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Temporal pairwise spike correlations fully capture
single-neuron information
Amadeus Dettner1,*, Sabrina Münzberg1,* & Tatjana Tchumatchenko1

To crack the neural code and read out the information neural spikes convey, it is essential to

understand how the information is coded and how much of it is available for decoding. To this

end, it is indispensable to derive from first principles a minimal set of spike features

containing the complete information content of a neuron. Here we present such a complete

set of coding features. We show that temporal pairwise spike correlations fully determine the

information conveyed by a single spiking neuron with finite temporal memory and stationary

spike statistics. We reveal that interspike interval temporal correlations, which are often

neglected, can significantly change the total information. Our findings provide a conceptual

link between numerous disparate observations and recommend shifting the focus of future

studies from addressing firing rates to addressing pairwise spike correlation functions as the

primary determinants of neural information.
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T
hroughout the central nervous system of a mammalian
brain, spike times are the only events, which carry
information about incoming stimuli, represent thoughts

or drive motor behaviour. If we knew what features of a spike
train contain all relevant information, then we could limit our
attention to those features to extract the stimulus of interest or
compare coding across regions. For example, if we knew that all
stimulus information was contained in the second-order spike
correlations, then we could focus our resources on obtaining
exact estimates of these features to tell how much, if at all, can be
learned about a stimulus from a spike train.

One would think that these basic questions are well under-
stood, as experimental recording methods have been available for
over a century and basic theories about communication channels,
including Shannon’s coding theory, appeared over 60 years ago.
Surprisingly, many basic questions are still open. To understand
the main difficulty, let us consider the set of spikes {ti} emitted by
a neuron. Each of these spikes could occur at any time during the
recording and therefore has infinite time resolution and
potentially infinite information capacity. Infinite time resolution
is typically overcome by using time binning where the spikes are
assigned to one of N time intervals. In each time interval a neuron
can either spike or remain silent, which results in 2N possible
spike patterns during the recording of N time bins. For a neuron
recorded for 1 s at a 2 kHz sampling rate, there are billions of
possible combinations. Some patterns could occur often across
trials, others rarely; some could be coding relevant, whereas
others could just be noise driven1,2. In general, the longer the
recording, the more spikes are obtained and the bigger the
combinatorial phase space becomes. This exponential expansion
of the phase space is at the core of why neural coding is difficult
to understand and information content equally difficult to
estimate3. At the same time, growing experimental evidence
offers a potential solution and indicates that neural activity does
not explore all possible combinations but unfolds in many
different brain regions along task-specific low-dimensional
subregions4. To illustrate this typical coding situation in Fig. 1a,
we sketch schematically a low-dimensional information coding
sub-space on the background of the full phase space of all possible
spiking combinations. As the dimensionality of the phase space of
possible spike combinations increases, the information coding
features can remain the same (see Fig. 1b).

What could these coding features be? Probably candidates put
forward by previous studies include the average number of spikes
per time5 or the occurrence frequency of spike doublets or
triplets6. Currently, the most common and oldest approach to
neural coding is the rate code hypothesis5, which postulates that
the average number of spikes per time is the main carrier of
information. The rate-coding hypothesis gave rise to a large body
of literature describing how the average firing rates of neurons are
modulated by different stimulus features such as animal location,
stimulus orientation, motion, sound or light intensity7. Numerous
studies, however, report that neurons can encode information
without necessarily changing the average firing rate in response to
a stimulus5,8,9. Yet so far, a durable and computationally tractable
alternative to a rate code that curtails the combinatorial
complexity of spiking activity has remained elusive.

Here we address the information content of a spike train and
identify the minimal feature set that is sufficient and necessary for
information coding. Motivated by the highly variable neural
activity across time and repetitions1, and the observation of
irregular but stable firing across time in many experiments7,10,11,
we focused on the information coding in irregular, stationary
spike trains with finite memory, which are supported by
experimental in vivo evidence and are the cornerstone of
current theoretical approaches3,5,7,12.

Surprisingly, our results show that information encoded in the
spikes of a single neuron is fully described by only two pairwise
spike features. The first feature is the pairwise autocorrelation
function, which describes the coding-relevant temporal second-
order interactions within a spike train. The second feature is the
pairwise cross-correlation across noisy trials, which describes the
coding-relevant aspects emerging from noise interactions. The
cross-correlations are related to the temporal precision of the
peaks in the peristimulus time histogram (PSTH) and may be
known to some readers as the autocorrelation of the PSTH.

Results
Correlation theory of neural information. We are interested in
the information contained in a spike train r(t) about a stimulus
s(t), which is a part of this neuron’s input current. We consider a
situation where spike responses, as well as the currents that
evoked them, are stationary in time and have finite temporal
memory and finite, non-zero coefficient of variation. The spiking
decision of the neuron is determined by its input current, which is
a function of the stimulus s(t) and the noise n(t), with s(t) and
n(t) being independent of each other. Stationary processes
r(t),s(t),n(t) are characterized by a probability distribution such as
P(s(t1),ys(tk)) that is invariant with respect to time transla-
tions13. In other words, their statistics depends neither on the
start nor the end point of the recording and includes many
prominent classes such as Markovian, non-Markovian, Gaussian
or non-Gaussian time processes. The second property of finite
memory guarantees that the interactions between any two
recording times vanish if the two time points are sufficiently far
apart. The assumption of finite memory is plausible for neurons,
because any biological interaction has finite lifetime. The
assumption of stationarity, which has already been the corner-
stone of current theoretical approaches3,7,10–12, is motivated by
the experimental evidence that the same stimulus presented at
different time points produces similar outcomes2.

To express the information content we use the concept of
mutual information, which is the difference between the signal
and noise entropy7,14 and can be summarized via

IðR; SÞ ¼ Hsignal�Hnoise ¼ �
X

R

PðrÞlog2PðrÞ

þ
X

S

PðsÞ
X

R

Pðr j sÞlog2Pðr j sÞ: ð1Þ

Here, I(R,S) is the mutual information between stimulus and
response, P(r) is the probability distribution of all possible spike
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Figure 1 | Dimensionality of neural information coding. (a) Phase space

spanned by possible spike time combinations (grey box) relative to the

information coding subspace (blue area) for a given number of spikes. If the

relevant features are known, only the lower dimensional subspace has to be

sampled (black dots), to estimate the neural information content. (b) Phase

space grows exponentially with increasing number of spikes, whereas the

relevant coding features remain constant. In this study we argue that the

information-relevant features are Cspike
auto ðoÞ and Cspike

crossðoÞ, which we derive in

equations (2) and (3).
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trains belonging to the set R resulting from varying stimulus
presentations drawn from the set S and P(r|s) is the distribution
of spike trains evoked by repeated presentations of stimulus s.
This distribution, P(r|s), represents the residual, noise-induced
variability for a given stimulus s15 and in our calculations
stimulus and noise processes are independent of one another.

Shannon14 pointed out in his original article that mutual
information, unlike entropies, is independent of the basis space
used to define P(r) and P(r|s); therefore, any complete basis can
be used to calculate the information. Let us note that the values of
individual entropies are dependent on the coordinate system and
may therefore vary across bases, methods and discretization
procedures16. Taken individually, signal and noise entropies may
therefore not be meaningful, yet their difference, the mutual
information, is an invariant quantity that uniquely determines the
information bandwidth of a neuron.

Following this idea, we choose the Fourier basis for probability
calculations, because according to the work by Brillinger13 the
distributions of Fourier coefficients across trials are mathe-
matically very appealing. The Brillinger work indicates that even
though the Fourier modes of a given spike train have highly
structured phase and amplitude relationships across frequencies,
the Fourier distributions across trials lack any complex structure
in stationary, finite memory spike trains. Surprisingly, when they
are pooled across trials independent, complex Gaussian
distributions emerge. Let us stress that the reverse is not true,
sampling independent Gaussian coefficients will not reproduce a
spike train in the time domain, even if the mean and variance of
the coefficients are matched. However, the fact that a spiking
process is time-invariant and has finite memory, means that
across trials these phase relationships are random. As shown in
the Methods section, the Fourier coefficients for each frequency
converge asymptotically towards independent complex
normal distributions. For P(r), these normal distributions
have zero mean, whereas those for P(r|s) have a non-zero mean
(see Methods section and the Supplementary Note 1 for
mathematical details). In Fig. 2, we confirm these properties in
a leaky integrate-and-fire spiking model that is driven by a
bimodal stimulus distribution. For each trial, we calculate the
Fourier transform as described in the Supplementary Note 2.
Figure 2a–c shows schematically the inputs and the resulting
spikes. In Fig. 2d–g, we demonstrate the independence of Fourier
coefficients and their Gaussian properties. In Fig. 2d,e, we plot the
distribution of real values of the Fourier coefficient, its amplitude
and phase at a single frequency o¼ 2p11 Hz across trials.
We note that Fourier coefficients on trials with varying stimuli
have zero mean, whereas trials with a repeating stimulus have a
finite mean value, which we subtracted to obtain the Rayleigh
distribution of amplitudes and uniform distribution of phases.
Here, each of the Fourier coefficients for a frequency o¼ 2pf was
obtained from 103 trials each of length T¼ 40 s. To explore the
validity limits of these statistical properties, we consider a counter
example and three limiting cases in the Supplementary Note 3
and in the Supplementary Figs 5–10.

As the mutual information for complex normal variables is
determined only by the variances of s2

RðoÞ and s2
RjsðoÞ, we can

express these quantities and thereby the mutual information via
the spike autocorrelation Cspike

auto ðtÞ and spike cross correlation
Cspike

cross ðtÞ function:

s2
RðoÞ ¼ Cspike

auto ðoÞ=T ¼ FðCspike
auto ðtÞÞ=T; ð2Þ

s2
RjsðoÞ ¼ ðC

spike
auto ðoÞ�Cspike

cross ðoÞÞ=T; ð3Þ

where F is the Fourier transformation and T the recording time.
Here, R and R|s denote the sets of possible spike responses

observed for varying or repeating stimulus presentations of s,
respectively, where each sAS. With these considerations, we now
can express the full information rate using the spike correlation
functions:

IðoÞ ¼ � 1
2

log2 1� Cspike
crossðoÞ

Cspike
auto ðoÞ

 !
and; ð4Þ

IðR; SÞ ¼
Z 1

0
IðoÞdo: ð5Þ

Here, I(o) is the information rate per frequency in bit(s Hz)� 1

and I(R,S) is the full mutual information rate transmitted by the
spike trains in bit s� 1 about a stimulus. We note that the spike
cross-correlation function is identical to the autocorrelation of the
PSTH, Cspike

cross ðoÞ ¼ CPSTH
auto ðoÞ (see Methods).

In equation (5), we make two remarkable observations.
Pairwise temporal spike correlations alone fully determine the
complete stimulus information, whereas higher-order correla-
tions between interspike intervals17 do not contribute additional
information. Now, let us stress that we derived this result for a
broad class of stationary and finite memory processes that apply
to many but of course not all possible neural activity states. For
example, some neurons may use phase coding18 or first latency
coding19, which are beyond the validity limits of our correlation
theory. In these cases, our theory can offer a quantitative
benchmark for the efficiency comparison across coding schemes.
To help relate our results to previous information theoretical
approaches, we consider in the Methods section and the
Supplementary Note 2 their relation to three frequently used
approximate solutions, which include the lower bound
estimation, the information carried by interspike intervals and
the information carried by stimulus-induced rate variations.

Novel insights into information coding. Here we use our cor-
relation theory to explore the theoretical limits of information
coding in a threshold-based spiking neuron20–22. We chose this
particular model for two reasons. First, it captures the irregular
spiking dynamics exhibited by L2/3 cortical pyramidal neurons20

that mediate long-range projections across the cortex. Second, it
allows us to obtain exact information values with minimal
numerical errors, as it offers exact, closed-form solutions for both
auto- and cross-correlation functions23. This level of mathe-
matical precision combined with biological relevance is currently
not available in other integrate-and-fire-type models or
experimental recordings and it allows us to precisely evaluate
the influence of all possible variables on the neural information
content. Model details can be found in the Methods section
‘Threshold-based neuron model’.

By considering the spectral decomposition of information in
this model, we found that for a neuron spiking at B8 Hz, only
frequencies below 500 Hz contributed information. In the time
domain, this translated to an informative spiking precision of up
to 2 ms, which remarkably was two orders of magnitude smaller
than the average interspike interval of B120 ms. Notably, this
was in line with the ultrafast spike-detection kinetics reported for
pyramidal neurons24, which has been observed but not yet related
to a specific number of bits/spike conveyed in this frequency
band. In addition, we found that the predicted information
content agreed well with its numerical analogues (blue dots),
which were obtained from spike trains (see Fig. 3c) with a finite
duration of only 40 s, see Supplementary Note 2.

We now took a further step and derived a number of novel
predictions about the impact of input noise and neuronal
excitability on the information coding capabilities of pyramidal
neurons. First, we addressed the role of input noise by varying the
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stimulus amplitude relative to noise in the threshold-based model
of pyramidal neurons. We hypothesized that a plausible strategy
for a neuron to achieve a higher information throughput may be
to decrease its noise and increase its stimulus-to-noise ratio
(SNR). Indeed, Fig. 4a confirms that improving the SNR ratio of a
neuron results in higher information content. Interestingly, we
observed in the low SNR limit that the information content was
proportional to the SNR. However, when we decreased the noise
and reached higher SNR values, we observed that the information
content accelerated and exhibited a supralinear growth as a
function of SNR (see Fig. 4a). This finding is counterintuitive and

implies that reducing noise in a noisy neuron would deliver
returns in the decoding accuracy that are proportional to the
reduction in noise. On the other hand, if the neuron is already
reliable and has low noise, any additional noise reduction will give
a disproportionally large information gain, as shown in Fig. 4a.
This suggests a simple new operational principle: improving the
most reliable neurons is better than combating noise in the
noisiest neurons.

Addressing the role of excitability on information content we
found that models of pyramidal neurons active at a low rate (high
spiking threshold) can improve their information efficiency
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substantially by increasing their membrane time constant and
thereby integrating more of the stimulus information into each of
their spikes (see Fig. 4b). On the other hand, neurons spiking at a
higher rate (low spiking threshold), would benefit more from

matching the membrane integration time to the stimulus time
scale (see Fig. 4c). This regime implies an operational advantage
for neurons that match their membrane filter to the stimuli they
receive, to code the stimulus information more precisely in the
temporal correlations between spikes. In summary, our correla-
tion theory allowed us to identify two new operational principles
that depend on the noisiness of the neuron and its activity level.
First, investments in noise reduction have the highest information
pay-off in already reliable neurons. Second, investments in time
scale matching between the intrinsic neuronal time constants
have the highest information pay-off in high activity neurons.
Our theoretical predictions put previous experimental reports of
time scale matching25,26, as observed in some neurons, into a
conceptual framework and explain why some neurons may be
matching their membrane time scales and the resulting spiking
time scales to the input they receive while others may not.

Dissecting the constituents of neural information. The rate
coding hypothesis5 postulates that the average number of spikes
per unit time is the only variable carrying information. Numerous
experimental recordings have shown that the modulation of firing
rates can often be related to the presence or absence of certain
stimulus features7. On the other hand, there is growing evidence
that neurons encode stimulus features by changing the temporal
structure of the spike train without changing the firing rate5,8,9.
This temporal code could potentially have higher information
coding capacity than the rate code. Using our results in
equation (4) we can now disentangle the contribution of spike
timing correlations from rate contribution. To this end, we
consider two limiting cases. First, we compare the full infor-
mation contained in a spike train with that of its Poissonian
analogue, which has the same stimulus induced rate modulation
(PSTH) as the original spike train, but which neglects all temporal
interactions. Second, we compare the full information of
a spike train with that contained in its interspike distribution
p(ISI), where ISI is the interval between two successive spikes,
see Supplementary Note 2 section ‘Information in interspike
intervals’.

Addressing first the case of the Poissonian analogue, we find
that the stimulus induced rate modulation is captured by the
cross-correlation function, which appears in the numerator of
equation (4) and which is equal to the autocorrelation function of
the PSTH (see Methods section). Neglecting the temporal
correlations replaces the original, temporally structured spike
autocorrelation function with that of a Poisson spike train. In
Fig. 5a,b, we show that considering only the rate covariations in
the PSTH can result in both underestimation or overestimation.
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To explore the role of temporal correlations we contrast the full
information content with the information contained in the
interspike interval distribution in the leaky integrate-and-fire
model. Owing to a reset and the simple membrane filter, the
range of spike correlations is at most as broad as the input’s. As
the input becomes more white the interspike correlations vanish
quickly. We observe, as expected, a convergence between the ISI
and the full information in the limit of small correlation times
and vanishing interspike interval correlations in this model
(see Fig. 5a). In the section ‘Information in the interspike
intervals (ISI information)’ of the Supplementary Note 2, we
show that the main factor determining whether over- or
underestimation occurs is the relative contribution of temporal
effects and p(ISI) to Cspike

auto ðoÞ. Here we demonstrate in Fig. 5 that
both over- and underestimation can occur using two examples.
Figure 5a demonstrates an overestimation example where
the spiking follows the leaky integrate-and-fire model, firing
rate 50 Hz and tmen¼ 10 ms. Figure 5b demonstrates under-
estimation in the threshold-based model neuron, firing rate
5 Hz tmem¼ 10 ms. This model lacks a hard voltage reset and the
spike times depend on the voltage derivative; therefore, its
interspike correlations together with the deviations between the
ISI and the full information may exist even for small input time
constants.

Advantages for experimental studies of neural information.
Correlation functions have a long history in neuroscience, as they
have been measured in live neurons and calculated in models for
more than 50 years27,28. Our findings now demonstrate that they
are vital ingredients for neural signal processing and can be
used to calculate the full neural information content. With
equation (4), we thus unite two previously disconnected fields of
neuroscientific research—correlation studies and information
theory.

Importantly, not only can previous correlation studies be
revisited with regard to information but also our results will make
future estimates of neural information more robust and easier to
acquire. Here we argue that accessing information content via

correlation functions has the potential to reduce the experimental
data needs by at least two orders of magnitude compared with
state-of-the art approaches.

We show that the predictions of our correlation theory are
consistent with previous information approaches16, as well as the
information content reported in vitro and in vivo. Notably, our
correlation theory meets these demands with a fraction of
required data. In Fig. 6a–c, we show that the predictions of our
correlation theory, its numerical implementation and the results
obtained for the direct method16 align across two orders of
magnitude of membrane time constants. Notably, the direct
method needs at least two orders of magnitude longer recording
lengths and at least five orders of magnitude larger trial numbers
to meet the accuracy demands, see Fig. 6d. On the other hand,
our correlation-based approach already converges with a small
number of stimuli and exhibits substantially better numerical
stability and low variability. This suggests that our results can
significantly reduce the experimental recording lengths needed
for an estimate of neural information content. Furthermore, we
find that the predicted information range covering a few bits per
spike agrees well with the 1.8 bits per spike observed in H1
neurons of the fly16, as well as the 0–3 bits s� 1 observed in
CA1 and CA3 regions of the hippocampus29. Details on the
implementation and the numerical stability of the direct method
can be found in the Supplementary Note 2. To verify that
correlation theory and the direct method yield equivalent results
across models, we evaluated both in three additional spiking
models across two orders of magnitude in parameters. Figures
6e–g confirms that the correlation theory and the direct method
yield equivalent results for the leaky integrate-and-fire model
(Fig. 6e), for the adaptive integrate-and-fire model (Fig. 6f), as
well as for the exponential integrate-and-fire model (Fig. 6g, see
also Supplementary Figs 1–3) for an overview of the spiking
statistics and a confirmation of complex Gaussianity in these
models. Let us note, that in Fig. 6f we took particular care to
demonstrate that not only stimulus induced but also intrinsically
generated spike correlations can be captured by our correlation
theory. To this end, we show in Fig. 6f (inset) correspondence
between the correlation theory and the direct method in an
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Figure 5 | Temporal spike interactions impact neural information content. (a) The full information content predicted by the correlation theory (blue
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50 Hz. For reference, we also include in grey the correlation coefficient between successive interspike intervals. (b) The analogous quantities as in a for the

threshold-based neuron firing at 5 Hz. Considering the PSTH-based Poisson rate approximation of information (red circles) results in an underestimation

for slow stimuli in a and overestimation for fast stimuli in b. In a,b, we observe that temporal correlations can have two opposite effects, they can either

increase the information by 450% (a) or decrease it (b) by a similar factor. To exclude firing rate effects as we vary time constants in a,b, we adjusted the

spiking threshold to maintain a constant firing rate across all time constants. We further set tstim ¼ tnoise, tmem ¼ 10ms, other parameters in as in Table 1.

Methods to ensure convergence of the ISI information can be found in the Supplementary Note 2 and Supplementary Fig. 4.
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adaptive integrate-and-fire neuron across two orders of adap-
tation time scales, which are comparable to experiment30–32. In
this example, the stimulus and noise time scale is 20 ms, whereas
the adaptation time scales range from 3 to 316 ms.

Discussion
The list of spike timing features that have been implicated in
neural coding includes the average number of spikes per time5

or the occurrence frequency of spike doublets or triplets6.
Importantly, this list has experienced unprecedented growth in
the last years as interactions between two, three or even N time
points have increasingly been linked to neural information
content17,33–35. In this study, we imposed fundamental limits on
the growth of relevant coding features and showed
mathematically that out of the infinitely large list of possible
coding-relevant spike patterns, only two fully determined the
neural information content in an important class of stationary
neural codes with finite memory. These two features were the
pairwise temporal spike correlation function within a spike train
Cspike

auto ðtÞ and the spike correlation function across repeated
stimulus presentations Cspike

crossðtÞ, the latter of which may be
known to some readers as the PSTH autocorrelation function, see
Methods section.

The results we have presented here are independent of the
spike generation details or neuronal type and apply to any
experimentally recorded or simulated spike train that has finite

memory and whose spiking statistics is time-invariant within the
recorded time frame. In other words, our correlation theory
showed that in neurons lacking an explicit time reference or
‘clock’, the kind that is needed for example in phase coding18,
the relative temporal correlations are the only functions that
determine the information content. For the mathematically
tractable threshold-based neuron model20,21 that is consistent
with many features of cortical pyramidal neurons in L2/3, we
used our correlation theory to construct the first exact value
of information content. This allowed us to explore different
operating regimes with an accuracy and speed that is beyond the
reach of current experimental and numerical measurements.

A surprising aspect of neural coding became apparent when
studying different SNR levels. We found that the SNR and
information content are largely proportional to each other up to
an SNR of B0.5, beyond which there is a supralinear increase in
the information content (Fig. 4a). Investigating the contribution
of excitability on neural information content, we found that for
high spiking thresholds, neurons with a large membrane time
constant have an operational advantage for transmitting informa-
tion (Fig. 4b). On the other hand, more excitable neurons with a
low spiking threshold tend to transmit information best in a
narrow range of membrane time constants (Fig. 4c). The seminal
work by Laughlin et al.36 and others suggested that neurons may
be striving to find an optimal operating point to transmit the
most information in the face of noise and energy7. Our work
highlights how each of these constraints shapes the information
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Figure 6 | Correlation-based information estimates outperform the direct method. (a) Correlation-based information estimates (blue squares) and exact

analytical values provided by the correlation theory (red line) agree with the direct method16 (black triangles) across two orders of membrane time

constants in the threshold-based model. The corresponding firing rate and information per spike are in b,c, respectively. (d) Convergence to the exact
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correlation-based information estimate requires orders of magnitude smaller trial counts to achieve comparable accuracy and shows greater numerical

stability. (e–g) We confirm the agreement between the correlation-based information estimate and the direct method in three additional spiking models:

leaky integrate-and-fire neuron model (LIF, e), adaptive integrate-and-fire neuron model (aLIF, f) and the exponential integrate-and-fire model (EIF, g).

(f) Inset: we vary the adaptation constant to across two orders in magnitude in the aLIF model, to demonstrate that our correlation theory applies to spike

trains with complex internal structure that is not simply induced by the input. Parameter values as in Table 1 and spiking dynamics as described in the

Methods section.
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transmission and provides a mathematically tractable platform to
find the optimal operational point for any combination of input
and neural excitability.

It has been proposed that most, if not all, neural information is
carried in the average number of spikes per time rather than in
the temporal spike patterns7,19. The accuracy of this rate code
hypothesis has been repeatedly called into question19,37,38. Here
we argued that the contribution of firing rate and temporal
correlations are inextricable features of a correlation code. We
showed in Fig. 5 that neglecting temporal correlations leads to
significant errors in the information estimate. We also showed
that calculating the information content under the assumption of
independent interspike intervals can increase or decrease the
information estimate by 50% or more. To identify the role of
temporal rate variations, we related the PSTH to the trial cross-
correlation function. We showed in Fig. 5 that this PSTH-based
approximation is close to the complete information in some
activity regimes, whereas in others this approximation can
significantly deviate from the full information.

In addition, our correlation theory and especially equation (4)
will significantly simplify the measurement of neural information
in future studies. We have shown in Fig. 6 that the standard
direct method16, which is now commonly used to estimate
neural information, and the numerical implementation of our
correlation theory agree well across two orders of parameter
magnitudes in four different spiking models. However, what was
remarkable is that to obtain comparable accuracy levels our
correlation-based estimate required orders of magnitude lower
trial numbers and recording lengths than the commonly used
direct method and it showed improved numerical stability
(Fig. 6d). Our correlation theory will thus reduce significantly
the recording times for future experiments, improve numerical
stability and, if closed-form expressions for correlation functions
are available, provide an exact value of the information content.

To relate our results to previous information theoretical
approaches, let us mention that we used insights from a carefully
chosen basis transformation to eliminate the need to measure all
possible spike patterns and instead suggest that it is sufficient to
measure only those that contribute to two spike correlation
functions. Although the direct method transformed spikes into
binary words and provided a convergent numerical algorithm, it
offered little guidance on how to reduce the word phase space to
coding-relevant features3,10,16. Thus, at the core of both
correlation theory and the direct method is the common idea
induced by Grenander39 that a well-chosen basis transformation
can be employed to make the probability calculations tractable
and provide a more efficient probability estimation. This idea has
already been used in a number of previous studies that attempted
to numerically estimate probabilities, entropies and information
in a variety of bases, which promised more attractive
properties3,10,16,40. Yet, an open question remained from these
studies with regard to two desirable features of the transformed
basis space. First, it remained challenging to calculate
interdependencies between bases projections and identify the
most effective basis transformation. Second, providing exact
solutions for all basis projections was often computationally
demanding or required strong approximations, for example,
Gaussian assumptions, and offered only a lower bound
estimate3,10,12. We addressed these two properties in equations
(1)–(5) and proved convergence and independence, while
expressing the complete information via known pairwise corre-
lation functions.

Now, let us comment on the potential generalizations of our
correlation theory and opportunities for future studies. Using our
correlation theory, we provided closed-form expressions for the
quantity of mutual information, which can now be generalized to

other information theoretical quantities using the work by Brunel
and Nadal41. This group has shown that information theoretical
quantities such as mutual information, Fisher information and
readouts are intrinsically intertwined, such that mutual
information can be transformed into Fisher information, which
in turn directly determines the Cramer–Rao bound on readout
accuracy41,42. Thus, the pairwise spike correlation functions can
be used to derive an explicit limit on readout accuracy. In
addition, our results can be used to shed light on the information
content in recurrent networks. In this study, we have focused on
the information content in individual neurons—the constituents
of a neural network. In a recurrent network, where the dynamics
of each neuron satisfies the stationarity and finite memory
conditions, our theory can be applied to each constituent neuron.
Considering the sum across all neurons we were able to obtain a
first-order approximation of how features such as firing
rates, time scales and noise levels have an impact on network
level coding. Future studies could also address specific
connectivity scenarios where our correlation theory generalizes
to N dimensions and where coupling between Fourier coefficients
across neurons could reveal novel network coding strategies.
Probable candidates for networks amenable to our theory are
irregular, balanced neural networks, where each neuron has a
finite correlation time43. Extending our correlation theory to
interneuronal interactions in recurrent networks could provide a
mechanistic understanding of the information carrying features
in networks and connect to existing Ising-type models describing
cortical and retinal activity44. Identifying the contributions of
individual neurons and that of synaptic interactions could help
reveal the quantitative determinants of network information
coding.

Methods
Deriving the correlation theory of neural information. We are interested in the
information contained in the spike train r(t) about a stimulus s(t). The spike train is
given by a sum of delta functions rðtÞ ¼

P
j dðt� tjÞ where tj are spike times.

The stimulus can be any time-continuous or discrete stochastic process.
To mathematically formalize the information contained in r(t) about s(t),
we use the concept of mutual information, which is given by the difference between
signal and noise entropies IðR; SÞ ¼ Hsignal �Hnoise ¼ �

P
R PðrÞlog2PðrÞþP

S PðsÞ
P

R Pðr j sÞlog2Pðr j sÞ. We denote by R and R|s the sets of possible spike
responses observed for varying or repeated stimulus presentations s, respectively,
where each s is taken from the set s 2 S. The results derived in the following are
valid for recorded neurons and spiking neuron models that fulfill the following
assumption: spike trains r(t), the underlying stimulus s(t) and the noise n(t) are
each stationary random processes with finite memory and finite mean and variance
(see Supplementary Note 1 for more formal definitions). Let us note that the
assumption of finite memory is plausible for any biological system, because ion
channels, proteins or any other biological molecules have finite lifetimes. The
stationarity condition can be fulfilled by any neuron whose spiking mechanism
remains constant during the recording period and which therefore responds with
the same statistics to current trajectories regardless of whether they are presented at
the beginning or the end of a recording. This can be fulfilled by a diverse set of
spiking mechanisms that may include spike-triggered or subthreshold adaptation,
or have a threshold-based spike condition. To highlight that our theory is valid
across spiking models, we demonstrate its validity using the following spiking
mechanisms: leaky integrate-and-fire, adaptive integrate-and-fire and the expo-
nential integrate-and-fire spiking mechanisms (see Methods sections below). To
explicitly calculate the mutual information, we use the statement in the original
paper by Shannon (p.42, part IV in ref. 14) that the mutual information is a basis-
independent quantity. This statement allows us to exchange the time domain for a
more convenient basis. Specifically, we search for a basis space that simplifies the
probability summation and endows the information evaluation with more
attractive statistical properties. To this end, we choose the Fourier basis, because it
has been shown by Brillinger (see p.94, Theorem 4.4.1 in ref. 13 and refs 45,46 for
extensions to point processes) to offer statistically independent basis projections
(principal components) that are mathematically highly tractable.

We now proceed to define the new basis projections, which are the Fourier
coefficients cRðoÞ ¼ 1=T

P
j¼0 expðiotjÞ, cR j sðoÞ ¼ 1=T

P
j¼0 expðiotjÞ and study

their distributions over many trials of the same duration. The results of Brillinger
(see p.94, Theorem 4.4.1 in ref. 13) imply that cRðoÞ and cR j sðoÞ asymptotically
approach a complex normal distribution. cR(o) is a complex normal distribution
with zero mean and finite variance, whereas our calculations indicate a finite mean
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for cR j sðoÞ (see Supplementary Note 1). Let us briefly note that the complex normal
distribution is derived from the Central Limit Theorem applied to the quantity
1=T

P
j¼0 expðiotjÞ. Knowing that spike times tj are correlated only in a finite time

window implies that spike trains exceeding a multiple of this window will contribute
largely uncorrelated spikes to this sum and thereby lead to a normal distribution. As
the variances of cR(o) and cR j sðoÞ are the only quantities determining the
information content for each Fourier mode, we proceeded to derive them
from the spike train statistics and obtain s2

RðoÞ ¼ Fð rðtÞrðtþ tÞh itimeÞ=T ¼
Cspike

auto ðoÞ=T , s2
R j sðoÞ ¼ Fð rðtÞrðtþ tÞh itime�h riðtÞrjðtþ tÞitime;i 6¼ jÞ=T ¼

ðCspike
auto ðoÞ�Cspike

crossðoÞÞ=T . We can now proceed and simply integrate the
contributions of the frequencies because each is statistically independent according
to the proofs by Brillinger13, as we detail in the Supplementary Note 1.

To obtain the contribution of each individual Fourier mode to the complete
information content, we need to evaluate each mode’s amplitude and phase
distribution. Specifically, we have to ensure that amplitude and phase (or real and
imaginary values) are contributing non-redundant information. Using the auxiliary
calculations detailed in the Supplementary Note 1, we show that the amplitude of
cRðoÞ follows a Rayleigh distribution with variance s2

RðoÞ, while its phase is
uniformly distributed47. Analogously, the amplitude of the mean-corrected
coefficient cR j sðoÞ follows a Rayleigh distribution with variance s2

R j sðoÞ. As the
entropies of complex normal distribution with zero and non-zero means have the
same entropy, we zero-centre the normal distribution of cR j sðoÞ by subtracting its
mean. We are now faced for each Fourier coefficient with a Rayleigh distribution
describing the amplitude and a uniform distribution describing the phase, see also
Fig. 2 for a numerical demonstration. For both Fourier coefficients cRðoÞ and
cR j sðoÞ, the corresponding Rayleigh and the uniform distributions are statistically
independent of each other. Combining these insights we find that the neuronal
information is carried only by the Rayleigh-distributed amplitudes, and that the
uniform phase distribution carries no additional information. Thus, we can
proceed to evaluate the complete information by considering that
HRayleigh ¼ 1

2 log2ð12 e2þGs2ðoÞÞ, where G is the Euler–Mascheroni constant.
We obtain:

IðoÞ ¼ Hamplitude
signal ðoÞ�Hamplitude

noise ðoÞ ¼ 1
2

log2 s2
RðoÞ=s2

R j sðoÞ
� �

: ð6Þ

Using the fact that s2
RðoÞ ¼ Cspike

auto ðoÞ=T and s2
R j sðoÞ ¼ ðC

spike
auto ðoÞ�

Cspike
cross ðoÞÞ=T , we obtain the result in equation (5).

Relating correlation theory to the lower bound estimation. To link our results
to previous approaches that have been derived for Gaussian stimuli and Gaussian
response statistics by Rieke et al.11, Bialek et al.10 and others, we show that from
our general result we can recover the coherence-based lower bound on information
content. Starting from equations (4) and (5), we Taylor expand the spike cross-
correlation function in the variable SNR ratio and consider only its first order
kernel u1ðoÞ49 (for details see Supplementary Note 1). We obtain

IðS;RÞ ¼ � 1
2

Z 1
0

log2 1� hu1ðoÞs�ðoÞu�1ðoÞsðoÞi
r�ðoÞrðoÞh i

� �
do ð7Þ

¼ � 1
2

Z 1
0

log2 1� hs
�ðoÞrðoÞi sðoÞr�ðoÞh i
hs�ðoÞsðoÞihr�ðoÞrðoÞi

� �
do: ð8Þ

This result is based on the linear approximation of the full spike cross-correlation
function and is naturally a lower bound on the information content. We recognize,
however, that this linearization procedure is not limited to the Gaussian stimuli

even though it was originally derived via the Wiener kernel expansion for Gaussian
inputs10–12,48.

Information in stimulus-induced rate variations. To estimate the information
contained in the stimulus-induced rate variations, we consider the PSTH measured
in trials with repeated stimulus presentation. To this end, we derive a relation
between PSTH and the pairwise cross-correlation function measured across trials.
Following the calculations detailed in the Supplementary Note 1, we show that in
the limit of infinitely long recording lengths T the autocorrelation of the PSTH
CPSTH

auto ðtÞ corresponds to the pairwise cross-correlation function Cspike
cross ðtÞ. We

obtain

CPSTH
auto ðoÞ ¼ PSTHðoÞ � PSTH�ðoÞ ¼ Cspike

cross ðoÞ; ð9Þ

where PSTHðoÞ is the Fourier transform of the PSTH and Cspike
cross ðoÞ is the Fourier

transform of Cspike
cross ðtÞ. Considering trials with a varying stimulus, we obtain a flat

autocorrelation function, because any temporal structure present in individual
spike trains is averaged out across trials. Thus, neglecting intrinsic temporal
structure within each spike train results in a Poisson-like flat autocorrelation
function. In this situation the neural information content is determined by

IðR; SÞ � �
Z 1

0
1=2 � log2 1�CPSTH

auto ðoÞ=n
� �

do; ð10Þ

where v is the firing rate across trials. In Fig. 5, we compare this approximation
with the complete information content.

Input current statistics. Here we define the statistics of input currents, which we use
in this study. The input current X(t) is a weighted sum of a stimulus s(t) and a noise
process n(t), and satisfies the equation XðtÞ ¼

ffiffiffiffiffiffiffiffiffi
SNR
p

� sðtÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SNR
p

� nðtÞ, where
SNR is the stimulus-to-noise ratio, SNRA[0,1), and s(t) and n(t) are statistically
independent processes. The statistics of both s(t) and n(t) follows either Ornstein–
Uhlenbeck Gaussian process50 (Figs 3–6 and Supplementary Figs 1–3)
or a bimodal distribution in (Fig. 2). The differential equation defining the Ornstein–
Uhlenbeck process x(t), where x(t) is either s(t) or n(t) is _XðtÞ ¼ � t� 1

stimXðtÞþ ZðtÞ,
whereby Z(t) is a zero mean white noise process with variance sZ and tstim is its time
constant. For mathematical tractability, we choose zero mean Ornstein–Uhlenbeck
stimuli s(t) and n(t) to have the same variance sZ and correlation time constant tstim

between 1 and 50 ms, which corresponds to AMPA and NMDA time scales within a
recurrent network (see Table 1). For bimodal stimuli, s(t) and n(t) each is
independently drawn at each time step from the bimodal distribution in Fig. 2a. We
note that both Ornstein–Uhlenbeck and bimodal currents are stationary and have
finite memory and by combining this with the neural dynamics described below, we
obtain spike trains that also retain these features and lead to Gaussian Fourier
coefficients that are independent across frequencies, see Fig. 2.

Spiking neuron models. In the following Methods section we present four spiking
neuron models, which we used in Figs 2–6 and for which we detailed the Fourier
statistics in the Supplementary Figs 1–3. All four spiking models were chosen based
on their relevance to the dynamics of live neurons. We chose the threshold-based
neuron model20–22 (Figs 4–6) based on its similarity to pyramidal L2/3 neurons in
the visual cortex20 and its mathematical tractability23. The leaky integrate-and-fire,
adaptive leaky integrate-and-fire, as well as exponential integrate-and-fire neuron
models in Figs 2,5a and 6 were chosen due to their similarity to pyramidal neurons
in L4 and L2/3 (refs 7,51–53) and cortical neurons exhibiting subthreshold
oscillations54.

Table 1 | Parameter sets across neuron models.

Figure sstim, snoise SNR Membrane properties Firing Spiking neuron Input
number (ms) (ms) rate (Hz) model type

2 � 0.5 tmem¼ 10 11.8 LIF Bimodal
3 3 0.8 tmem¼ 5 8.3 TB OU
4a 10 0–1 tmem¼ 20 8.3 TB OU
4b, 6a–d 10 0.6 tmem¼ 1–100 1.7–45 TB OU
4c 10 0.6 tmem¼ 1–100 5–50 TB OU
5a 0.2–200 0.6 tmem¼ 10 50 LIF OU
5b 1–20 0.6 tmem¼ 10 5 TB OU
6e 10 0.6 tmem¼ 3.2–100 1.1–107 LIF OU
6f 20 0.6 tmem¼ 3.2–100 1.0–200 aLIF OU
6f, inset 20 0.6 tmem¼ 10 50 aLIF OU

to¼ 3.5-316
6g 10 0.5 tmem¼ 3.2–100 0.9–91 EIF OU

aLIF, adaptive leaky integrate-and-fire; Bimodal, bimodal inputs; EIF, exponential integrate-and-fire; LIF, leaky integrate-and-fire; OU, Ornstein-Uhlenbeck processes; SNR, stimulus-to-noise ratio;
TB, threshold based.
In this study, we investigated a TB, an LIF, an aLIF and an EIF model neuron. The input currents were OU processes or Bimodal.
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Threshold-based neuron model. In this model, the voltage dynamics are
governed by20,21:

tmem _VðtÞ ¼ �VðtÞþXðtÞ; ð11Þ
where V(t) is the membrane voltage and tmem is the membrane time constant.
X(t) is the zero mean input current, whose temporal evolution follows
an Ornstein–Uhlenbeck process50 described by the differential equation
_XðtÞ ¼ � t� 1

stimXðtÞþ ZðtÞ, whereby Z(t) is a zero mean white noise process
with an s.d. sZ and time constant tstim. The input current X(t) incorporates input
resistance and carries the unit mV. The input current consists of a mixture
XðtÞ ¼

ffiffiffiffiffiffiffiffiffi
SNR
p

� sðtÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SNR
p

� nðtÞ, where SNR is the stimulus-to-noise ratio,
and both s(t) and n(t) share the same tstim and sZ. The neuron emits a spike if a
voltage threshold Vth is crossed from below. This model can be exactly mapped to
the integrate-and-fire model for small firing rates and finite time constants
(tstim=tmem � 1)22. The model’s main computational advantage relative to the
leaky integrate-and-fire model is its mathematical tractability23. We note that by
considering noise and stimuli, which both have zero mean, as we do throughout
this study, the voltage will also have a zero mean and this neuron model will only
be able to reach the threshold and emit a spike if either the temporally varying
noise or the stimulus is present. This situation corresponds to the subthreshold
regime introduced by Gerstner and Kistler19. In Fig. 3 we set sZ¼ 0.45 mV and
Vth¼ 0.6; in Fig. 5b we set sZ¼ 1 mV, and for tstim¼ [1,2,5,10,20] ms we set the
thresholds to Vth¼ [0.46,0.81,1.58,2.41,3.29] mV. In Fig. 6 we set sZ¼Vth¼ 1 mV,
to achieve the best comparison with other integrate-and-fire models. All other
parameter values are given in Table 1.

Leaky integrate-and-fire neuron model. In this model, the voltage dynamics are
governed by7:

tmem _VðtÞ ¼ �VðtÞþXðtÞ; ð12Þ
where V(t) is the membrane voltage, tmem is the membrane time constant and X(t)
denotes the input current. The input current X(t) has either a bimodal distribution
as in Fig. 2 or is a zero mean Ornstein–Uhlenbeck process50 with a time constant
tstim. In the latter case, the temporal evolution of X(t) is described by the
differential equation _XðtÞ ¼ � t� 1

stimXðtÞþ ZðtÞ, whereby Z(t) is a zero mean white
noise process with an s.d. sZ and time constant tstim. The input current X(t)
incorporates input resistance and carries the unit mV. The input current consists of
a mixture XðtÞ ¼

ffiffiffiffiffiffiffiffiffi
SNR
p

� sðtÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SNR
p

� nðtÞ, where SNR is the stimulus-to-
noise ratio, and s(t) and n(t) have the same statistical properties. For example,
when we consider Ornstein–Uhlenbeck inputs, both s(t) and n(t) have the same
tstim and the same sZ. The same applies to bimodal inputs, in which case both n(t)
and s(t) are drawn from the same bimodal distribution. In this model, the neuron
emits a spike whenever the voltage V(t) reaches a threshold value Vth, after which
the voltage is reset to Vreset. For Ornstein–Uhlenbeck inputs we choose sZ¼ 1 mV
and Vth¼ �Vreset¼ 1 mV. In Fig. 5a for tstim¼ [0.2,0.5,1,2,10,20,50,100,200] ms,
the thresholds are Vth¼ �Vreset¼ [0.03,0.06,0.12,0.21,0.65,1.01,1.69,2.45] mV. For
bimodal inputs we set the threshold and reset values to Vth¼ �Vreset¼ 3 mV, to
achieve a biologically realistic firing rate. We note that by considering Ornstein or
bimodal noise and stimuli, which both have zero mean, as we do throughout this
study, the voltage will also have a zero mean and this neuron model will only be
able to reach the threshold and emit a spike if either the temporally varying noise
or the stimulus are present in the input current X(t). This situation corresponds to
the subthreshold regime introduced by Gerstner and Kistler19. For an illustration of
the input and spike statistics, see Supplementary Fig. 1. All other parameter values
are as in Table 1.

Adaptive leaky integrate-and-fire neuron model. This spiking model is
characterized by a subthreshold frequency preference and integrate-and-fire-type
dynamics. The voltage dynamics in this model are governed by53,54:

tmem _VðtÞ ¼ �VðtÞþ aoþXðtÞ ð13Þ

to _oðtÞ ¼ �oðtÞþb VðtÞ: ð14Þ
Here, V(t) is the membrane voltage, tmem is the membrane time constant and a, b
and to are adaptation variables. X(t) is the input current, whose temporal evolution
is described by the differential equation _XðtÞ ¼ � t� 1

stimXðtÞþ ZðtÞ, whereby Z(t) is
a zero mean white noise process with an s.d. sZ and time constant tstim. The input
current X(t) incorporates input resistance and carries the unit mV. The input
current consists of a mixture XðtÞ ¼

ffiffiffiffiffiffiffiffiffi
SNR
p

� sðtÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SNR
p

� nðtÞ, where SNR is
the stimulus-to-noise ratio, and both s(t) and n(t) share the same tstim and sZ. In
this model, the neuron emits a spike whenever the voltage V(t) reaches a threshold
value Vth, after which the voltage is reset to Vreset. We note that by considering
noise and stimuli, which both have zero mean, as we do throughout this study, the
voltage will also have a zero mean and this neuron model will only be able to reach
the threshold and emit a spike if either the temporally varying noise or the stimulus
is present. This situation corresponds to the subthreshold regime introduced by
Gerstner and Kistler19. Throughout our study we set the adaptive coupling
constants as a¼ � 2 and b¼ 4. In Fig. 6f, we set sZ¼ 1 mV, Vth¼ 0.7 mV, the reset
voltage Vreset¼ � 1 mV and to¼ 5 ms. For illustration of the spiking statistics
in Fig. 6f, see Supplementary Fig. 2. In the inset to Fig. 6f, the membrane

constant is set at tmem¼ 10 ms, whereas to is varied. In this figure, the firing rate is
kept at 50 Hz by adapting the threshold Vth and setting the reset value to
Vreset¼ � 1 mV. Specifically, for to¼ [3.2,5,10,31,100,316] ms the thresholds are
Vth¼ [0.63,0.7,0.82,1.09,1.4,1.61] mV; all other parameter values are as in Table 1.

Exponential integrate-and-fire neuron model. In this model, the voltage
dynamics are governed by52

tmem _VðtÞ ¼ �VðtÞþDT expððVðtÞ�VthÞ=DT ÞþXðtÞ: ð15Þ

Here, V(t) is the membrane voltage and tmem is the membrane time constant. X(t)
is the input current, whose temporal evolution is described by the differential
equation _XðtÞ ¼ � t� 1

stimXðtÞþ ZðtÞ, whereby Z(t) is a zero mean white noise
process with an s.d. sZ and time constant tstim. The input current X(t) incorporates
input resistance and carries the unit mV. The input current consists of a mixture
XðtÞ ¼

ffiffiffiffiffiffiffiffiffi
SNR
p

� sðtÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SNR
p

� nðtÞ, where SNR is the stimulus-to-noise ratio,
and both s(t) and n(t) share the same tstim and sZ¼ 1 mV. In this model, the
neuron emits a spike whenever the voltage V(t) reaches a threshold value
Vth¼ 1.25 mV, after which the voltage is reset to Vreset¼ � 1.25 mV. DT¼ 1/2 mV
is the slope factor determining the speed of spike initiation. All other parameter
values are as in Table 1.We note that by considering noise and stimuli, which both
have zero mean, as we do throughout this study, the voltage will also have a zero
mean and this neuron model will only be able to reach the threshold and emit a
spike if either the temporally varying noise or the stimulus is present. This situation
corresponds to the subthreshold regime introduced by Gerstner and Kistler19. For
an illustration of the input and spike statistics see Supplementary Fig. 3.

Code availability. The computer code used in this study is available from
www.tchumatchenko.de/Code_SNArticle.zip

Data availability. Data sharing not applicable to this article, as no data sets were
analysed during the current study. All results are either theoretical in nature or
were obtained using the computer code above.
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