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Mechanical slowing-down of cytoplasmic diffusion
allows in vivo counting of proteins in individual cells
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Many key regulatory proteins in bacteria are present in too low numbers to be detected with

conventional methods, which poses a particular challenge for single-cell analyses because

such proteins can contribute greatly to phenotypic heterogeneity. Here we develop a

microfluidics-based platform that enables single-molecule counting of low-abundance

proteins by mechanically slowing-down their diffusion within the cytoplasm of live Escherichia

coli (E. coli) cells. Our technique also allows for automated microscopy at high throughput

with minimal perturbation to native physiology, as well as viable enrichment/retrieval. We

illustrate the method by analysing the control of the master regulator of the E. coli stress

response, RpoS, by its adapter protein, SprE (RssB). Quantification of SprE numbers shows

that though SprE is necessary for RpoS degradation, it is expressed at levels as low as 3–4

molecules per average cell cycle, and fluctuations in SprE are approximately Poisson

distributed during exponential phase with no sign of bursting.
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A
surge of single-cell fluorescence studies has shown that
genetically identical cells residing within the same
environment can display extensive cell-to-cell variability

in the expression levels of various proteins1–3. A substantial
challenge when analysing these phenomena is that the
heterogeneity typically originates in reactions involving
low-abundance components, while only the high-abundance
components that indirectly respond to the heterogeneity are
relatively straightforward to measure. For example, many of the
key regulatory proteins in Escherichia coli (E. coli) are present in
such few copies—recent studies suggest that at least 10% of the
proteins in E. coli are present in o10 copies per cell4,5—that
fluorescent protein (FP) fusions are difficult to detect over the
cellular auto-fluorescence6. Furthermore, when fluorescent levels
are detectable, they are typically quantified in terms of total
fluorescence and reported in arbitrary units7. Quantifying the
total fluorescence intensity rather than counting separate copies
can also introduce measurement errors, as problems with, for
example, uneven excitation or detection becomes hard to separate
from actual cell heterogeneity. Finally, fluctuations in protein
abundances are easier to analyse mathematically when absolute
numbers are known7,8. The ability to count low-abundance
proteins in individual cells would thus substantially help analyse
single-cell dynamics.

A recent study4 quantified levels of low-abundance
FPs by deconvoluting the cellular autofluorescence distribution
from that of the total fluorescence, which was measured
separately. Though the variation in autofluorescence makes it
impossible to infer the FP fluorescence in any particular single
cell, that approach can still estimate the distribution over the
population of cells, at least in arbitrary units of fluorescence. The
challenge is that for low copy proteins, where the FP signal is a
small fraction of the total, this procedure essentially infers a small
quantity by taking the difference between two relatively large
quantities, and is thus exceedingly sensitive to measurement
errors due to imaging, growth conditions or differences in cell
size.

A potentially less error-prone approach is to directly count
spatially separate molecules. One early technique used single-cell
capture and lysis, followed by downstream binding to antibodies
to detect single protein copies9. Fine tuning allowed B60% of the
molecules to be detected, but only for high-abundance proteins:
the lowest abundance detected was B600 proteins per cell, and it
was estimated that any protein present in o10 copies would
fall entirely under the detection limit9. Quantifying protein
abundances in vivo by microscopy could help improve detection,
but the challenge is that individual proteins diffuse rapidly and
appear smeared for typical exposure times. Several approaches
have been used to address this problem. Chemical fixation can be
used to immobilize and detect single proteins via standard
total internal reflection fluorescence (TIRF)10,11 microscopy or
super-resolution methods12 but at the expense of substantial
denaturation of FPs4 and an increase in the cellular auto-
fluorescence13. Although super-resolution methods can be used
to infer stoichiometries14, an accurate enumeration of the
protein-of-interest (POI) remains challenging because the FPs
used for super-resolution imaging exhibit complicated photo-
physics and suffer from a low yield of conversion into the
fluorescently detectable state15. Otherwise cytoplasmic FPs have
also been targeted to the cell membrane16 to slow down the
diffusion, at the cost of disrupting the function of the POI. To
address this issue a cotranslationally cleavable linker was added
between the membrane-targeted FP and the POI17, but even if
that could be made to work with high accuracy, the method is
limited to counting proteins produced within a certain time
window. All these different methods further face the challenges

that the shallow depth of focus of high numerical aperture
objectives is typically smaller than the height of even E. coli cells,
making it difficult to detect all copies of the POI in a cell, and that
the fluorescence of a single FP can still be difficult to separate
from the cellular auto-fluorescence.

Statistical throughput can also be almost as important as
resolution in single-cell studies. Interrogating large numbers of
cells is not only necessary to ensure that observed differences are
statistically significant18, but is useful for determining
distributions more accurately19 as well as for detecting rare
phenotypes20. High sampling further permits binning of data,
where cells are grouped for instance according to their size or
gene expression levels before analysing other properties. Such
analysis can greatly facilitate interpretations, but the number of
distinct bins increases exponentially with the number of
properties measured and thus sample sizes quickly become
limiting. The ability to count single molecules in single cells with
a significant throughput is therefore a key requirement for
analysing low-copy number protein fluctuations and the resultant
cell-to-cell heterogeneity.

Here we use a simple microfluidic platform (MACS: micro-
fluidics-assisted cell screening) to mechanically compress cells in
a controlled manner. This causes diffusional slowing-down of
cytoplasmic molecules without loss of fluorescence in E. coli, and
thus enables detection of single molecules on a standard TIRF
microscope set-up. The resultant flattening of the pressed cells
also reduces local autofluorescence, separates the molecules
spatially, and makes it easier to keep all copies within the
objective depth of focus. Moreover, MACS provides automation
with high throughput while growing cells in conventional liquid
culture until just before the moment of imaging, and makes it
possible to retrieve/enrich rare cells. To illustrate the capabilities
of this technique, we applied MACS to study the control of RpoS,
the master regulator of stress response in E. coli, by the low
abundance adapter protein, SprE (RssB). Though RpoS is one of
the most important and well-studied proteins in E. coli21, and
SprE plays an important role in controlling RpoS levels21, little is
known about the dynamics of this circuit because SprE is present
in too low numbers21 to be reliably detected with conventional
methods.

Results
Description of the MACS set-up. MACS uses poly-
dimethysiloxane (PDMS)-based microfluidic on-chip valves22

(Fig. 1a–c), with pressure-driven flow (Fig. 1d) instead of
syringe pumps to allow for easy streamlining and fast response
times. Although MACS essentially exploits valve actuation to
immobilize cells between a glass coverslip and a PDMS
membrane similar to what was described earlier23,24, simply
collapsing the valve (that is, going directly from open to closed
state) yields extremely poor trapping efficiency due to the rapid
displacement of liquid. Instead, MACS relies on three distinct
valve states, achieved by controlling both the pressure of the valve
(Pvalve) and the pressure driving the flow (Pflow) of the cell
suspension. First, the valve is closed at a certain pressure
(Pvalve40), while the flow is off (Pflow¼ 0) corresponding to the
closed state. The pressure driving the flow is then adjusted to a
level (Pflow40) that breaks the seal between PDMS and the
coverslip, where cells start slipping through as a monolayer,
corresponding to the half-open state (Fig. 1e). New cells are
introduced, trapped and imaged by sequential cycling between
half-open, closed and open valve states. Since each cycle typically
takes B5–15 s (corresponding to B240–720 frames per hour),
this allows automated imaging of E. coli cells with high
throughput. As a proof-of-concept for the stability and
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throughput capabilities of MACS, we acquired unattended
snapshots of approximately one million stationary phase E. coli
cells in 4 h at a single valving intersection. We also imaged large
numbers of cells every few minutes along the growth curve from
exponential to stationary phase, revealing subtle but reproducible
features of growth (Supplementary Fig. 2).

Mechanical slowing-down of diffusion in E. coli cytoplasm. We
expressed various FPs or translational fusions to FPs in E. coli and
monitored them using HILO imaging25 typically with a 30-ms
exposure time (see Methods). Comparing the area of cells imaged
on an agar pad versus MACS revealed that cells were compressed
and flattened via MACS, increasing the cell area under typically
applied pressures (Pvalve¼ 20 p.s.i.) on average by 72% under our
conditions (Fig. 2a,b). When imaged on agar pads (without any
applied pressure), cells displayed a uniform cytoplasmic signal
due to the rapid diffusion of molecules (Fig. 2c and
Supplementary Movie 2). In contrast, when cells were squeezed
with the MACS chips with Pvalve¼ 20 p.s.i., individual molecules
appeared as diffraction-limited spots due to slowing-down of
diffusion (Fig. 2c and Supplementary Movie 3). We speculate that
this phenomenon is due to water being expelled from the cell,
increasing the density of the E. coli cytoplasm26. Figure 2c shows
results for a SprE-mNeonGreen translational fusion expressed
from its native chromosomal locus, but similar effects were

observed for other FPs tested (Supplementary Fig. 3). To further
characterize this mechanical slowing-down of cytoplasmic
diffusion, we carried out fluorescence recovery after
photobleaching (FRAP) measurements (Fig. 2d, Supplementary
Fig. 4 and Methods). For cells imaged on agar, the diffusion
coefficient (D) of RFP mKate2 was 14±4 mm2 s� 1 (±s.d., n¼ 21
cells) (Fig. 2d), in agreement with the previously reported
values27. Increasing Pvalve from 5 to 20 p.s.i. decreased D below
1 mm2 s� 1 (Fig. 2d). The average displacement of molecules
within 30ms is then B250 nm and single molecules of FPs
should appear punctate, which is consistent with the discrete
spots that we observe.

These results indicate that MACS could be used to image single
cytoplasmic proteins in individual E. coli. It was previously
suggested that proteins deform under increased molecular
crowding, which could lead to denaturation of the FPs28. We
therefore confirmed that, in contrast to other fixation methods13,
there was no significant loss of signal as seen by comparing the
total fluorescence distributions between agar pad versus MACS
(Fig. 2e). We confirmed low levels of false positive detection with
cells expressing no fluorescent marker, typically showing less than
one spot per average cell, and under some conditions as low as 0.3
spots per average cell (Supplementary Fig. 5). Occasional
complete immobilization further allowed us to detect single-
step photobleaching traces (Fig. 2f), a hallmark of single-molecule
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Figure 1 | MACS set-up and workflow. (a) Cross-sectional schematics of the PDMS (grey) based Quake valve. A PDMS membrane separates a dead-end

control channel from a dome-shaped flow channel. As the control channel is pressurized, the flexible membrane collapses onto the glass coverslip (cyan) to

close the flow channel—akin to stepping on a garden hose. The flow channel rapidly re-opens as the pressure is removed. The valve can thus be actuated

practically indefinitely. (b) Three-dimensional depiction of the valve. Control (red) and flow (green) channels run perpendicular to each other. We image

underneath the region where the two channels intersect (that is, ‘valving’ intersection), which is outlined by dashed lines. (c) Photograph of the MACS chip

with control and flow channels filled with red and green dyes, respectively. (d) Independently controlled manual pressure regulators allow introducing

pressurized air into the airtight pressure tubes (PT) to push liquid out for inducing flow of cells (green) and pressurizing the control channel (red) on the

PDMS chip (via Pflow and Pvalve, respectively). Computer-controlled solenoid valves are used to switch Pflow and Pvalve, on or off. (e) MACS capitalizes on

cycling between three distinct states of the valve (flow direction away from the page): Half-open state (Pflow: on, Pvalve: on) is a high-resistance, low flow-

rate state achieved by a certain combination of Pflow and Pvalve, where cells move as a monolayer underneath the PDMS membrane. When flow is stopped,

the closed state (Pflow: off, Pvalve: on) is achieved with the PDMS membrane fully sealing against the coverslip to immobilize the cells (also shown are ‘water

pockets’ forming around the cells) for taking fluorescence (inset, scale bar (white), 2 mm), and/or phase contrast (Supplementary Fig. 1) images of cells.

Finally, the open state is executed (Pflow: on, Pvalve: off) which is a low-resistance, high flow-rate state. The high flow rate enabled by the open state rinses

the field of view and permits rapid exchange of liquid allowing for introduction of new cells that were not affected by photobleaching during imaging. Fast

cycling through this sequence allows for taking multiple snapshots towards building extensive statistics (Supplementary Movie 1).
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detection, as expected since we use monomeric FPs and do not
fuse them to oligomeric native proteins10.

As a final control, we compared the results from single and
dual FP labelling, to determine the rate of false negatives, for
example, due to incomplete FP maturation, which is particularly
problematic during fast growth. Under the most challenging
conditions of 25min generation times we observed that single-
labelled proteins still captured about 80% of the double-labelled
proteins, perfectly consistent with the expected maturation time
of 5–10min29 (Supplementary Fig. 9). We further found that with
dual labelling the fluorescent spots were almost twice as bright
after background subtraction. Thus though maturation is a
problem in all FP-based studies, the effects appear small even in
the worst-case scenario for mNeonGreen and can be reduced
further yet by double labelling.

The flattening of cells under MACS further helps counting
in several ways. First, the B50% decrease in cell height
(Supplementary Note 1), compared with unpressed cells, facil-
itates detection of the whole cytoplasmic volume, by ensuring all
molecules to be within the depth of focus. Second, the spreading
out of cytoplasmic volume also causes a reduction in background
autofluorescence density, which improves the signal-to-noise
ratio for the detected FPs. Finally, the flattening spreads the
diffraction-limited spots over a larger area, reducing the
probability of two spots to overlap. With any method, spot
overlap can have counterintuitive effects. Specifically, cells that by
chance have more molecules will have a higher fraction of
overlapping spots. As opposed to most experimental errors, this
artefact will narrow the observed distributions, at least the right
tail (discussed more below). Our analysis suggests that for cell

M
A

C
S

A
ga

r

%
 o

f c
el

ls

Agar MACS Agar

MACS

In
te

ns
ity

 (
a.

u.
)

Number of frames Actual number of spots

D
et

ec
te

d 
nu

m
be

r 
of

 s
po

ts
 

%
 o

f c
el

ls

Total intensity per cell (a.u.)

Numerical simulation pressed
Numerical simulation unpressed
Simulated images pressed
Simulated images unpressed

SprE::FP WT SprE

Agar
MACS

M
A

C
S

A
ga

r

D (µm2 s–1)

Agar
MACS
(5 psi)

b

f g

c

14 ± 4 0.7 ± 0.5 

MACS
(20 psi)

B
leach

R
ecover

t=0 t=1 s
d

0.3 ± 0.3

40

Agar

Pvalue

PDMS

20

20

10

0

0
1 2 3 4

2 4 6

15

15

10

10

5

5

200

150

200

0 50 100 150 200

150

200

150

8 10
Cell area (µm2)

a

e

Figure 2 | Characterization of mechanical slowing-down and single-molecule counting on MACS. (a–d) MACS induces cell deformation and mechanical

slowing-down of cytoplasmic proteins. (a) Cartoon depicting cell flattening and appearance of discrete spots (that is, single molecules, see below) for

MACS versus agar pad imaging. (b) In comparison with agar, cells are flattened when imaged under MACS. (c) SprE tagged with mNeonGreen results in

discrete spots on MACS as opposed to a diffuse signal on agar. (d) FRAP measurements quantify the extent of mechanical slowing-down on MACS as a

function of Pvalve (Supplementary Fig. 4 and Supplementary Movies 4 and 5). Cells were treated with cephalexin and were thus elongated to enable FRAP

measurements on agar, since FRAP occurred too rapidly to be measured otherwise. (e–g) Single-molecule counting is feasible with MACS. (e) Comparison

of total intensities between agar and MACS imaging for the highly expressed segmentation marker (CFP) of the SprE-mNeonGreen strain suggesting that

MACS does not cause signal loss. Comparing images of strains for FP-tagged versus wild-type SprE implies that the spots are specific to the mNeonGreen

tagging of SprE. (f) Representative time traces of the SprE spots from one cell exhibiting single-step photobleaching (Supplementary Movie 6).

(g) Undercounting due to spatial spot overlap in the cells was quantified using two independent computer simulations. First, a numerical simulation was

carried out considering that the Euclidian distance between the spots be smaller than the diffraction-limited resolution (Supplementary Methods and

Supplementary Fig. 6). The second simulation used computer-generated images, which were then analysed using the spot-finding code (Supplementary

Methods and Supplementary Fig. 7). Inset shows two representative simulated images for unpressed (top) versus pressed (bottom) cells with an actual

number of spots¼ 8 (Supplementary Fig. 8). The results of both simulations suggest that pressing on the cells would moderately remedy undercounting.

All scale bars (white) are 1mm.
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sizes typical of rapidly growing E. coli, spot overlap does not
significantly interfere until levels reach above 7–8 spots per cell
(Fig. 2g), and a substantial fraction of the proteome is present in
lower abundances than that. However, our method can also be
used to infer numbers with reasonable precision even for higher
abundances; and for statistical metrics such as averages
(Supplementary Fig. 10) or even distributions and variances as
the data can in principle be corrected for overlap.

Analysing the control of stress response in E. coli. To illustrate
the approach, we used MACS to analyse fluctuations in the
control of the master regulator of stress response in E. coli—the

alternative sigma factor RpoS (also known as sS or s38). In the
presence of various stress factors such as oxidative stress, low pH,
high osmolarity or nutrient limitations, RpoS replaces its
vegetative counterpart RpoD to regulate the transcriptional
program of E. coli by redirecting RNA polymerase to transcribe
B500 genes21 (Fig. 3). To prevent this from occurring under
non-stressful conditions, RpoS is delivered to the ClpXP protease
by the adapter protein SprE, rendering RpoS one of the most
short-lived proteins in E. coli30 during exponential growth. SprE
has been reported to be rate-limiting for RpoS degradation
in exponential phase31, but levels are so low as to be
almost undetectable using either western blots32,33 or standard
fluorescence imaging21. Although the activity of SprE is regulated
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Figure 3 | Using MACS for studying the general stress response in E. coli. In the presence of stress, RNAP preferentially binds to RpoS (sS or s38) instead
of RpoD (s70) to direct the transcriptional program towards the expression of stress-response genes. SprE (RssB) is an adapter protein, which is involved in

controlling the RpoS levels by binding to RpoS, and delivering it to the ClpXP protease for ATP-dependent degradation. (a) Cell-length dependence of the

RpoS750-Venus strain measured along the growth curve suggest that the balanced growth (where the average cell length remains steady) is sustained for

a very limited period (OD600 r0.07). Grey-shaded area is the s.d., and black line is smoothing via moving-window average. (b) RpoS750-Venus intensity

distribution for balanced growth. Brightest cells display only twice as much intensity compared with that of the auto-fluorescence (inset). (c) Absolute

number distribution of SprE in balanced growth (extreme cell sizes were excluded). Inset shows the normalized histogram (black) overlaid with a Poisson

distribution of the same mean (red). (d) SprE counting at various OD600 allows monitoring (i) number of SprE molecules per cell, (ii) number of SprE

molecules per cell normalized by the cell area as a metric for SprE concentration, (iii) fraction of cells with zero SprE molecules and (iv) Fano factor (which

is equal to sp
2/hpi, where sp is the s.d. and hpi is the mean of SprE number distributions) along the growth curve of E. coli. Fano factor after length

conditioning appears to deviate from that of Poisson distribution (Fano factor¼ 1) after OD600B1.2 most likely due to undercounting (Supplementary

Fig. 13). Inset shows coefficient of variation (CV¼ sp/hpi). Grey-shaded areas represent the s.d., and blue lines are line segments connecting data points.
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in various ways, this raises the question of whether heterogeneity
in the abundance of SprE could create heterogeneity in RpoS.
Specifically, if SprE levels are low, a substantial fraction of cells
may contain zero SprE copies—particularly if production is burst-
like as reported for many other proteins34. Because RpoS is so
short-lived and its levels are sensitive to SprE (Supplementary
Fig. 11), it could quickly accumulate during those time windows
and ensure that a subpopulation of cells is ready for the stress
before it occurs.

To test whether RpoS is randomly activated in the absence of
external cues, we considered the balanced growth regime where
cells have fully adjusted to the growth conditions but have not
yet started affecting each other by depleting available nutrients
or accumulating metabolic waste35. In keeping with previously
reported results35, we observed that this regime is only
sustained at extremely low cell density, before OD600 can be
reliably measured (Fig. 3a). As demonstrated above, MACS can
be used to image on the order of 4105 cells per hour in dense
culture. Here we instead exploited the automation and ability to
perform imaging under native conditions to image about 103

cells per hour in the very dilute balanced growth regime without
concentrating cells, since the latter could trigger an RpoS
response. We measured RpoS levels in a strain where a
truncated version of RpoS fused with a rapidly maturing
YFP (RpoS750-Venus) is present as an additional chromosomal
copy. The RpoS750 truncation has been widely used to report
RpoS levels and is driven by the native rpoS promoter36,37

but because it is so hard to confirm that fusions do not
interfere with unstable low-abundance components we only use
it for qualitative conclusions. We observed a rather narrow
distribution of fluorescence without a single outlier displaying
high RpoS750-Venus signal in B11,500 cells (Fig. 3b),
that is, none of the cells had RpoS levels close to what is
observed in stationary phase. Thus if a sub-population of
cells are in a high-RpoS state in the absence of external cues—
hedging the bets in case the population is suddenly exposed to
stress—it appears to occur with a frequency of o10–4. This
conclusion holds even if the FP fusion interferes with RpoS
degradation in exponential phase, since artificially stabilizing
RpoS would lead us to overestimating rather than
underestimating levels.

We then used the single-molecule counting capabilities of
MACS to determine SprE levels under the same growth
conditions where SprE was tagged with mNeonGreen at its
C terminus resulting in a functional fusion (Supplementary
Fig. 11). Our FP of choice, mNeonGreen displays high brightness
and photostability, and has a relatively short maturation time of
o10min (ref. 29). Since this is much shorter than the protein
elimination rate through dilution, which is equal to the doubling
time of Z25min under our conditions, only minor corrections
are needed and we therefore report the raw data. We observed, in
multiple separate experiments, that the SprE-mNeonGreen
distribution had a reproducible average of 7–8 copies per cell
and a standard deviation of B3 copies over individual cells
(Fig. 3c). This low number is in agreement with the previously
reported undetectable levels of SprE in early exponential phase33.
By conditioning the data on cell size, we further observe that the
distribution closely follows a Poisson in each size class (Fig. 3c),
in contrast to what has been observed for most other proteins in
E. coli, which additionally show signs of translation bursts or
extrinsic noise4,7. This observation is consistent with the fact that
SprE appears to be weakly translated38 and that the SprE mRNA
is relatively short-lived39, compared with genes that are reported
to exhibit significant bursting34,40. Phrased differently, Poisson
noise is expected to increasingly dominate at lower average
protein abundances, unless the low protein abundances are

caused by lower mRNA numbers, which is not the case here
because sprE is strongly transcribed38.

In balanced growth we did not observe a single cell with zero
SprE-mNeonGreen molecules, and based on the apparent Poisson
statistics the probability of such events should be on the order of
10� 4 (or less given that a few immature FPs are missed). Because
SprE-mNeonGreen is not substantially degraded, the results
further suggest that cells produce B4–8 molecules per average
cell cycle, while the Poisson statistics and absence of bursts
suggest that those production events are effectively independent.
Thus the few cells that temporarily have zero SprE molecules
should only remain in that state for a few minutes on average,
providing little time to boost RpoS levels.

We next measured SprE-mNeonGreen levels at various OD600

(Fig. 3d) to decipher SprE dynamics along the growth
curve. Starting at an observed average of 8.3±3.2 copies per cell
(±s.d., n¼ 458 cells), SprE-mNeonGreen levels went through a
minimum of 3.3±1.9 copies per cell (±s.d., n¼ 2928 cells) in
mid-exponential phase (OD600 B1.2), and then went up again to
6.7±2.3 copies per cell (±s.d., n¼ 4308 cells) in early-stationary
phase (OD600 B1.9). As discussed earlier, the values in early
exponential phase are likely to be slightly underestimated due to
incomplete FP maturation, but this problem decreases with
increased cell division time. The reported dip, which has not been
previously observed because even average SprE levels were
experimentally unobservable, should thus be slightly more
pronounced when correcting for mNeonGreen maturation time.
Because the cells become substantially smaller during this
interval, the SprE concentration increases about five-fold
(Fig. 3d). The mechanisms causing the dip are unknown, but
could reflect the fact that SprE is expressed from two promoters41

or that competition for the gene expression machinery is reduced
after ribosomal genes are no longer expressed.

After conditioning on cell size (Supplementary Fig. 12), the
distributions were again close to Poisson for most of the growth
curve (Fig. 3d). In late exponential phase, the raw distributions
appear even narrower than Poisson. This could in principle be
explained by the fact that RpoS and SprE are thought to form a
negative feedback loop in mid-exponential phase31,41. However, a
more likely explanation is that the method approaches its limits
since the cell size of the MC4100 strain shrinks greatly in late
exponential phase. The diffraction-limited spots then inevitably
overlap and the observed distributions are in fact expected if the
actual distribution is Poisson (Supplementary Fig. 13). However,
spot overlap has a marginal impact on the average abundance and
on the left tail of the distribution, which is particularly interesting
in this context. We observe virtually no cells with zero SprE
copies, except close to the minimum average abundance at
OD600 B1.2, where this fraction reaches as high as a few
percent (Fig. 3d). However, even in that regime, the RpoS
distribution does not show any substantial outliers (Supple-
mentary Fig. 14), perhaps because the RpoS half-life then
is much longer30 making RpoS much less responsive to brief
periods with zero SprE molecules. Thus despite the fact that
bet-hedging has been suggested for RpoS, and the dedicated
adapter protein SprE necessary for its degradation is present
in such extremely low numbers, we see no evidence for
bet-hedging at the frequencies we can measure. Instead we
observe that, given the low abundances, the SprE distribution is
quite narrow and with less signs of bursts than observed for most
other proteins in E. coli. We further used our set-up to show that
SprE production ceases quickly on exit from stationary phase:
the total numbers of SprE-mNeonGreen per cell remain
virtually unchanged until cells become large enough to divide at
which time they become diluted between multiple cells
(Supplementary Fig. 15).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11641

6 NATURE COMMUNICATIONS | 7:11641 | DOI: 10.1038/ncomms11641 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Discussion
We show here that applying pressure to cells in a controlled
manner makes it possible to count low-abundance proteins. We
speculate that the diffusional slowing-down reflects increased
cellular crowding effects (Supplementary Note 2) where objects as
small as individual proteins experience the cytoplasm as a glassy
medium. Indeed the bacterial cytoplasm has been shown to
display properties of a colloidal glass for molecules larger than
30 nm (ref. 42) under normal conditions, and chemically induced
osmotic compression can lead to reduction of cytoplasmic
diffusion43 and hindrance of intracellular signalling due to
overcrowding44. However, regardless of the underlying physical
explanation, the insignificant loss of fluorescence on compression
as opposed to chemical fixation (Supplementary Fig. 16)
combined with the low numbers of false positives and the
improved counting in flattened cells, allow for the integer
counting of low-abundance proteins using a standard TIRF
set-up.

In addition, MACS offers a simple and robust microfluidic
platform for microscopy with high statistical power and
automation. Many other microfluidic methods allow large
numbers of cells to be monitored for long time windows3,45–47

but to our knowledge, MACS uniquely permits high-throughput
imaging while cells grow in conventional liquid culture conditions
until the moment of imaging. This allows a more direct
comparison to the large literature based on shaking liquid
cultures, not only because several processes can be affected by
contact to other cells or the walls of the device, but also because
microfluidic growth chambers substantially affect the age
structure of the populations. For example, in liquid culture
newborn cells tend to be twice as prevalent as dividing cells,
whereas this is not the case in many microfluidic growth
chambers where one progeny is washed away. The inner
dimensions of MACS are also very flexible and can
accommodate a wide range of cell sizes and shapes without any
modifications: the same devices work for cells over a 100-fold
range of volumes—from micrometre-sized bacteria such as E. coli
and Bacillus subtilis to 10–15 mm long eukaryotic cells such as
Saccharomyces cerevisiae and Schizosaccharomyces pombe
(Supplementary Movies 7 and 8).

Rather than carrying out distinct cycles of cell trapping and
imaging, MACS can alternatively run continuously in the half-
open valve state to flow a stream of cells through the field-of-view
(Fig. 4a, Methods). This can be used to detect rare phenotypes, for
example where the readout is fluorescence levels above some
threshold, or the presence of a spatial pattern, and then trap the
identified cells for subsequent detailed imaging (Fig. 4b). More-
over, minor modifications to the design allowed us to enrich/
isolate rare phenotypes by retrieval of the entrapped cells from
the device (Fig. 4c–e). Taken together, we believe these features of
MACS substantially extend our ability to quantify processes at the
level of single molecules and in single living cells.

Methods
Chip fabrication and MACS properties. MACS chips were produced via soft
lithography using PDMS. The base (part A) and the curing agent (part B) of a
two-part silicone elastomer kit (Slygard 184, Dow Corning) were mixed at
particular ratios (part A:part B) in weight to produce PDMS. The master mould for
the flow channel was produced by spin-coating positive photoresist (PR) AZ10xt
(AZ Electronic Materials) to a height of 10 mm on a silicon wafer. After ultra violet
patterning the PR using a transparency mask (Output city), the wafer was heated
for rounding the features to achieve dome-shaped channels. After rounding, the
channel height becomes 8 mm. The wafer was then baked on a hotplate overnight to
stabilize the positive PR. The control layer master was made by spin-coating the
negative PR SU-8 2025 (MicroChem) to yield a height of 25 mm, and ultra violet
patterning it using a transparency mask defining the channels. To produce the soft
MACS chip, 20:1 PDMS was spin-coated on the flow channel master at 1,250 r.p.m.
for 45 s to yield an B65-mm-thick PDMS membrane. For this condition, the

minimum pressure required for closing the valve is B5 p.s.i. For even gentler
handling of cells, if required, a thinner membrane can be made to achieve valve
closing at lower pressures. For control channels, PDMS with a 5:1 ratio was poured
onto the control layer master. After both masters were partially cured at 65 �C for
33min, they were aligned and cured for another 6 h at 65 �C to achieve thermal
bonding. Finally, the two-layer PDMS chip was plasma-bonded permanently
against glass coverslips. Since the freshly bonded chips did not work due to altered
surface properties following plasma treatment, they were kept at room temperature
for at least 1 day to regain the native surface properties. For single-molecule
counting experiments, the chips were kept at the 65 �C for a total of 3 days after
cover glass bonding since ‘cytoplasmic slowing-down’ works better with stiffer
PDMS.

Closing properties of the valve depend on multiple parameters48. To achieve the
half-open state for the 200-mm-wide control and flow channels, we typically used
B20 p.s.i. both for Pvalve and Pflow, though different combinations of Pvalve and
Pflow also work. Compared with the full footprint of the valve (200 mm� 200 mm),
cell trapping happens within a subregion (approximately, 100 mm� 50mm), which
can be varied by slight modifications of Pvalve and Pflow. The number of cells
captured per field-of-view (FOV) also depends on the relative values of Pvalve and
Pflow, as well as durations of the valve states. Since Quake valves can be actuated
millions of times without signs of fatigue22, the bottleneck for long-term stability of
MACS is the accumulation of debris within the valving intersection. This is
problematic only during actuation of the valve and the presence of sample flow:
debris does not get stuck permanently unless pressed against the surface during
valve actuation and eventually gets washed away otherwise. Therefore, the
intersections that remain passive do not collect debris and a neighbouring
intersection can be used on demand if the actively used intersection becomes
clogged. To minimize debris, we filtered all buffers and media using 0.22-mm-pore-
size filters (Corning). Cells were grown in plastic tubes (BD Falcon, round-bottom)
instead of glass vials to prevent crumbled glass. Sonicating the PDMS chips in
isopropanol for 30min, followed by 4 h of drying at 65 �C before bonding them to
the cover glass removes PDMS crumbs that form at the inlets during hole
punching49. In addition, prior to using the chips, flow channels were extensively
rinsed with PBSA buffer (1� PBS with 4mgml� 1 BSA) to wash away debris that
was stuck on the walls of the chip, as well as for passivating the channel surfaces to
minimize cell sticking. We were able to keep the same chip on the microscope and
use it for multiple days, everyday using a fresh flow channel.
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Figure 4 | MACS allows for rapid screening and recovery/enrichment of

rare cells. (a) Single frame of a movie (Methods, Supplementary Movie 9)

of GFP-expressing E. coli cells flowing during the half-open state. Cells

appear somewhat blurred due to their constant movement within the

exposure time. Scale bar (white), 20mm. (b) RFP-expressing cells, spiked in

with a dilution factor of 1:100,000 (red:green), could be captured within the

field of view typically in B3–5min. After the red cell was immobilized

(circled), snapshots in RFP and GFP fluorescence channels were taken

(shown here as overlaid). Scale bar (white), 5 mm. (c) Minor modification

of MACS enables cell retrieval (Methods, Supplementary Movie 10).

(d) Bright-field and RFP fluorescence images are overlaid to show the

captured cell of interest (circled) within the trapped volume, which is

outlined by the red dashed line (control valve is open, valves 1–4 are

closed). Scale bar (white) is 40 mm. (e) When the trapped volume

was collected, grown overnight and imaged on the agar pad; the RFP-

expressing cells were enriched. Counting red versus green cells

suggested an enrichment factor of 102 to 103 (n¼4 runs). At low cell

densities this allows for the immediate retrieval of cells, and at high

densities a second round is necessary to achieve 100% purity.

Scale bar (white), 2 mm.
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Microscopy. Epi-fluorescence and HILO (highly inclined and laminated optical
sheet) microscopy was carried out similar to what was described previously10. In
brief, images were collected using an Electron Multiplying CCD camera (EMCCD,
iXon3 897, Andor), and OPSL lasers (Coherent) were used for HILO and FRAP
measurements. The EM gain was set to 300 for single-molecule imaging. The HILO
angle was adjusted using a custom-built stepper motor system. A manual flip
mirror (Newfocus) allowed for switching between two different laser paths set-up
for HILO and FRAP modes, respectively. For FRAP experiments, a full mirror was
replaced with an 80:20 beam-splitter to allow for easy switching between a focused
laser pulse and epi-fluorescence illumination. Applying a 100-ms photo-bleaching
laser pulse focused on one pole of an E. coli cell using a mechanical shutter
(Uniblitz), the fluorescence recovery was monitored via epi-fluorescence imaging.
The microscope was controlled by Micro-Manager (http://www.micro-
manager.org/) and custom-written MATLAB scripts. Fluorescence imaging was
performed with an LED system (SOLA light engine, Lumencor) and appropriate
filter cubes (Semrock): for cyan fluorescence, CFP-2432A; green fluorescence,
GFP-3035B; yellow fluorescence, YFP-2427A; and red fluorescence, mCherry-A.
Unless otherwise stated, we used a � 100 TIRF objective (Nikon, TIRF, numerical
aperture¼ 1.45) in combination with a � 2.5 relay lens in front of the EMCCD
camera. At the expense of smaller FOV (hence lower throughput), this
magnification provides a near-optimal effective pixel size (64 nm) to resolve
spots and segment cell boundaries. Solid-state lasers (Coherent) in combination
with proper filters (Semrock) are used for detecting single molecules (dichroic:
Di01-R488, emission filters: FF01-550/88 and LP02-514RS, laser: Genesis
MX 514-1000 STM OPSLaser-Diode System for mNeonGreen; dichroic:
Di01-R532, emission filters: FF01-607/70 and LP03-532RS, laser: Genesis
MX 532-1000 STM OPSLaser-Diode System for mEos2).

Construction of E. coli strains. Strain construction is described in Supplementary
Note 4. All E. coli strains, plasmids and primers used are listed in Supplementary
Tables 2–4, respectively.

SprE and RpoS measurements. Overnight cultures were grown in 1� M9 salts
supplemented with 10% (v/v) LB (M9þ 10%LB), and kept at stationary phase for a
defined duration (B16 h). After diluting the overnight cells typically in 30ml of
M9þ 10%LB by a factor of 106, we divided the 30-ml culture into 10 falcon tubes
of 3ml each and grew cultures at 37 �C with shaking at 200 r.p.m. We used separate
tubes for different time-points along the growth curve to ensure constant growth
conditions for each sampling to ensure reproducibility since the RpoS levels are
sensitive to aeration. Once the cells were manually transferred from the shaking
flask into an airtight pressure tube (Supplementary Fig. 17), we took images for
B15–30min (Tdoubling B25min) in an automated fashion. At the end of each set
of data acquisitions, we were able to clear the system off the cells completely.
Ensuring that there is no carryover between different samples is vital since any cell
that sticks around from earlier samplings may encounter stress, which is particu-
larly important for studying the components of the stress response (namely, RpoS
and SprE) and to minimize artefacts. To gather reasonable statistics, we pooled data
from multiple samplings from OD600 r0.07. For SprE counting at high ODs, when
the density of the cell culture is very high, cells tend to aggregate into large clumps
under MACS, reducing the effective pressing and cytoplasmic slowing-down. Since
the cell density in the FOV can be adjusted by simply changing Pflow and/or the
duration of the half-open state, (Supplementary Fig. 18) this allows counting at
very high cell density by minimizing the formation of cell clumps.

Western blotting against RpoS. Western blotting was performed as previously
described10. In brief, overnight cultures of the respective E. coli strains were diluted
1:100 using fresh LB medium (w/o antibiotics) and grown for 2.5 h at 37 �C with
agitation (220 r.p.m.). The OD600 of the cultures was monitored during bacterial
growth and all samples were taken when the cultures had OD600 readings between
0.69 and 0.79. For each sample, equal volumes of the liquid cell culture were
pelleted by centrifugation (10,000g, 1min) and the cell pellets were re-suspended
in one-tenth of the original culture volume using a 1� SDS loading buffer (80mM
Tris-HCl pH 6.8, 2% (w/v) SDS, 10% (v/v) glycerol, 5% (w/v) �-mercaptoethanol,
0.01% (w/v) brophenol blue). The samples were boiled for 5min at 95 �C. Ten
microlitres of each sample was loaded on a Tris-glycine SDS–polyacrylamide gel
electrophoresis containing 10% (v/v) acrylamide. The primary antibody was the
monoclonal anti-RpoS antibody (Neoclone, W0009) and used at a 1:1,000 dilution.
The secondary antibody was an anti-mouse horseradish peroxidase-coupled
antibody (GE Healthcare, NA931), which was diluted 1:5,000 in 1� TBST with
4% (w/v) milk powder, prior to use. The protein bands were visualized using a
homemade ECL reagent and standard film.

Characterization of MACS-induced slowing-down. For FRAP measurements,
E. coli strains expressing cytoplasmic GFP or RFP were used. On 1,000� dilution
from an overnight culture, cells were grown at 37 �C in a shaker until the culture
reached an OD600 of B0.1. Imaging of cells on agar pads was carried out as
previously described10. To facilitate FRAP measurements on agar pads, samples
were prepared by treating the cells with a final concentration of 20 mgml� 1

cephalexin and allowing the cells to grow for another 30min before the

measurements. We observed that slowing-down of cytoplasmic fluorescent protein
molecules with MACS was more prevalent for isolated cells, presumably since a
group of cells support each other against squishing. Moreover, since the closing
properties of the valve are not uniform across the valve, the cells close to the edges
experienced less squishing indicated by faster signal recovery. Therefore, we
concentrated on the central region of the valve, and carried out FRAP on isolated
cells to quantify the dependence of the diffusion coefficient on Pvalve. FRAP analysis
for determining the diffusion coefficient was carried out using MicrobeTracker
(http://microbetracker.org/) as described previously50. An E. coli strain, which
constitutively expresses mEos2 from a plasmid was used for the single-molecule
imaging experiments with HILO microscopy. The fraction of mEos2 molecules that
happen to be spontaneously in the red state was scarce enough to allow these
measurements.

Numerical simulations for single-molecule counting. A computer simulation
was developed to assess the degree of potential protein undercounting due to
apparent spatial clustering of molecules caused by the ‘large’ point-spread function
(that is, a typical full-width at half-maximum is B250 nm) and the relative small
size of the bacterial cell (2–6 mm2). Different cell sizes and geometries were
compared. In short, N molecules were randomly placed in a virtual bacterial cell
and the number of spatially resolved molecules and non-resolved clusters of
molecules were calculated using Euclidian geometry and a spatial resolution of
250 nm (Supplementary Note 2 and Supplementary Figure 19). The computer code
was developed and executed in MATLAB, which is available on request.

Spot-finding analysis and simulation of EMCCD images. Determining the
number of spots in single cells was achieved in two steps. First, a spot-finding
software was used to detect single molecules in the entire FOV. The next step
involved assigning those spots to specific cells. Therefore, we used fluorescent
images of a cytoplasmic CFP as a segmentation marker to obtain an outline of the
individual cells such that spots could be assigned to each cell according to their x–y
coordinates. The software used for spot-finding was modified based on a previously
published single-particle tracking software51,52. To summarize, each image was first
computationally filtered prior to spot localization using a band-pass filter to
remove high-frequency noise and low-frequency features like cellular
autofluorescence signal. This process results in a smooth zero-background based
image. We detected local maxima with pixel level accuracy in the image via a
user-defined intensity threshold. Sub-pixel localization of the spots was then
estimated from the centroids of the spots calculated using a 7� 7 pixel square
centred on the local maxima. The box size, intensity threshold, and parameters for
the band-pass filter were empirically optimized to minimize false positives and false
negatives in the spot detection.

As described in the main text, the small confinement volume of the E. coli
cytoplasm imposes severe limitations for counting performance using a diffraction-
limited imaging system. Since the capabilities of MACS or agar pad-based imaging
may also depend on the image analysis software being used to detect the molecules,
we have therefore quantified the limits of the counting performance using
simulated EMCCD images that closely mimic our actual microscopy data in
addition to the numerical simulations (Supplementary Note 3).

Capturing rare phenotypes and their retrieval with MACS. For the spiking-in
experiments, overnight cultures of GFP- and RFP-expressing strains inoculated
from fresh bacterial re-streaks on plates were used. We found that cells grown from
older-than-a-week plates display higher tendency to stick to the PDMS chip
surfaces. After mixing the RFP-expressing cells with GFP-expressing cells in the
pressure tube using the dilution factor of 105, cells were sent through the MACS
chip in the half-open valve state. Detection of the RFP-expressing cell-of-interest
was achieved manually. Two inlets and two outlets on the modified design can all
be controlled via on-chip valves (1–4), and allow for cell collection. Screening is
carried out while valves 3 and 4 are closed, and valves 1 and 2 are open. When a
cell-of-interest is captured within the FOV, cell flow is stopped. After taking
detailed images, valves 1–4 are closed, and the control valve is opened to release the
pressure on the cells. Subsequently, the trapped volume is sent out to collection by
opening valves 3 and 4, and flowing in oil. Using an oil phase for cell collection
provides precise control of the volume that is retrieved. To facilitate the collection
using the oil phase, chips were treated with a commercial water repellent49

(Aquapel) after plasma bonding and kept at room temperature until use.

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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Somenath Bakhsi. This has now been corrected in both the PDF and HTML versions of the Article.
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