleosome

H4

H4
5

8

5
8

H4K5acK8ac
peptide

H4
5

8

N-BRDT(1) Kd  = 13 μM N-BRDT(1) Kd  = 2 μM

a b

d

c

WT 3KE I115Y 3KE/I115Y

+TSA

0

1

2

3

4

5

6

7

8

9

WT 3KE 3KE/I115Y

Human ∆C-sBRDT Murine ∆C-sBrdt 

t 1
/2

 (
s)

+TSA

0 20
0

[N-BRDT(1) 3KE]
(μM)

N-BRDT(1)
Kd  = 15 μM

200

(bp)

300
400
500

1,500

PFV1WTI115Y

Figure 6 | DNA binding by BD1 is important for BRDT localization to chromatin in cells. (a) EMSA of N-BRDT(1) lysine mutants (concentrations: 3, 12.5,

50 and 200mM) binding to 167 bp double-stranded DNA. DNA (0.4mM) was mixed with N-BRDT(1) 3KE in a final volume of 5 ml and incubated for 30 min

before native-PAGE electrophoresis at 4 �C and visualization with ethidium bromide staining. (b) ITC profiles for N-BRDT(1) 3KE interactions with either

acetylated histone H4 tail peptides or acetylated nucleosomes (both H4K5acK8ac), as indicated. (c) FRAP analysis of human and murine DC-sBRDT

constructs in the presence of TSA-induced histone hyperacetylation. Cos7 cells were transfected by vectors expressing GFP-tagged WT and mutant

DC-sBRDT constructs (as indicated) and cells were treated with the histone deacetylase inhibitor TSA (100 ng ml� 1) to induce histone hyperacetylation. A

decrease in fluorescence recovery half-life (t1/2) indicates an increase in protein mobility, and reduced chromatin association. The indicated fluorescence

recovery half-lives are mean values obtained from 10 independent cells (n¼ 9 for WT murine DC-Brdt). Error bars show the s.e.m. (d) Confocal microscopy

images of representative transfected cells following TSA treatment (Scale bars, 10mm).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13855 ARTICLE

NATURE COMMUNICATIONS | 7:13855 | DOI: 10.1038/ncomms13855 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


dispensable16,24. Our results give a molecular explanation to the
observed biological data and indicate that BRDT-BD2 may have
an alternate biological function. One possible function, which
would depend on flexible tethering of BD2 to nucleosomes by
BD1, would be the recruitment of an acetylated non-histone
protein to chromatin. BRDT would not be unique in this
function; other BET proteins are also known to use their
bromodomains for interactions with acetylated non-histone
proteins38–42.

Possible candidates for BRDT-BD2 recruitment would be the
transition proteins (TPs) and protamines (Prms); both of which
are known to be acetylated43–45, and both of which are critical for
BRDT-mediated post-meiotic genome repackaging during
spermatogenesis12. TPs and Prms depend on BRDT for nuclear
localization in elongating spermatids, and loss of BD1 leads to
their accumulation in the cytoplasm, preventing histone
replacement12. Although BRDT has a nuclear localization
sequence, this data indicates that chromatin binding by BRDT-
BD1 is required for nuclear retention of BRDT, TPs and Prms
and therefore that BRDT interacts, either directly, or indirectly,
with TPs and Prms—potentially via BRDT-BD2.

In contrast to BRDT-BD1 and BD2, BRD4-BD1 has unam-
biguously been shown to bind to histone peptides14,31,
mononucleosomes37 and chromatin31, but also to other non-
histone acetylated proteins (reviewed in ref. 5). We find that
BRD4-BD1 does not interact with DNA, which led us to compare
BRD4-BD1 and BRDT-BD1 binding to acetylated nucleosomes
by ITC. Although BRDT-BD1 and BRD4-BD1 have similar
binding affinities for H4K5acK8ac peptides, their binding affinities
for nucleosomes differed significantly (B6-fold). This is largely
because BRD4-BD1 does not show any enhancement of binding
affinity for nucleosomes over isolated peptides.

On the basis of our data, we propose three models for how BET
bromodomains interact with nucleosomes (Fig. 7). BRDT-BD1
has a non-specific DNA-binding activity, which allows position-
ing of the bromodomain on the nucleosome for interaction with
acetylated histone H4 tails. This bivalent interaction thus
enhances the binding affinity and specificity of BRDT-BD1 for
nucleosomes (Fig. 7a). BRDT-BD2 does not interact with DNA or
nucleosomes (Fig. 7a), likely due to electrostatic repulsion from
the DNA preventing BRDT-BD2 from accessing the histone H3
tail. Thus, it cannot enhance the binding of BRDT to
nucleosomes. Finally, BRD4-BD1 retains a positively charged
interface on a polarized surface but does not interact with DNA
with an affinity measurable in our experiments. This domain

interacts with H4K5acK8ac, however, it shows no enhancement of
binding stimulated by the nucleosome context. Unlike BRDT,
BRD4 binding to nucleosomes is enhanced by simultaneous
binding of both of its bromodomains37 (Fig. 7b).

Like BRD4-BD1, we show that BRD3-BD1 does not interact
with DNA, while BRD2-BD1, BRD2-BD2, BRD3-BD2 and
BRD4-BD2 do. In future work it will be interesting to assess
the importance of these findings in nucleosome binding,
transcriptional regulation and chromatin remodelling by the
BET proteins in vivo. Furthermore, the BET bromodomains are
just 8 of 61 human bromodomains. Our work provides a
demonstration of DNA binding by a member of the bromodo-
main family; it will be intriguing to see whether bivalent binding
of DNA and acetylated histone tails by bromodomains is a
conserved feature of the wider bromodomain family of chromatin
‘reader’ modules.

In summary, we have used BRDT as a model to study the
binding of BET bromodomains to site-specifically acetylated
nucleosomes. ITC experiments revealed that BRDT-BD1 has an
enhanced affinity for acetylated nucleosomes over acetylated
histone peptides, whereas BRDT-BD2 does not interact with
acetylated nucleosomes, in contrast to predictions on the basis of
peptide-binding studies. Using a range of biophysical methods
and mutational analyses, both in vitro and in cells, we show that
BRDT-BD1 bivalently interacts with acetylated nucleosomes and
chromatin through concomitant interaction with histone H4 and
DNA. We show that bromodomain-mediated DNA binding is
conserved among members of the BET family, indicating that
bivalent nucleosome recognition through simultaneous DNA and
histone tail binding is an important component of nucleosome
recognition by BET bromodomains and possibly in bromodo-
mains beyond the BET family. Our results emphasize the
importance of studying chromatin reader’s interactions with
nucleosomes rather than isolated peptides or DNA. Accordingly,
this study provides important insight into the molecular
mechanism of BET association with chromatin and shows that
features outside of the bromodomains’ histone-binding pockets
are crucial for interactions with nucleosomes. Knowledge of these
features may pave the way for enhanced targeting of specific BET
bromodomains for therapeutic purposes.

Methods
Expression and purification of human BET constructs. BRDT constructs
N-BRDT(1) (aas 1–143), BRDT(2) (aas 258–383) and BRDT(1–2) (aas 1–383) were
cloned using restriction-free cloning46 as N-terminally His-TEV-tagged fusion
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proteins into pETM11 expression vectors. Original sequences were amplified from
cDNA clones provided by Sino Biological Inc (catalogue number: HG11602-M).

BET bromodomains BRD2(2) (aas 348–455), BRD3(1) (aas 24–144), BRD3(2)
(aas 306–416), BRD4(1) (aas 44–168) and BRD4(2) (aas 333–460) were gifts
from Nicola Burgess-Brown provided through Addgene (plasmid numbers: 53626,
38940, 38941, 38942 and 38943, respectively). Codon-optimized BRD2(1)
(aas 48–184; Eurofins) was cloned using restriction-free cloning46 as an
N-terminally His-TEV-tagged fusion protein into the pETM11 expression vector.

Plasmids were transformed into the Escherichia coli strain BL21-CodonPlus
(DE3)-RIL (Stratagene), and the bacteria were grown in Luria-Bertani
(LB) medium supplemented with 50 mg ml� 1 kanamycin and 25mg ml� 1

chloramphenicol at 37 �C. Expression of recombinant proteins was induced by
addition of 0.4 mM IPTG at an OD600 of 0.6 followed by overnight incubation at
18 �C. The bacterial cell pellets were resuspended in lysis buffer (50 mM Tris
(pH 8.0), 500 mM NaCl, Complete EDTA-free Protease Inhibitor Cocktail (Roche),
DNase1 (Roche), 0.25 mM DTT) before being lysed by sonication and clarified by
centrifugation at 75,600g. Proteins were purified from the soluble fraction using
nickel-NTA agarose (Qiagen), followed by TEV protease cleavage of the
N-terminal His-tag and additional purification over Ni-NTA resin to remove the
tags and His-tagged TEV protease. Finally, proteins were further purified by size
exclusion chromatography using Superdex 75 or 200 columns (GE Healthcare)
as appropriate. The purity and structural integrity of the purified proteins was
monitored by SDS–PAGE and 1H NMR (Supplementary Fig. 12).

NMR labelled BRDT constructs. For NMR experiments, labelled proteins were
obtained by expression in M9 media (containing 100% D2O for uniformly deut-
erated proteins); 13C and 15N labelling was achieved through the addition of 13C
glucose (4 g l� 1) and 15NH4Cl (1 g l� 1), while specific 13C, 1H labelling of ILV-
methyl groups was achieved through the addition of sodium salts of labelled alpha-
ketoisovaleric acid (1,2,3,4-13C4; 3,4’,4’,4’-D4 for N-BRDT(1); 3-methyl-13C;
3,4,4,4-D4 for BRDT(2) and BRDT(1–2); 120 mg l� 1) and alpha-ketobutyric acid
(13C4; 3,3-D2 for N-BRDT(1); methyl-13C; 3,3-D2 for BRDT(2) and BRDT(1–2);
60 mg l� 1) when the cells reached an OD600 of 0.6. Protein expression was induced
by IPTG (0.4 mM) and carried out overnight at 18 �C. This protocol was on the
basis of the protocol developed by the Kay laboratory47. NMR isotopes were
obtained from Cambridge Isotope Laboratories. Proteins were purified as described
for the unlabelled equivalents, with a final dialysis step into NMR buffer
(25 mM sodium phosphate (pH 6.7), 100 mM NaCl) prepared with H2O or D2O as
appropriate.

Nucleosome preparation. Full-length unmodified histones. Histones H2A/H2B–
Codon-optimized (supplied by Entelechon – now Eurofins), full-length human
histones H2A/H2B were co-expressed from a pCDF-DUET vector transformed
into the E. coli strain BL21-CodonPlus (DE3)-RIL (Stratagene). Bacteria were
grown in LB medium supplemented with 100mg ml� 1 streptomycin and
25mg ml� 1 chloramphenicol at 37 �C and induced at an OD600of 0.6 with IPTG
(0.25 mM). Cells were collected after 4 h by centrifugation. Cell pellets were
resuspended in cold lysis buffer (20 mM Tris (pH 8.0), 100 mM NaCl, 0.1 mM
EDTA, 10 mM b-mercaptoethanol and Complete EDTA-free Protease Inhibitor
Cocktail (Roche)) and the cells lysed using an Emulsiflex-C3 homogenizer
(Avestin) and clarified by centrifugation at 75,600g. Clarified cell lysate was filtered
using a 0.45 mm syringe filter (Merck Millipore) and injected onto combined 5 ml
HiTrap Q HP and HiTrap Heparin HP columns (GE Healthcare) pre-equilibrated
in lysis buffer. Columns were washed with one column volume of lysis buffer
before detaching the HiTrap Q HP column. The HiTrap Heparin HP column was
subsequently washed with 20% elution buffer (20 mM Tris (pH 8.0), 2 M NaCl,
0.1 mM EDTA, 10 mM b-mercaptoethanol) before eluting the H2A/H2B complex
with a 20 CV gradient into 100% elution buffer. The pooled and concentrated
fractions containing the H2A/H2B dimer were further purified by size exclusion
chromatography over a Superdex 75 column (GE Healthcare). Protein purity was
monitored by SDS–PAGE. The H2A/H2B complex was extensively dialysed into
1 mM DTT before lyophilisation and storage at � 80 �C.

Histones H3 and H4 – Codon-optimized (supplied by Entelechon – now
Eurofins), full-length human histone H3 and histone H4 (kindly provided by
T.Bartke) were individually expressed from pETM-13 and pETM-21b(þ ) vectors
transformed into the E. coli strain Rosetta (DE3) pLysS (Novagen). Bacteria were
grown in LB medium supplemented with 50 mg ml� 1 kanamycin (H3) or
ampicillin (H4) and 25mg ml� 1 chloramphenicol at 37 �C and induced at an
OD600 of 0.6 with IPTG (0.25 mM). Cells were collected after 4 h by centrifugation.
Histones were purified essentially as previously described48. Cell pellets were
resuspended in cold histone wash buffer (50 mM Tris (pH 7.5), 100 mM NaCl,
1 mM EDTA and Complete EDTA-free Protease Inhibitor Cocktail (Roche)). Cells
were lysed using an Emulsiflex-C3 homogenizer (Avestin) and inclusion bodies
pelleted by centrifugation at 12,000g. Pellets were resuspended in cold histone wash
buffer þ 1% Triton-X-100 in a Dounce homogenizer and inclusion bodies again
pelleted by centrifugation at 12,000g. Inclusion body washing was repeated twice
with Triton-X-100, before two final washes into histone wash buffer. Inclusion
bodies were resuspended in unfolding buffer (20 mM Tris (pH 7.5), 7 M guanidine
hydrochloride and 100 mM DTT) for 1 h at room temperature, before clarification
by centrifugation at 20,000g. Supernatants were filtered using a 0.45 mm syringe

filter (Merck Millipore) and histones purified by size exclusion chromatography
over a Superdex 200 column (GE Healthcare) in SAU-1000 buffer (7 M urea,
20 mM sodium acetate (pH 5.2), 1 M NaCl, 1 mM EDTA and 5 mM
b-mercaptoethanol). Fractions containing histone H3 or H4 were pooled and
diluted to bring the NaCl concentration to below 200 mM and loaded on to a
HiTrap SP HP column (GE Healthcare) equilibrated in SAU-200 (as above, with
200 mM NaCl). Histone H3 was eluted using a gradient into SAU-600 buffer
(as above, with 600 mM NaCl). Histone H4 was eluted using a gradient into
TU-1000 buffer (7 M urea, 20 mM Tris (pH 7.5), 1 M NaCl, 1 mM EDTA and
5 mM b-mercaptoethanol). Protein purity was monitored by SDS–PAGE. The H3
and H4 histones were extensively dialysed into 1 mM DTT before lyophilisation
and storage at � 80 �C.

Truncated histones H3 and H4 for native chemical ligation. Codon-optimized
human histones H3 and H4 (supplied by Entelechon – now Eurofins) were used for
cloning H3(A25C) and H4(A15C) mutants into a pETM13 vector using restric-
tion-free cloning46. These constructs contain an N-terminal methionine initiation
codon immediately followed by the alanine-to-cysteine mutation, thus lack residues
2–24 and 2–14, respectively. The E. coli methionyl-aminopeptidase removes the
N-terminal methionine thus exposing the cysteine at the N-terminus. Plasmids
were transformed into the E. coli strain Rosetta (DE3) pLysS (Novagen), and
bacteria were grown in LB medium supplemented with 50 mg ml� 1 kanamycin and
25 mg ml� 1 chloramphenicol at 37 �C. Cells were induced at an OD600of 0.6 with
IPTG (0.25 mM) and collected after 4 h by centrifugation. The truncated histones
were purified as described for full-length H3 but in the absence of reducing agents.
Purified histones were dialysed into water and lyophilized.

Native chemical ligation. For ligations, truncated histones H3(A25C) and
H4(A15C) were incubated with acetylated histone peptides carrying a C-terminal
thioester in ligation buffer (200 mM NaPO4 (pH 7.5), 0.5 mM TCEP, 6 M guani-
dine HCl, 100 mM sodium 2-mercaptoethanesulfonate) for 24 h at 25 �C. The
reactions were stopped by adding DTT to a final concentration of 100 mM.

Ligated H3 was diluted in SAU-0 (7 M urea, 20 mM sodium acetate (pH 5.2),
1 mM EDTA, 5 mM b-mercaptoethanol) to dilute the guanidine HCl concentration
to o200 mM and the protein was loaded on to a HiTrap SP HP column
(GE Healthcare) pre-equilibrated in SAU-200 (200 mM NaCl). A 5 CV gradient to
25% SAU-600 (600 mM NaCl) followed by 10 CV at 25% eluted the vast majority
of unligated H3. Ligated H3 was eluted with a 5 CV gradient to 50% SAU-600
followed by a step to 100% SAU-600 to remove any remaining protein. Protein
purity was checked by 18% SDS–PAGE and impure fractions were pooled for a
second round of purification.

Truncated H4(A15C) and H3(A25C) (for chimeric nucleosomes) were ligated
to a peptide consisting of a His-tag, TEV-cleavage site and the H4 N-terminal
sequence (1–14) and therefore could be purified using Ni-NTA agarose (Qiagen).
Ligated H4 was extensively dialysed into binding buffer (100 mM NaPO4,
10 mM Tris, 6 M guanidine HCl, pH adjusted to 8.0) and then incubated with
pre-equilibrated Ni-NTA resin. Ligated H4 was eluted with elution buffer
(100 mM NaPO4, 10 mM Tris, 8 M urea, pH adjusted to 4.5) and dialysed into
1 mM DTT before lyophilisation. Protein purity was checked by 18% SDS–PAGE.

167 bp Widom DNA. A plasmid containing 80 repeats of 167 bp with a centered
Widom 601 sequence49 was amplified in XL1 Blue cells (Stratagene). Plasmid DNA
was purified by Gigaprep (Qiagen) using the standard protocol. Purified plasmid
was digested using AvaI (NEB) to isolate 167 bp repeats, which were purified from
the vector backbone by size exclusion chromatography with an XK 16/70 Superose
6 pg (GE Healthcare) gel filtration column. Purified DNA was precipitated by
addition of 0.7 volumes of isopropanol and 0.3 M sodium acetate and pelleted by
centrifugation at 20,000g for 1 h at 4 �C. DNA was resuspended in TE buffer
(10 mM Tris (pH 8.0), 1 mM EDTA) and the purity checked on a 2% agarose gel.

Nucleosome reconstitution. Histone octamers were refolded from purified
histones and assembled into nucleosomes with 167 bp DNA by salt deposition48.
Histone aliquots were dissolved in unfolding buffer (20 mM Tris (pH 7.5),
6 M guanidine hydrochloride and 20 mM DTT), before being mixed in equimolar
ratios and diluted to give a final protein concentration of 1 mg ml� 1. The histones
were then dialysed at 4 �C against refolding buffer (10 mM Tris (pH 7.5), 2 M NaCl,
1 mM EDTA and 5 mM b-mercaptoethanol). Refolded octamers were concentrated
and then purified by size exclusion chromatography over a Superdex 200 column
(GE Healthcare). Purified histone octamers were mixed with 167 bp Widom DNA
in refolding buffer and diluted to a final DNA concentration of 0.7 mg ml� 1. The
samples were dialysed into buffers containing 20 mM Tris (pH 7.5) 5 mM
b-mercaptoethanol and 1 mM EDTA, with decreasing concentrations of NaCl
(2 M, 850 mM, 650 mM and 150 mM). Reconstitution conditions were optimized
by titration and nucleosomes checked by 5% native PAGE. N-terminal His-tags on
ligated H4 of H4K5K8ac nucleosomes and H3-H4K5acK8ac chimeric nucleosomes
were removed by TEV cleavage (2 h, 30 �C) of reconstituted nucleosomes
(Supplementary Fig. 1). Cleaved nucleosomes were purified by incubation with
Ni-NTA agarose and collection of flow-through. Chimeric nucleosomes contained
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chimeric H3-H4K5acK8ac and WT H2A, H2B and H4, and thus contained both
modified and unmodified H4 tail sequences.

Isothermal titration calorimetry. ITC was carried out at 20 �C with an ITC
200 Microcalorimeter (GE Healthcare) following dialysis of purified BRDT
proteins and nucleosomes into interaction buffer (20 mM Tris (pH 8.0), 150 mM
NaCl, 1 mM EDTA and 1 mM TCEP). For BRDT and BRD4 BD1 peptide-binding
experiments, histone peptides (450 mM) were titrated into BD1 proteins
(25–30 mM). For BRDT-BD2 peptide-binding experiments, histone peptides
(2.5 mM) were titrated into BRDT-BD2 proteins (90 mM). For nucleosome-binding
experiments, BET bromodomain proteins (200–260 mM) were titrated into
nucleosomes (6–11 mM). Peptides were supplied by Peptide Protein Research Ltd
and were solubilized in interaction buffer. ITC data was analyzed with using the
MicroCal Origin software package after correction for heats of dilution.
A summary of all ITC presented in this paper can be found in Supplementary
Table 1.

Nuclear magnetic resonance. NMR experiments were performed on Bruker
Avance III 600 and 800 MHz spectrometers equipped with HCN triple-resonance
cryo-probes. Protein assignments were obtained using a combination of standard
triple resonance experiments50. Nucleosome interaction was monitored by 13C-1H
HMQC experiments recorded for 20 h on labelled BRDT constructs titrated into
acetylated histones or nucleosomes (10 mM) at 34 �C. NMR data were processed by
NMRPipe51 and analyzed with NMRView52.

Electrophoretic mobility shift assays. For the binding reaction, a master mix
containing DNA and reaction buffer (20 mM Tris (pH 7.5), 100 mM NaCl, 5 mM
DTT, 0.5 mM EDTA) was prepared and mixed with dilutions of BRDT constructs
to the final concentrations indicated. Binding was performed for 30 min at 4 �C.
BRDT-DNA complexes were resolved by PAGE (5–7% polyacrylamide, 3%
glycerol and 0.5� TAE) at 100 V for B1.5 h (4 �C). Experiments utilizing 167 bp
DNA were stained with ethidium bromide and imaged using the AlphaImager HP
imaging system (Proteinsimple). EMSA gels using 32P-labelled 25 and 66 bp
dsDNA oligos were dried and exposed to a phosphorimager screen. Unbound
DNA was quantified as a proportion of total signal/lane using a Typhoon imager
with ImageQuant software and data plotted against protein concentration to
calculate the binding affinities indicated.

DNA sequences used for EMSA-binding studies. 167bp Widom DNA.
Forward—50-tcgggggccgccctggagaatcccggtgccgaggccgctcaattggtcgtagacagctctagcac
cgcttaaacgcacgtacgc-30 50-gctgtcccccgcgttttaaccgccaaggggattactccctagtctccaggcacgt
gtcagatatatacatcctgtgcatgtac-30

Reverse—50-ccgagtacatgcacaggatgtatatatctgacacgtgcctggagactagggagtaatccccttgg
cggttaaaacgcgggggacagc-30 50-gcgtacgtgcgtttaagcggtgctagagctgtctacgaccaattgagcggcc
tcggcaccgggattctccagggcggccc-30

66 bp DNA. 50-cgatatagtgtaacggctatcacatcacgctttcaccgtggagaccggggttcgact
ccccgtatc-30

25 bp DNA. 50-cgaagtggccgagtggtctatggcg-30 .

Fluorescence recovery after photobleaching. FRAP experiments were
performed as previously described16. In brief, 1.5 mg of each of the GFP-BRDT
constructs was transfected into Cos7 cells using lipofectamine 2000. Cells were
treated with TSA (50 ng ml� 1) and incubated at 37 �C in 5% CO2 for 16 h.
FRAP analysis was performed using a Zeiss microscope (LSM710 NLO-LIVE7-
Confocor3) equipped with a 488 nm laser and a LP505 filter, on 10 independent
cells. A circular region was bleached for 1.22 s; fluorescence recovery curves
were individually fitted with the ZEN software using the single exponential model
I tð Þ ¼ Að1� e�

t
T1 Þ, where I tð Þ represents the fluorescence intensity as a function

of time t and A is the mean post-bleached fluorescence signal. Recovery times (t1/2)
were determined using t1/2¼T1ln(2) for each dataset individually and used to
calculate the mean. Cos7 cells (ATCC CRL1651) were authenticated and supplied
by the American Type Culture Collection (ATCC). This cell line has been tested
for mycoplasma contamination with the MycoAlert Mycoplasma Detection Kit
(Lonza).

Analytical ultracentrifugation. Analytical centrifugation was perform in a
Beckman Optima XL-A centrifuge fitted with AN-60 rotor and double-sector
aluminum centerpieces (40,000 r.p.m.; 129,000g; 4 �C). Sedimentation velocity
profiles were recorded at 280 nm. Molecular weight distributions were determined
by the C(s) method implemented in the Sedfit software53.

Small angle X-ray scattering. SAXS data of BRDT(1-2) were acquired at BM29 at
the ESRF54, Grenoble with protein concentrations of 0.5, 1, 2 and 4 mg ml� 1 in a
buffer containing 25 mM tris (pH 8) and 200 mM NaCl supplemented with 2 mM
dithiothreitol (DTT) to reduce radiation damage. Measurements were carried out
at 20 �C with samples exposed for 10 frames of 1 s each at full transmission. The

data were analyzed with the ATSAS package55. The final curve was generated by
extrapolating the data to zero concentration.

Data availability. All relevant data reported in this paper are available from the
authors upon reasonable request. The following PDB structures were used in this
study: human BET bromodomains BRDT-BD1 (2RFJ), BRD3-BD1 (2NXB),
BRD3-BD2 (2OO1), BRD4-BD1 (2OSS), BRD4-BD2 (2OUO), BRD2-BD1 (1X0J)
and BRD2-BD2 (2DVV).
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