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Long-range movement of large mechanically
interlocked DNA nanostructures
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Interlocked molecules such as catenanes and rotaxanes, connected only via mechanical

bonds have the ability to perform large-scale sliding and rotational movements, making them

attractive components for the construction of artificial molecular machines and motors. We

here demonstrate the realization of large, rigid rotaxane structures composed of DNA origami

subunits. The structures can be easily modified to carry a molecular cargo or nanoparticles.

By using multiple axle modules, rotaxane constructs are realized with axle lengths of up to

355 nm and a fuel/anti-fuel mechanism is employed to switch the rotaxanes between a

mobile and a fixed state. We also create extended pseudo-rotaxanes, in which origami rings

can slide along supramolecular DNA filaments over several hundreds of nanometres. The

rings can be actively moved and tracked using atomic force microscopy.
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O
ver the past decades, supramolecular chemists have
developed efficient synthesis procedures for the genera-
tion of mechanically interlocked molecules1–4, and

potential applications for such structures are emerging. For
instance, rotaxanes have already been used as force-generating
components for molecular elevators5, molecular pumps6, as
switches in molecular electronics7, and for the control of stepwise
chemical synthesis8.

DNA nanotechnology represents an alternative strategy for the
generation of supramolecular structures that utilizes sequence-
programmable interactions between DNA molecules. DNA
nanostructures can be produced by automated design and
synthesis procedures, and thus enable a fast exploration of
supramolecular designs. Already in the 1990s, a variety of
DNA-based knots and interlocked rings9,10 were synthesized,
followed later by the realization of switchable catenane
structures11,12 and origami catenanes produced by molecular
kirigami13. In 2010, the first DNA rotaxane structures were
created14, which comprised a linear double-stranded DNA axis
and circular stoppers. Later mechanically more rigid15, light-
switchable16 and Daisy chain17 DNA rotaxanes were realized, and
also rotaxanes involving gold nanoparticles18. For a recent review
see ref. 19.

Most of the work on interlocked DNA structures used single-
stranded or double-stranded DNA as a building material. Thus,
even though the structures were topologically well defined, they
were mechanically rather flexible. By contrast, DNA origami
structures20,21 consist of several, multiply connected DNA double
helices in parallel and thus exhibit a much larger rigidity. Until
now, however, such structures were mainly used as rigid scaffolds,
but not for the realization of molecular machinery. Notable
exceptions were the production of switchable DNA nano-
containers22,23 or the realization of DNA-based kinematic pairs,
which were inspired by macroscopic engineering mecha-
nisms24,25. In these examples, the underlying DNA origami
structures were folded from a single scaffold strand and thus
consisted of a single subunit. As a consequence, the structures
were only capable of restricted local movements.

We here demonstrate the construction of large and structurally
rigid DNA origami rotaxane structures from multiple subunits—
origami macrocycles threaded onto rigid multi-helix axles with
bulky stoppers. Origami pseudo-rotaxanes, in which the macro-
cycles move along elongated axles over several 100 nm, indicate
the potential of this approach for the creation of mesoscopic
molecular machines displaying processive long-range motion. As
a consequence of the purely mechanical bond, origami rotaxanes
are promising functional components for the creation of
molecular transporters, enabling fast and directionally guided
sliding mobility over long distances.

Results
Formation of two-component rotaxane constructs. Rotaxanes
were synthesized using a clipping approach26 based on two
subunits, which were each created using the DNA origami
technique21 (Fig. 1a). One subunit—the rotaxane axle—was
designed in the shape of a dumbbell, comprised of a linear axis
and stopper elements at each end. To facilitate efficient assembly
of an interlocked structure, the rotaxane ring subunit was first
produced separately in a flexible, open configuration and
localized at the dumbbell axis via sticky end hybridization
(for transmission electron microscopy (TEM) images of the
subunits see Supplementary Figs 1–8. A detailed description of
the design see the Supplementary Methods and Supplementary
Figs 24–27. For a list of DNA sequences used see Supplementary
Data 1). Closing strands were then added to join the ring around

the axle. Subsequently, a set of fuel strands served to remove the
temporary connection between ring and axle via toehold-
mediated strand displacement27, resulting in a fully detached
ring sliding on the axle between the stoppers.

We applied this general approach to two alternative designs.
The first rotaxane (termed R1D1, Fig. 1b,c and Supplementary
Figs 9–10) with overall dimensions of B140� 40 nm was
constructed from a dumbbell module (D1) and a tubular ring
(R1). The dumbbell was composed of a 10-helix axis placed
between bulky stopper blocks at both ends. Nine axis staple
strands were extended to act as sticky ends for the temporary
attachment of the macrocycle. The open ring R1 was composed of
two separate rigid halves connected by a flexible hinge, of which
one carried nine sticky ends for attachment to the dumbbell.
Closure of the hinged structure resulted in a hexagonal tubular
toroid consisting of 76 parallel helices with a total length of 35 nm
and an inner diameter of 15 nm (cf. Supplementary Table 1 for all
dimensions).

An alternative design (termed R2D2, Fig. 1d–f and Supplemen-
tary Figs 11–12) was implemented using curved structural
elements as introduced in ref. 28. An H-shaped structure with
dimensions 90� 71 nm was created to serve as the rotaxane axle.
The rotaxane ring consisted of 14 double helices bent into a torus
with an inner diameter of 28 nm. An additional 28-helix block
attached to the torus acted as an orientation marker. As above,
the ring was folded into an open configuration, which contained a
gap large enough for the axle to pass through (Fig. 1d). After its
localization to the axle, closing strands were added that forced the
ring into a closed torus conformation (Fig. 1e).

Quality control by TEM indicated reasonable yields for the
localization of the ring for both rotaxane designs (R1D1 85%,
R2D2 87%; see Supplementary Methods) even without final gel
purification.

Switching between mobile and immobile state. To assess whe-
ther the rings were indeed free to move along the axles, we
investigated TEM micrographs taken before and after the release
of the rings in greater detail (Fig. 2). The translational movement
of rotaxane R1D1 was analysed by measuring the distance of ring
R1 from its nominal initial position on the axle. Only a transla-
tional small shift between the initial position and the average ring
position could be expected if all rings were successfully released,
as the attachment position was designed to bind the ring only
3,9 nm from the centre of the axle. The resulting bimodal dis-
tributions for the ring position (Fig. 2b) indicate that the ring
either resides on the initial attachment point, or slips off and
assumes a distal position 15 nm away from it. This suggests that
after release of the ring the attachment staples constitute a sterical
barrier for the ring, preventing it from sliding back and evenly
distribute along the axle (cf. Supplementary Fig. 25a,b for a cross-
section of R1D1). Most importantly, the fraction of rings found
on the distal position significantly increases after the addition of
release strands (Fig. 2d).

The rotational state of R1 with respect to the D1 axle could not
be visualized in these images. We therefore attached gold
nanoparticles (AuNPs, 10 nm diameter) as labels to both ring
and axle, which could be clearly identified in the TEM images
(Fig. 2c, see also Fig. 3a). Initially, AuNPs were bound to the
unreleased rotaxanes in a cis configuration. After release, a larger
fraction of particles was found in trans configuration, indicating a
rotational movement of the ring (Fig. 2e). A finite fraction of
rings apparently had slipped off the attachment site even before
the addition of release strands. This may be caused by the ring
closure process itself, which creates a crowded and potentially
strained state at the attachment site. Furthermore, deformation of
the structures during adhesion to the TEM grid or the staining
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and drying processes may rip some of the rings out of their
nominal starting position.

For the R2D2 design, we observed a much clearer ring
movement after addition of the release strands. To determine the
efficiency of the release process in this case, we counted the
fraction of rotaxanes in one of two distinct positional states
(centred and distal), which were observable in the TEM images
(Fig. 2f). After addition of the release strands, an almost 10-fold
increase of the distal population was observed (Fig. 2g). Judging
from the orientation of the marker block on R2, we also observed
rotational mobility of the ring (Fig. 2h).

In the following, we focused on the R1D1 design for further
characterization. To demonstrate the potential use of the
rotaxanes for the transport of nanoscale objects, we functiona-
lized the rotaxane also with 20 and 30 nm diameter gold particles
(Fig. 3a). Again, TEM images showed a clear lateral and radial
displacement of the structures upon release of the rings. We
further studied the mobility of the rotaxane using bulk
fluorescence resonance energy transfer (FRET) measurements,
for which R1 and D1 were labelled with four FRET donor–
acceptor pairs close to the initial attachment position (Fig. 3b).
Using a toehold-mediated strand displacement mechanism29, we
repeatedly switched the R1D1 rotaxane between a localized state,
in which the ring was attached to its initial position via adaptor
strands, and a mobile state (Fig. 3c). The connection between ring
and dumbbell was broken by the addition of a set of fuel strands
binding to the ring’s adaptors. To return the ring to its initial
position, anti-fuel strands were added to remove the fuel strands,
reactivating the adaptors for binding. Direct binding and blocking
of the dumbbell attachment sites by the anti-fuel strands was
avoided by using two separate anti-fuels per adaptor strand,

which each were only partially complementary to the dumbbell
adaptors. Using high fuel concentrations, the release and
rebinding processes occurred within minutes. For instance, the
final release step shown in Fig. 3c had a half-time of only about
40 s when using fuel strands at a concentration of 640 nM. In
addition to bulk FRET measurements, we also performed super-
resolution microscopy experiments using the DNA-PAINT
technique30, demonstrating a small mean distance change
between ring and stopper elements consistent with the trans-
lational movement of the ring (Supplementary Figs 22 and 23).

Extended multi-component rotaxane constructs. To be able to
visualize the ring mobility for the R1D1 rotaxane more clearly, we
next created rotaxane axles with a much longer axis. To this end,
we replaced D1 by a module that consisted of a stopper with 94
and 15 nm long axle sections on its both sides and an attachment
site for R1 on the 94 nm axle (Fig. 4a). Rings were assembled on
individual stopper modules, followed by polymerization of the
R1-stopper complexes via dedicated polymerization staples. As
shown in Fig. 4b, this resulted in elongated chains with multiple
rotaxane structures in series, on which some of the rings were
clearly mobile. We further extended the rotaxane axle by inserting
a 246-nm-long DNA 10-helix bundle between two stopper
modules, resulting in rotaxane molecules with a total axle length
of 355 nm, on which the ring R1 was free to move (Fig. 4c).

AFM manipulation of extended pseudorotaxane filaments.
Finally, we created even longer tracks for the R1 rings by
polymerizing axle modules without stoppers into elongated
pseudorotaxane filaments (Fig. 5a,b, see Supplementary
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Figure 1 | Fabrication of DNA origami rotaxanes. (a) A rotaxane is formed from an open ring (R1) with a flexible hinge and a dumbbell-shaped DNA

origami structure (D1), which were prepared separately. The hinge of the ring consists of a series of strand crossovers into which additional thymines are

inserted to provide higher flexibility. Ring and axis subunits are first connected and positioned with respect to each other using 18 nucleotide long,
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(red), followed by the addition of release strands that separate dumbbell from ring via toehold-mediated strand displacement. (b) 3D models and

corresponding averaged TEM images of the ring and dumbbell structure. Also shown are exemplary single-particle images. (c) TEM images of the
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Figs 13–18 for additional TEM images of multi-component
structures). Using fast scanning atomic force microscopy (AFM),
we directly observed the mobility of the macrocycles along the
axle (Fig. 5c,d, Supplementary Fig. 20 and Supplementary
Movie 1). In these experiments, the motion of the rings
was in fact driven by the AFM tip and the rings sled along the
filaments parallel to the slow scanning axis. The tip-induced
movement could only be observed for filaments that were weakly
fixed to the mica substrate, which made imagining particularly
challenging. Because of the adsorption of filaments and rings onto
the mica substrate, however, it was not possible to observe
thermally driven, diffusive motion of the rings. In future
experiments, rotaxanes could be attached to elevated posts31,
which would enable observation of the free gliding of
the rings.

Discussion
Using the DNA origami technique, we have demonstrated the
fabrication of biomolecular rotaxane structures with axle lengths

up to 355 nm and pseudo-rotaxanes extending even in the
micrometre range. Compared with earlier approaches, the
resulting structures were much larger and structurally more
rigid. Successful assembly and mobility of the structures were
demonstrated using various characterization techniques, includ-
ing electron microscopy and AFM. Reversible switching between
the localized and mobile ring configuration was shown using bulk
FRET experiments. Sliding of a single ring along an origami
filament over several hundred nanometres could be demonstrated
in AFM experiments, in which the ring was actively pushed along
its track. We also functionalized rotaxane structures with gold
nanoparticle cargoes of various sizes, indicating their potential
use as transporters for nanoscale objects.

Long-range transport using DNA origami rotaxane structures
is fundamentally different from previous approaches based on
DNA-based walkers32–35. The interlocked nature of rotaxanes
ensures localization of the mobile ring at the track without
requiring a tight bond between them. While the speed of
molecular walkers is ultimately limited by the timescales required
for binding to the track or unbinding from it (potentially
including additional enzymatic steps and conformational
changes), the origami rings could slide from one binding site to
a distant site simply by diffusion—which in principle can be
much faster. In order to enable free sliding of the rings, the
rotaxane structures would have to be elevated from the substrate,
or operated in solution or in a gel matrix. Even though diffusive
ring sliding is non-directional, transport of components from one
docking site to another could be specifically controlled through
the sequence of the adaptor strands, acting as unique localization
addresses. Transport could actually be rendered directional by
modulating the ring-binding strengths along the tracks to create a
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ratchet potential36, which could be switched by plasmonic
thermal cycling37 or optical switching38–41.

As one of the major advantages of DNA origami structures,
both ring and axle of the rotaxanes can be easily modified with
multiple cargo molecules and nanoparticles, at nanometre-precise
locations and with defined stoichiometries. The potential to
transport these components quickly over micrometre distances
may find application in the realization of programmable assembly
lines42, sequential DNA-templated synthesis43, and the control of
DNA-directed chemical processes at a distance.

Methods
DNA origami structures. The rotaxane subunits were produced by thermal
annealing of a solution containing 50 nM origami scaffold (a 7,249 nucleotide (nt)
long strand was used, except for ring1 and dumbbell D2, which were created from a
7,560 nt long scaffold44), 200 nM scaffold strands, 20mM MgCl2 and 1�TAE
buffer (40mM Tris 20mM acetic acid 1mM EDTA). The structures were folded
using 4 h long thermal annealing ramps over 4 �C (axle module: 60–57 �C; D1:
58–55 �C; R1, R2, D2: 56–53 �C; stopper module: 54–51 �C, see also Supplementary
Table 2). Excess staples were then removed using PEG precipitation45. To this end,
a 15% PEG 8,000 solution containing 505mM NaCl, 20mM MgCl2 and 1�TAE
was added to the sample at an equal volume, followed by centrifugation for 30min
at 20,000 r.c.f. The supernatant was removed and the pellet was resuspended in a
buffer containing 505mM NaCl, 20mM MgCl2 and 1�TAE and vortexed for at
least 2min. This procedure was repeated three times followed by resuspension of
the pellet in the final step in one-fourth of the initial volume (1M NaCl, 20mM
MgCl2 and 1�TAE) in order to obtain structures at a high concentration
(200 nM). The resulting solution was shaken at 600 r.p.m. for at least 1 h atE37 �C
to ensure that the structures were dissolved. Ring and dumbbell monomers were
mixed in a 1:1 ratio and incubated for 1 week at 30 �C to create ring-dumbbell
dimers. Subsequently the ring was closed by adding the corresponding staple subset
and incubating the sample at 35 �C for several hours. For quality control of the

rotaxane structures by gel electrophoresis see Supplementary Fig. 21. CaDNAno
design maps for the structures are displayed in Supplementary Figs 28–31.

Functionalization of origami structures with AuNPs. Functionalization of the
origami structures with gold nanoparticles was performed as previously descri-
bed46. First the nanoparticles were concentrated and coated with DNA. To this
end, 50ml gold particles (BBI solutions) at the concentration supplied by the
distributor (for example, 10 nM for 10 nm particles) were coated with BSPP
Bis(p-sulfonatophenyl)-phenylphosphine dihydrate dipotassium salt) by adding
4mgml� 1 BSPP and constantly shaking at room temperature over 3 days to avoid
aggregation during the functionalization process. A 5M NaCl solution was added
to the nanoparticle solution until the colour changed from red to blue and the
particles were centrifuged at 1,600 r.c.f. for 30min. The supernatant was removed
and the pellet was dissolved again in 800 ml of 2.5mM BSPP solution. Methanol
(800 ml) was added followed by another centrifugation step of 1,600 r.c.f. for
30min. The resulting pellet was dissolved in 800 ml of BSPP solution, the
concentration was determined using an absorption spectrometer and the
concentrated nanoparticles were coated with thiolated DNA (50-HS-
TCTCTCTCTCTCTCTCTCTC-30). The thiolated DNA was treated with 10mM
TCEP (Tris (carboxyethyl) phosphine hydrochloride) for at least 30min before
adding to the nanoparticles. For 10 nm particles a 100-fold excess of
oligonucleotides over the particles was used (400-fold for 20 nm and 900-fold
excess for 30 nm particles). The coating process was accelerated at low pH
conditions and therefore citrate buffer (pH 3) was added to a final concentration of
20mM. After constant shaking for 1 h (the long duration was only necessary for
large nanoparticles, the 10 nm AuNPs could be coated within 3min) the pH-value
was raised again by adding HEPES (pH 7.6) to a final concentration of 100mM.
The progress of coating process was tested by adding a magnesium chloride
solution (125mM) to a small amount of the sample. While uncoated particles
aggregate at these conditions—accompanied by a colour change from red to blue—,
the DNA coated particles stay in solution. Subsequently the remaining unbound
thiol strands were removed by filtration with 0.5�TBE buffer using 0.5ml 100 kDa
Amicon ultra-centrifugal filters (Merck Millipore). The samples were filtered at
8,000 r.c.f. for six minutes for five rounds. This procedure was afterwards repeated
with a fresh filter. Purification was performed immediately before adding the
AuNPs to the origami rotaxanes.

Rotaxane structures were modified with the AuNPs after assembly and closure
of the rings. Particles were conjugated to the rotaxanes by mixing the particles
(after addition of MgCl2 to a final concentration of 20mM and 1�TAE buffer)
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with the structures at fivefold excess per binding site and incubate them over night
on a shaker. Each of the binding sites on the origami structures consists of three
staple strands extended by the complementary sequence. After conjugation, excess
gold particles were removed from the sample by gel electrophoresis (0.5% agarose
gel, 1�TAE 12.5mM MgCl2). The origami band cut from the gel and the sample
was extracted by squeezing. Centrifuging the product at 20,000 r.c.f. for 20min and
removing supernatant up to the target volume was used to increase the sample
concentration to the desired value and the pellet was re-dissolved on a shaker at
37 �C for 30min. In general, we found that simple centrifugation is a facile method
to highly concentrate AuNP-modified origami structures, which could be useful
also for applications in plasmonics. With this method, also a complete buffer
exchange can be performed easily.

AFM imaging. AFM images were recorded using an Asylum Research Cypher
AFM and Olympus BioLever mini cantilevers (spring constant 0.05–1.2Nm� 1).
Typically a drive frequency of 18 kHz was used. Five microlitre of about 2 nM
origami sample (20mM MgCl2 and 1�TAE buffer) were added onto freshly
cleaved mica. As 10-helix bundles interact with the mica substrate only via a
relatively small area, we added 30 ml of 125mM MgCl2 and 10�TAE buffer to
sufficiently immobilize the structures on the substrate. Release strands were added
in excess to disconnect the attached rings.

Transmission electron microscopy. Negative stain samples were prepared on
glow-discharged formvar-supported carbon-coated Cu400 TEM grids (Science
Services, Munich, Germany). A total of 5 ml of sample solution were adsorbed on
the grid for 30 s and subsequently stained with 2% aqueous uranyl formate solution
containing 25mM NaOH for 40 s. Samples were then dried with filter paper.
Images were recorded with a Philips CM100 transmission electron microscope at
100 kV and an AMT 4� 4 Megapixel CCD camera.

FRET experiments. FRET experiments were carried out using a Cary Eclipse
spectrometer (Agilent Technologies Deutschland GmbH, Böblingen, Germany).
The donor dye (Cy3) was excited at 550±5 nm and observed at 575±5 nm, while
the acceptor (Cy5) was excited at 650±5 nm and observed at 675±5 nm. The
FRET signal was acquired at an emission of 675 nm when excited with 550 nm
light. Samples were diluted to a concentration of 10 nM and for each experiment
65ml of sample were filled into fluorescence cuvettes (105.254-QS, Hellma GmbH
& Co. KG, Müllheim, Germany). Release and anti-release strands were added
during data acquisition and the solution was mixed vigorously with a pipette. Data
points were recorded every 6 s with an integration time of 1 s. Temperature was
kept constant at 37 �C during the measurement.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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