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The somatic mutation profiles of 2,433 breast
cancers refine their genomic and transcriptomic
landscapes
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The genomic landscape of breast cancer is complex, and inter- and intra-tumour

heterogeneity are important challenges in treating the disease. In this study, we sequence 173

genes in 2,433 primary breast tumours that have copy number aberration (CNA),

gene expression and long-term clinical follow-up data. We identify 40 mutation-driver

(Mut-driver) genes, and determine associations between mutations, driver CNA profiles,

clinical-pathological parameters and survival. We assess the clonal states of Mut-driver

mutations, and estimate levels of intra-tumour heterogeneity using mutant-allele fractions.

Associations between PIK3CA mutations and reduced survival are identified in three

subgroups of ER-positive cancer (defined by amplification of 17q23, 11q13–14 or 8q24).

High levels of intra-tumour heterogeneity are in general associated with a worse outcome,

but highly aggressive tumours with 11q13–14 amplification have low levels of intra-tumour

heterogeneity. These results emphasize the importance of genome-based stratification of

breast cancer, and have important implications for designing therapeutic strategies.
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H
uman breast cancers are heterogeneous, and recent efforts
have focused on characterizing both intra- and inter-
tumour heterogeneity in a clinically relevant manner1.

Current clinical management of the disease comprises
morphological assessment (size, grade, lymph node status), and
testing for oestrogen receptor (ER) and human epidermal growth
factor receptor 2 (HER2). However, there is still much variation
in the clinical outcomes of patients stratified based on these
parameters. For instance, more than 75% of patients have ERþ
breast cancers, but their outcomes and responses to therapy are
extremely varied2. This clinical heterogeneity may be explained
by the diversity of genomic drivers that underlie the disease.

To address this issue, we recently performed an integrated
analysis of somatic copy number aberrations (CNAs) and gene
expression profiles in 2,000 primary tumours (METABRIC)3,4.
We observed that CNAs influencing expression in cis explained
the greatest proportion of variance in gene expression, and were
therefore likely to be enriched for driver genes. These driver
CNAs were used in an unsupervised clustering approach to
classify the tumours into 10 Integrative Clusters (IntClusts) that
have distinctive copy number profiles and clinical courses.
Readily identifiable driver genes include CCND1 and PAK1 at
11q13–14 in IntClust2, ERBB2 at 17q12 in IntClust5, ZNF703
at 8p11 in IntClust6 and MYC at 8q24 in IntClust9.
IntClust10 encompasses a group of genomically unstable (mostly
triple-negative) tumours that express basal markers. IntClust4
comprises tumours with relatively few CNAs (CNA-devoid). The
Cancer Genome Atlas’s (TCGA) Pan-Cancer analyses5, which
demonstrated that CNAs dominate the genomic landscape of
breast cancer, support the biological relevance of a copy number-
based classification. This novel driver-based molecular taxonomy
has also been robustly validated in 7,500 tumours6.

Although CNAs dominate the breast cancer genome, somatic
SNVs and indels in driver genes are also important, and
contribute to tumour biology. However, most breast cancer genes
are somatically mutated at low frequencies and characterization
of driver genes by high-throughput mutation profiling is
consequently difficult when sample size is limited. This is
exacerbated by stratification using clinical and molecular
parameters. Large-scale efforts by the TCGA7 and the
International Cancer Genome Consortium (ICGC)8 have
contributed greatly towards enumerating breast cancer genes
but analysis of clinical associations in these data sets is limited by
the scarcity of long-term patient follow-up data and the stringent
criteria used for sample selection (tumour size, malignant
cellularity).

We have now sequenced 173 of the most frequently mutated
breast cancer genes in 2,433 primary tumours to both identify
driver genes and understand their clinical significance. The 173
genes sequenced include those that harboured mutations in at
least 2 samples in 5 large-scale sequencing studies published in
2012 (refs 7–11) and also some targeted by homozygous deletions
(HDs) we previously identified3. Crucially, long-term follow-up
data were available for the majority of the cohort (2,319 patients,
median¼ 115 months). Our results outline the mutation profiles
of key breast cancer genes and the associations between genomic
and clinical features. The large number of samples with clinical
annotation allowed characterization of mutation patterns and
intra-tumour heterogeneity within specific subsets of tumours,
and identification of associations with patient outcome within
these subgroups.

Results
The mutation landscape of 173 genes in 2,433 breast tumours.
We sequenced the exons of 173 genes (B1.2Mbp) in 2,433
primary breast tumours (Supplementary Table 1), reaching an

average sequencing depth of at least 112� in 80% of samples
(median¼ 152� , Supplementary Fig. 1). Using a custom
pipeline (Methods), we identified 32,476 somatic mutations,
with 13,084 predicted to affect protein sequence. These coding
mutations included 11,006 SNVs (10,193 missense, 808 nonsense,
5 read-through) and 1,635 small insertions or deletions (indels:
1,315 frameshift, 320 in-frame). We also detected 443 variants
(268 SNVs, 175 indels) predicted to affect canonical splice sites.
Each tumour had an average of 13 mutations (5 coding), with
131 tumours harbouring at least 30 mutations and 38 tumours
devoid of any mutation (76 devoid of coding mutations). Details
of mutations affecting all genes are provided in Supplementary
Data 1.

As previously described7, PIK3CA (coding mutations in 40.1%
of the samples) and TP53 (35.4%) dominated the mutation
landscape. Only five other genes harboured coding mutations in
at least 10% of the samples: MUC16 (16.8%); AHNAK2 (16.2%);
SYNE1 (12.0%); KMT2C (also known as MLL3; 11.4%) and
GATA3 (11.1%) (Supplementary Fig. 2a,b). MUC16, AHNAK2
and SYNE1 are frequently mutated in several cancers (http://
www.cbioportal.org12,13), but their roles in tumorigenesis are as
yet uncertain. In vitro experiments have suggested a tumour-
promoting role forMUC16 in ovarian cancers14, but the gene also
has a high background mutation rate15.

Predicted pathogenic germline mutations (Supplementary
Fig. 2c) in BRCA1 and BRCA2 were identified in 1.36% and
1.64% of the cohort, respectively, and 2.22% of tumours
harboured pathogenic CHEK2 germline mutations. TP53 patho-
genic germline mutations were found in 0.82% of the tumours.

A ratiometric method identifies 40 Mut-driver genes. Genes
mutated in cancer comprise drivers, whose deregulation con-
tributes directly to tumour progression, and passengers, which
typically provide little or no selective advantage when mutated.
To identify candidate driver genes, we used the scheme proposed
by Vogelstein et al.16. This method is derived from the observed
mutation patterns of well-characterized driver genes, and
identifies candidate oncogenes and tumour suppressors based
on the proportion of recurrent mutations (nonsynonymous
SNVs, in-frame indels, oncogene score (ONC)) or inactivating
mutations (frameshift indels, nonsense SNVs, splice site
mutations, tumour suppressor gene score (TSG)) they harbour.
In addition, we required that the candidates had a minimum of
five recurrent or inactivating mutations. Exploration of a range of
relevant thresholds demonstrated that the recommended cut-off
of 20% was robust (Supplementary Fig. 3a). As originally
proposed, genes with an ONC score of at least 20% that also
had a TSG score of at least 5% were classified as tumour
suppressors, as oncogenes rarely harbour inactivating mutations.
After stratifying by ER status, we identified 40 genes (22 in ERþ
only, 3 in ER� only, 15 shared) that are here on referred to as
Mut-drivers genes (Fig. 1a, Supplementary Data 2). The spectra of
mutations for the 40 genes are depicted in Supplementary Fig. 4.
Only 6 out of 40 Mut-driver genes identified were oncogenes.

The list of Mut-driver genes includes well-established breast
cancer oncogenes and tumour suppressors such as PIK3CA and
TP53. TP53, categorized as a tumour suppressor, had high ONC
and TSG scores in both ERþ (ONC¼ 42%, TSG¼ 35%) and
ER� (ONC¼ 45%, TSG¼ 40%) tumours. The list also provides
further evidence for the importance of other breast cancer genes
that have more recently been reported. For example, TBX3 had
high TSG scores in ERþ (TSG¼ 58%, 6.0% of ERþ samples
with coding mutations) and ER� (22%, 2.2%) tumours, and was
also significantly mutated relative to the background mutation
rate in the TCGA data set7. Inactivating mutations in the binding
partners CBFB (ERþ : TSG¼ 66%, 6.0%; ER� : 50%, 0.32%) and
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RUNX1 (also known as AML1; ERþ : 59%, 3.7%; ER� : 53%,
2.4%) were also common. In addition, we observed recurrent
K700E mutations in SF3B1 (ERþ : ONC¼ 52%, 3.5%) which
have recently been associated with differential splicing activity
in breast tumours17. AGTR2 harboured 6 P271L mutations
(ERþ : ONC¼ 56%, 0.51%), and was also found to be mutated at

a significant frequency in a recent study of 77 breast tumours11.
The presence of these genes in the Mut-driver list provides
further support for their roles in breast cancer.

We identified other Mut-driver genes that have not been
formally associated with breast cancer7, but have been reported in
other cancer types or in pan-cancer analyses. There were high
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Figure 1 | Identification of 40 mutation-driver genes in 2,433 primary breast cancer samples. (a) Bars depict proportions of ERþ and ER� samples

harbouring mutations in mutation-driver (Mut-driver) genes. Red and blue points indicate for each gene, the proportions of recurrent (oncogene; ONC

score) and inactivating (tumour suppressor gene; TSG score) mutations, respectively. ‘�’ indicates genes previously highlighted in other studies: COSMIC,

Cancer gene census from the Catalogue of Somatic Mutations in Cancer; TCGA-BRCA, TCGA breast cancer study; TCGA-PAN, TCGA pan-cancer analysis.

ER status available for 2,410 tumours. MAPK, mitogen-activated protein kinase. The genes are grouped by pathway or function. (b) Bars depict proportion

of tumours with copy number alterations (CNAs) in genes altered in at least 1% of ERþ or ER� samples. The percentages of tumours with amplifications,

simultaneous amplification and mutation events, homozygous deletions and simultaneous mutations and LOH events are shown. LOH was defined as any

CNA in which with either the major or minor allele was entirely deleted as determined by ASCAT (Methods).
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proportions of inactivating mutations in the SWI/SNF complex
members ARID1A (ERþ : TSG¼ 45%, 5.2%; ER� : 18%, 3.3%)
and PBRM1 (ERþ : TSG¼ 3%, 1.6%; ER� : 25%, 2.5%). Overall,
22.6% of tumours harboured a coding mutation in one of the
seven Mut-driver genes involved in chromatin function (KMT2C,
ARID1A, NCOR1, CTCF, KDM6A, PRBM1 and TBL1XR1). We
also identified canonical activating mutations in members of the
Ras pathway. KRAS codon 12 mutations were present in 11
samples, and the gene had high ONC scores in both ERþ and
ER� cancers (ERþ : 89%, 0.5%, ER� : 60%, 0.8%). We also
observed mutations in HRAS at codons 61 and 12 (two and one
samples, respectively), and a single BRAF V600E mutation in an
ER� tumour, although the two genes did not meet Mut-driver
criteria. These classical activating mutations are characteristic in
other cancer types18,19 and are actionable mutations in those
settings20.

The mutation patterns of some Mut-driver genes differed
by ER status. For example, SMAD4 was mutated in 1.2% of
ERþ and 1.0% ER� tumours, but had a high TSG score only in
ERþ cases (ERþ ¼ 35%, ER� ¼ 0%; Supplementary Fig. 4).
SMAD4 expression has previously been linked with apoptosis in
an ERþ context21. Similarly, ERBB2 mutations were found in
similar proportions in ERþ (2.8%) and ER� tumours (3.2%),
but there was a higher proportion of mutations at codon 755 in
ERþ tumours (13 out of 53 ERþ , 1 out of 22 ER� ;
P¼ 0.05331, Fisher’s exact test) and the gene had a higher
ONC score than in the ER� cohort (ERþ : ONC¼ 40%, ER� :
ONC¼ 12%). On the other hand, although PIK3CA had a high
ONC score in both ERþ (94%) and ER� (81%) tumours, the
domains in which the recurrent mutations occurred differed
(Supplementary Fig. 4). ERþ tumours had more PIK3CA
mutations in codons 345 (62 out of 942 ERþ , 2 out of 162
ER� ; P¼ 0.003396, Fisher’s exact test) and codons 542 or 545
(helical domain; 259 out of 942 ERþ , 32 out of 162 ER� ;
P¼ 0.04245). In contrast, PIK3CA mutations in codon 1047
(kinase domain) were more common in ER� tumours (83 out of
162 ER� versus 382 out of 942 ERþ P¼ 0.01243,). Mutations
in the helical and kinase domains have been shown to have
different functions and biochemical interactions22,23.

We also analyzed CNAs affecting the Mut-driver genes,
as these represent alternative mechanisms of somatic gene
deregulation. Figure 1b shows the proportions of tumours with
amplifications (defined here as 5þ gene copies) and HDs or loss
of heterozygosity (LOH) of the Mut-driver genes affected by
CNAs in at least 1% of either ERþ or ER� tumours.
Amplification of the known oncogenes KRAS, PIK3CA and
AKT1 was more common in ER� tumours (3.9%, 2.7%, 1.2%
respectively). We identified LOH events in 96.0% tumours that
harboured CDH1 mutations, and in 85.4% of TP53-mutant
tumours (Supplementary Fig. 5).

HDs identify candidate tumour suppressor genes. We pre-
viously reported several genes targeted by HDs3, and sequenced
40 of these to identify inactivating mutations (nonsense SNVs,
frameshift indels, splice site mutations) and provide further
evidence for their roles in breast cancer24 (Supplementary Fig. 6,
Supplementary Data 1). Of the 40 genes, 8 were independently
identified as Mut-driver tumour suppressor genes using the
ratiometric method described above: FOXO3, CTNNA1, FOXP1,
MEN1, CHEK2 in ERþ tumours; CDKN2A, KDM6A and
MLLT4 in both ERþ and ER� tumours. These genes were
not mutated at significant rates in the TCGA data set, possibly
due to smaller sample size. CDKN2A (also known as P16-INK4A)
was the most common target of HDs (53 out of 2,087 tumours
with copy number data). Although CDKN2A mutations are

relatively uncommon in breast cancer25, 6 of our tumours had
inactivating mutations. FOXO3 had 9 HDs and 14 inactivating
mutations, and FOXP1 had 3 HDs and 7 inactivating mutations.
Low expression of these two genes has been previously linked
with poor outcome in breast cancer26,27.

We noted that CDH1, CTNNA1 and MLLT4 encode proteins
that are involved in cell adhesion at adherens junctions. CDH1,
MLLT4 and CTNNA1 were deleted in 29, 7 and 1 tumours,
respectively, and harboured inactivating mutations in 169, 20 and
4 tumours, respectively. E-cadherin, encoded by CDH1, is linked
to the actin cytoskeleton by alpha-catenin (encoded by CTNNA1).
Previous analyses have suggested that CTNNA1 is a tumour
suppressor gene24, and it had a TSG score of 26% in ERþ
tumours. MLLT4 (TSG scores: ERþ ¼ 20%, ER� ¼ 31%)
encodes afadin, which forms a bridge between nectin and
F-actin28,29. These mutation data strongly indicate that these
functionally related genes are breast cancer tumour suppressors.

Of the remaining 32 genes in the HD list, 30 harboured at least
1 inactivating mutation. Two of these genes were associated with
immune function. JAK1, with 4 HDs, 4 inactivating mutations
and 4 missense SNV/LOH events, has previously been linked with
immune evasion in gynaecological tumours30. NT5E, which
encodes CD73, has been linked with immune modulation and
anthracycline response31, and had 3 HDs, 1 inactivating mutation
and 4 missense SNV/LOH events in our data set.

Associations with clinical and pathological parameters. We
used a multivariable logistic regression model (Methods) to
identify associations between mutations in Mut-driver genes and
clinical-pathological parameters (Fig. 2a). We focused only
on functional mutations, which were defined as those that
contributed towards a gene’s ONC (recurrent mutations) or
TSG (inactivating mutations) score for oncogenes or tumour
suppressors, respectively (Supplementary Table 2). For TP53,
we used both recurrent and inactivating mutations.

Functional mutations in PIK3CA (odds ratio (OR)¼ 0.58;
95% confidence interval (CI)¼ 0.49–0.69), GATA3 (OR¼ 0.77,
CI¼ 0.6–0.99), MAP3K1 (OR¼ 0.52, CI¼ 0.4–0.68), KMT2C
(OR¼ 0.69, CI¼ 0.52–0.94) and CBFB (OR¼ 0.56, CI¼ 0.38–0.83)
were associated with lower grade in ERþ tumours. Inactivating
mutations in GATA3 (OR¼ 0.63, CI¼ 0.45–0.89) and CBFB
(OR¼ 0.48, CI¼ 0.28–0.81) were more common in patients
diagnosed at younger ages, whereas patients presenting with
mutations in CDH1 (OR¼ 1.9, CI¼ 1.2–3), KMT2C (OR¼ 2.1,
CI¼ 1.3–3.6) and SF3B1 (OR¼ 4.5, CI¼ 1.6–19) tended to
be older. Mutations in TP53 were associated with higher
grade in both ERþ (OR¼ 3.3, CI¼ 2.6–4.2, Po0.001) and
ER� (OR¼ 3.6, CI¼ 2.1–6.2, Po0.001) tumours. Mutations in
CDH1 (OR¼ 0.12, CI¼ 0.034–0.38) and ERBB2 (OR¼ 0.16,
CI¼ 0.042–0.59) were uncommon in ER� cancers, but were
associated with lower grade.

HER2 status is a key parameter in the clinical management of
breast cancer. The TCGA previously noted that the mutation
profiles of HER2þ tumours varied by ER status7. Similarly, we
observed more functional mutations in TP53 in HER2þ /ER�
tumours (67.5%) than in HER2þ /ERþ tumours (42.6%), and
more functional mutations in GATA3 in the HER2þ /ERþ
cohort (8.2%; HER2þ /ER� ¼ 0.5%) (Supplementary Fig. 7).
However, the prevalence of functional PIK3CA mutations was
similar between the two groups (HER2þ /ERþ ¼ 29.5%,
HER2þ /ER� ¼ 30.1%), although there were significantly
fewer PIK3CA mutations in HER2þ /ERþ tumours than in
HER2� /ERþ tumours (46.5%). PIK3CA mutations may have
independent driver properties in a HER2þ context32 and have
been implicated in resistance to anti-HER2 therapies33.
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The relative frequencies of functional mutations in tumours
classified into five histological types are presented in Fig. 2b.
Mucinous (8.3%) and medullary (8.8%) carcinomas had
significantly fewer functional PIK3CA mutations relative to other
subtypes (lobular¼ 46.9%, mixed¼ 50.0%, ductal¼ 36.9%).
Inactivating mutations in CDH1 were observed in 52.6% of
lobular carcinomas, and CDH1 was also the most frequently
mutated gene in lobular carcinomas in the TCGA data set34.
Loss of E-cadherin function is a hallmark of invasive lobular
carcinoma35. Only 3.4% of ductal/NST carcinomas had
inactivating CDH1 mutations. HD of CDH1 was observed in 18
ductal/NST carcinomas (1.1%) and in 4 lobular carcinomas
(2.1%). These results suggest that CDH1 may act as a tumour
suppressor in a small fraction of ductal/NST cancers.

Associations between somatic alterations. To explore patterns of
co-mutation and mutual exclusivity, we examined pairwise
associations between somatic events using Fisher’s exact test.
Significant pairwise interactions (false discovery rate (FDR)¼ 0.1)
between functional mutations in Mut-driver genes are depicted in
Fig. 3a. Mutual exclusivity between mutations in PIK3CA and
AKT1 (OR¼ 0.017, CI¼ 0.00044–0.1), between PIK3CA and
PIK3R1 (OR¼ 0.092, CI¼ 0.0022–0.59), and between PIK3CA
and FOXO3 (OR¼ 0.1, CI¼ 0.0025–0.68) reflect functional
redundancy within the Akt signalling pathway. Surprisingly,
15 out of 57 tumours harbouring PTEN inactivating mutations
also had recurrent PIK3CA mutations. Three out of 18 tumours
with PIK3R1 functional mutations also had PTEN mutations.
Overall, 45.2% of all tumours had a functional mutation in at least
one member of the Akt signalling pathway (PIK3CA, AKT1,
PIK3R1, PTEN and FOXO3). Mutual exclusivity between muta-
tions in TP53 and each of CDH1 (OR¼ 0.23, CI¼ 0.14–0.36),
GATA3 (OR¼ 0.13, CI¼ 0.069–0.23) and SF3B1 (OR¼ 0.049,
CI¼ 0.0012–0.29) reflect opposite associations with tumour grade
and histological type (Fig. 2). Co-mutation of TP53 and RB1
(OR¼ 5.3, CI¼ 2.2–14) is common in triple-negative cancers10.
We observed co-mutation of CDH1 and PIK3CA (OR¼ 2.1,
CI¼ 1.6–2.9), CDH1 and TBX3 (OR¼ 3.2, CI¼ 1.7–5.7), and
CDH1 and RUNX1 (OR¼ 3.3, CI¼ 1.5–6.6) as has previously
been noted in lobular carcinomas34. We observed co-mutation
of ERBB2 and CDH1 (OR¼ 5.7, CI¼ 2.7–12). Mutations in
ERBB2 have been observed in relapsed CDH1-mutant lobular
carcinomas36. Co-mutation of CBFB and GATA3 (OR¼ 7.7,
CI¼ 4.6–13) may reflect their role in ER-mediated gene
activation37.

We also explored associations between mutations and
recurrent CNAs identified by GISTIC (Fig. 3b). Most tumour
suppressor genes displayed classic mutation/LOH associations,
including PTEN and 10q23.1 deletion (OR¼ 3.4; 95%
CI¼ 1.7–6.6), and GPS2 and 17p13.1 deletion (OR¼ 7.1;
CI¼ 2.3–29). Positive associations were also observed between
genes more frequently mutated in ERþ breast cancer and
concurrent 1q gain/16q loss (probably due to t(1q;16p)
translocation). These associations are particularly strong for
mutations in CDH1 (OR¼ 2, CI¼ 1.4–3.1) and CBFB (OR¼ 5,
CI¼ 2.3–12), both of which reside at the 16q22 locus38.
Mutual exclusivity was observed between AKT1 mutations and
amplification of ERBB2 at the 17q12 locus (OR¼ 0.091;
CI¼ 0.011–0.34). ERBB2 signalling is known to activate the
PI3K/Akt signalling pathway39.

Landscape of Mut-driver mutations across the IntClusts. The
mutation and copy number landscapes of the 40 Mut-driver
genes across the IntClusts are depicted in Fig. 4. The number of
mutations in Mut-driver genes in individual tumours was similar

across IntClusts, but the relative frequencies of gene mutations
varied significantly (Supplementary Table 3, Supplementary
Figs 8 and 9). For example, TP53 has functional mutations in
84.6% of IntClust10, 64.2% of IntClust5, 50.5% of IntClust4-, and
44.7% and 40.7% of IntClusts9 and 6, respectively, both of which
largely comprise ERþ tumours. In contrast, TP53 mutations
occurred in only 10.0% of IntClust3, 14.0% of IntClust7 and 4.4%
of IntClust8, which are subtypes composed almost exclusively of
ERþ good prognosis tumours. IntClust1 (29.0%), IntClust2
(24.1%) and IntClust4þ (21.1%) had intermediate frequencies of
functional TP53 mutations.

To formally identify interactions between IntClust and driver
mutations, we looked for Mut-driver genes that were mutated in
significantly higher or lower proportions of tumours in at least
one IntClust relative to the remaining samples. This analysis
identified nine genes at FDR¼ 0.01 (Fig. 5a, Supplementary
Fig. 8). Mutations in CBFB (3.3% across all tumours) were more
frequent in IntClust3 (7.8%) and IntClust8 (9.7%), and less
common in IntClust7 (1.0%), although patients within all these
subtypes have relatively good outcomes (Supplementary Fig. 10a).
GATA3 mutations (8.9% across all tumours) were more frequent
in IntClust1 (20.0%) and IntClust8 (19.5%), although patients in
IntClust1 have worse outcomes.

One of the key features of the IntClust classification
is stratification of ERþ tumours (Supplementary Fig. 10b,
Supplementary Table 4). We therefore explored the distributions
of mutations in Mut-driver genes in the ERþ subsets of the
IntClusts (Supplementary Fig. 11). There was a high prevalence of
functional TP53 mutations in ERþ tumours belonging to
IntClust10 (59.3 versus 18.7% in all ERþ tumours). The CNA
profiles of the 27 IntClust10þ are more similar to triple-negative
basal-like cancers than to ERþ breast cancers.

Finally, we grouped the 40 Mut-driver genes into pathways
(Supplementary Fig. 12), and scored the tumours as pathway-
altered if at least 1 of the genes in the pathway was affected
by mutation or CNA. IntClusts 3 and 7 comprise tumours
with similar clinical characteristics (Supplementary Fig. 10),
but IntClust7 had a higher frequency of alterations in the
MAP kinase (MAPK) signalling pathway (IntClust3¼ 20.5%,
IntClust7¼ 24.6%), and there were more alterations in
tissue organization genes in IntClust3 (IntClust3¼ 24.0%,
IntClust7¼ 10.6%). IntClust1 had fewer alterations in the Akt
signalling pathway (30.5%), despite comprising mostly ERþ
tumours. Alterations in DNA damage response genes were
present in 89.9% of IntClust10 (mostly triple-negative, basal-like)
tumours, and were also frequent in IntClust9 tumours (mostly
ERþ and poor prognosis; 52.3%). Tumours in IntClust10 also
had more alterations in cell cycle regulation (20.2%) and
ubiquitination (6.7%) genes, but had fewer alterations in the
Akt signalling pathway (27.7%).

Clonal states of Mut-driver genes. To characterize the clonal
states of Mut-driver gene mutations across the IntClusts, we used
variant allele fractions (VAF) and copy number data to obtain
estimates of the fraction of cancer cells harbouring mutations40

(Fig. 5b, Supplementary Figs 13–15). The distributions of the
cancer cell fractions (CCFs) of functional mutations in the
Mut-driver genes were centred largely around 1, indicating their
presence in nearly all tumour cells and likely early occurrence in
tumour evolution (Supplementary Fig. 13). However, differences
between IntClusts were apparent. In general, tumours in IntClusts
constituted by patients with better prognosis (IntClusts 3, 7, 8)
had lower proportions of clonal mutations in driver genes relative
to IntClusts with patients with worse outcomes (IntClusts 2, 10)
(Supplementary Fig. 14). Nearly all activating PIK3CA mutations
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in IntClusts10 (median CCF¼ 1, interquartile range (IQR)¼ 1–1,
26 mutations) and IntClust9 (median¼ 1, IQR¼ 0.98–1, 49
mutations) were present at CCFs close to 1, whereas some
PIK3CA mutations in IntClust3 tumours were present in lower
CCFs (median¼ 0.96, IQR¼ 0.75–1, 215 mutations). IntClusts 2
and 6 are relatively small subgroups comprising ERþ cancers

with poor outcome, but MAP3K1 mutations in IntClust2
(median¼ 1, IQR¼ 0.91–1, seven mutations) were present in
higher CCFs than in IntClust6 (median¼ 0.90, IQR¼ 0.69–0.99,
six mutations).

Characteristic examples are displayed in Fig. 5c, which shows
the probability distributions of mutation CCFs in individual
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tumours. MTS-T1775 (IntClust4þ ) has a clonal PIK3CA
mutation (CCF¼ 1, CI¼ 1–1) and a CDH1 inactivating mutation
present in a lower CCF (0.64; CI¼ 0.39–1). This pattern appears
to be characteristic of IntClust4þ tumours, which frequently
appear to harbour more subclonal CDH1 mutations than those in
IntClusts 3, 7 and 8. MTS-T1719 (IntClust9) has a clonal
inactivating ARID1A mutation (CCF¼ 0.93, CI¼ 0.77–1) and a
subclonal inactivating GATA3 mutation (0.69, CI¼ 0.53–0.88).
MTS-T1226 (IntClust3) has three functional mutations: a clonal
PIK3CA mutation (CCF¼ 0.67, CI¼ 0.38–1), a clonal inactivat-
ingMAP3K1mutation (CCF¼ 0.99, CI¼ 0.73–1) and a subclonal
inactivating MAP3K1 mutation (CCF¼ 0.60, CI¼ 0.41–0.85).
The presence of two MAP3K1 mutations in this instance suggests
biallelic MAP3K1 inactivation in a subset of cells. Overall, there
were 199 samples (10.4%) harbouring 41 functional mutation in
a Mut-driver gene across the cohort. Multiple mutations in a
gene were most frequently observed in MAP3K1 (53 out of
152 MAP3K1 mutants with 41 functional mutation;
Supplementary Data 1) as previously noted11.

Prognostic associations of mutations in Mut-driver genes.
To analyze the associations between functional mutations in
Mut-driver genes and breast cancer-specific survival (BCSS),
we constructed multivariable Cox proportional hazards models
(Fig. 6a, Supplementary Table 5) for ERþ and ER� tumours

separately, taking into account the effects of patient age, tumour
grade, size and lymph node status (Methods). In ERþ tumours,
mutations in both MAP3K1 (hazard ratio (HR)¼ 0.56,
CI¼ 0.38–0.82) and GATA3 (HR¼ 0.58, CI¼ 0.4–0.82) were
associated with longer survival. Despite being uncommon,
inactivating mutations in SMAD4 (HR¼ 3.4, CI¼ 1.4–8.3) and
USP9X (HR¼ 3, CI¼ 1.2–7.2) were associated with worse
BCSS. Low levels of nuclear Smad4 and deregulation of other
components of the TGF-beta signalling pathway have been
associated with poor prognosis in breast cancer41. We also
observed that inactivating mutations in NF1 were associated with
shorter BCSS in ER� tumours (HR¼ 2.7, CI¼ 1.3–5.5).

TP53 mutations were associated with worse outcome in ERþ
(HR¼ 1.6, CI¼ 1.3–2, P¼ 0.0001), but not in ER� disease
(HR¼ 1.1, CI¼ 0.8–1.6). Mutations in the DNA-binding domain
were associated with the worst outcomes (Supplementary
Figs 16). Conversely, mutations in PIK3CA were prognostic in
patients with ER� tumours (HR¼ 1.4, CI¼ 1.1–1.9), but not in
those with ERþ tumours (HR¼ 1.1, CI¼ 0.9–1.3). The associa-
tion with worse survival in ER� patients was present for PIK3CA
mutations in both the helical and kinase domains (Supplementary
Fig. 17). The number of mutations in Mut-driver genes was not
associated with BCSS (Supplementary Fig. 18).

We hypothesized that the prognostic effects of mutations may
be influenced by the CNA background. We therefore analyzed the
associations between mutations and BCSS after stratifying
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tumours by IntClust. We tested PIK3CA mutations in ERþ
cancers as a prototypical example, as previous studies reported
contradictory results on the prognostic relevance of PIK3CA
mutations in ERþ tumours42–44. There was no association
between mutation domain or mutation CCF and BCSS, and we
did not observe differences in patient outcome after stratification
by HER2 status (Supplementary Fig. 19). We constructed
univariable Cox models with an interaction term to analyze the

effects of PIK3CA mutations within each IntClust (Fig. 6b). This
interaction term provides an indication of whether the presence
of mutations within a specific IntClust has an association with
BCSS over and beyond the associations of BCSS with IntClust
membership or PIK3CA mutations in the entire ERþ cohort.
Significant interactions were identified in IntClusts1þ , 2þ and
9þ , suggesting that PIK3CA mutations in these specific groups
were associated with poor outcome. On the other hand, patients
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constructed to assess the associations between functional mutations in Mut-driver genes and breast cancer-specific survival (BCSS) in ERþ (left) and
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in IntClusts 3þ , 4þ , 7þ and 8þ with PIK3CA mutations had
similar outcomes to patients with wild-type PIK3CA in their
respective groups. These results highlight the importance
of genome-based stratification, and suggest that IntClust
classification of ERþ tumours might better inform the
prognostic and predictive value of PIK3CA mutations. Such
findings may help interpretation of the results from clinical trials
involving phosphoinositide-3-kinase (PI3K) inhibitors45. The
results of this analysis for TP53 are shown in Supplementary
Fig. 20.

Intra-tumour heterogeneity across the IntClusts. To quantify
intra-tumour heterogeneity, we used the previously established
mutant-allele tumour heterogeneity (MATH) score46, which is
based on the variation in VAFs of all mutations in a tumour
(Supplementary Table 6). We excluded samples with fewer than
five somatic mutations from this analysis, and computed the
MATH scores for the ERþ and ER� tumours separately
(Fig. 7a). ERþ tumours generally had lower MATH scores
(median¼ 0.29, IQR¼ 0.18–0.44) than ER� tumours
(median¼ 0.41, IQR¼ 0.25–0.56). Higher MATH scores were
associated with worse outcome in ERþ cancers (Fig. 7b).

The relationship between intra-tumour heterogeneity and
chromosomal instability (CIN; defined as the percentage of the
genome affected by CNAs) across the IntClusts is depicted in
Fig. 7c. Tumours within IntClust10 had the highest MATH scores
(median¼ 0.47, IQR¼ 0.31–0.61). Although IntClusts 4- and 10
both comprise triple-negative basal-like tumours, tumours in
IntClust4-, which have high levels of lymphocytic infiltration,
had low MATH scores (median¼ 0.27, IQR¼ 0.19–0.54).
Tumours belonging to the IntClusts with the best outcomes
(Supplementary Fig. 10a) had low scores (IntClust3:
median¼ 0.29, IQR¼ 0.17–0.45; IntClust7: median¼ 0.27,
IQR¼ 0.29–0.40; IntClust8: median¼ 0.28, IQR¼ 0.18–0.39).
Patients within IntClusts 1 (median¼ 0.37, IQR¼ 0.26–0.53),
6 (median¼ 0.35, IQR¼ 0.21–0.48) and 9 (median¼ 0.41,
IQR¼ 0.25–0.58) have poor outcomes, and their tumours had
intermediate MATH scores. Surprisingly, tumours in IntClust2
had low MATH scores (median¼ 0.25, IQR¼ 0.16–0.37) despite
patients in this subgroup having poor outcomes. The 11q13–14
amplicon (two gene cassettes centred around CCND1 and PAK1,
respectively) is a key driver CNA in IntClust2, and may be
responsible for the poor clinical trajectories of patients within this
group.

Discussion
Understanding the clinical implications of driver mutations in
breast cancer has been hindered by small sample sizes and lack of
long-term clinical follow-up. The large data set reported here
indicates that patient classification into clinically relevant
subtypes requires profiling both gene mutations (by sequencing)
and stratification based on CNAs, which dominate the genomic
landscape. The results (available at www.cbioportal.org) represent
an important resource characterizing the combined genomic
profiles of a large number of primary breast tumours from
patients with long-term follow-up data.

A key aim of precision cancer medicine is to tailor clinical
management based on the specific events that are relevant to
tumour development and progression. To this end, it is important
to comprehensively catalogue the drivers for a particular cancer,
and to also determine the contexts that define their relevance. We
used a ratiometric method to identify 40 Mut-driver genes, and
noted that ER stratification revealed differences in the oncogenic
properties of some genes, including SMAD4 and ERBB2. Novel
genes on the Mut-driver list include FOXO3, a transcription

factor regulated by Akt signalling, and AGTR2, which may
be a therapeutic target47. The ratiometric method identified
Mut-drivers in breast cancers that were previously known drivers
in other cancer types (such as KRAS, ARID1A, CDKN2A, PBRM1,
KDM6A, MEN1, FOXP1, USP9X, BAP1, SMAD4). This raises the
possibility that therapies used in other clinical settings may be
applicable to breast cancers with mutations in these genes. For
example, mutations in the SWI/SNF components ARID1A and
PBRM1 are especially prevalent in bladder48 and renal49 cancers,
and tumours harbouring these mutations may have dependencies
on other SWI/SNF components that can be therapeutically
exploited50. Previous work has shown that disruption of ARID1B
function in an ARID1A-deficient context inhibits proliferation in
a number of cancer cell lines51.

The degree of inter-tumour heterogeneity present in breast
cancer, and ERþ disease in particular, at the genomic3,
transcriptomic3,52 and clinical2 levels has long been recognized.
The IntClust stratification of ERþ tumours into groups with
specific CNAs and distinct prognostic courses has been robustly
validated6. Here we provide further biological insight into
this inter-tumour heterogeneity by overlaying the mutation
frequencies of 40 breast cancer Mut-driver genes, and by
characterizing their clonal states. For example, KMT2C
mutations are infrequent and usually subclonal in IntClust1,
but more common and usually clonal in IntClust8. IntClust10
ERþ tumours had a relatively high prevalence of TP53
mutations. This observation supports the CNA-based IntClust
classification of some ERþ cancers into a subtype containing
mostly triple-negative basal-like tumours.

The observation that PIK3CA mutations have distinct
prognostic associations in ERþ tumours stratified into IntClusts
is a key novel finding. Recent reports of mouse models
have demonstrated that the same PIK3CA mutation can
result in different tumour phenotypes depending on cellular
background53,54, and our results may similarly be due to the
specific biological properties of tumours within specific IntClusts.
While confirmation in further studies is required, these results
provide compelling evidence for genome-based stratification in
future therapeutic trials of PI3K inhibitors.

The success of targeted therapies, however, will depend on
overcoming the problem of resistance, which may occur earlier in
tumours with more clonal diversity55. We used the MATH score
as a measure of intra-tumour heterogeneity and observed that
higher MATH scores were associated with reduced survival in
ERþ tumours. However, tumours belonging to IntClust2, which
comprises patients with poor outcome, have low levels of intra-
tumour heterogeneity and CIN. These tumours are characterized
by co-amplification of CCND1 and PAK1 at 11q13–14, and have
previously been shown to be resistant to neo-adjuvant cytotoxic
chemotherapy6. These observations will need to be externally
validated, and should be taken forward to develop better
strategies to manage patients whose tumours belong to this
small but highly aggressive subgroup.

In conclusion, combining copy number, gene expression and
mutation profiles provides a richer understanding of the genomic
landscape of breast cancer, and offers new insights into inter-
and intra-tumour heterogeneity that should inform the future
development of clinical management of patients.

Methods
Sample collection. We sequenced a total of 2,433 primary tumours and 650
normal non-cancerous samples comprising normal adjacent breast tissue (523) or
peripheral blood cells (127). Overall, there were 548 matched tumour/normal pairs
present in our data set. We also sequenced replicates for 221 primary tumours, as
well as a number of commonly used breast cancer cell lines.

All samples were obtained with the consent from patients and appropriate
approval from ethical committees (REC ref 07/H0308/161; REC ref 12/EE/0484;
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REC ref 07/Q0106/63). Detailed information about tissue collection for each cohort
can be found in their respective publications: METABRIC3, NeoTango56,
Nottingham57 and DETECT58. Clinical data from the original studies were updated
with the latest available records.

Histological classification and ER status. Information on lymph node status,
stage and tumour size was available from original histopathology reports for all
studies. Expert breast cancer pathologists reviewed FFPE sections stained with
haematoxylin and eosin (H&E) from tumours with available material and scored
histological tumour type, grade, tumour cellularity and lymphocytic infiltration.

Immunohistochemistry-based (IHC) scoring of ER status was, where available,
used to classify ER� positive (ERþ ) and ER� negative (ER� ) tumours. To
confirm this classification for samples which had gene expression data available,
we fit a two-component Gaussian mixture model to the expression levels of ESR1
using the mixtools package59 in R, and computed the probabilities of the samples
belonging to the two distributions defined by the components. The distribution
yielding the higher probability was selected to represent the ER status for each

sample. Where the calls between the two systems differed, we used the expression-
derived classification if the probability of belonging to the opposite distribution was
at least 5� higher than for the distribution described by IHC; this scheme was
chosen so as to assign more weight to the IHC classification, as this is currently the
clinical gold standard. We performed a similar analysis with ERBB2 expression
levels to corroborate the IHC-based HER2 calls. For patients without expression
data (n¼ 416), we used the IHC scores to assign ER and HER2 status. Similarly,
gene expression-based classification was used for samples without IHC data.

DNA extraction. Sample processing, DNA extractions and quality assessment
were based on the protocols described in the METABRIC publication3.

For UK samples DNA was extracted from 10 30-mm sections from each tumour
using the DNeasy Blood & Tissue Kit (Qiagen, UK) on the QIAcube (Qiagen)
according to manufacturer’s instructions.

For CA samples DNA was extracted from 10–20 8-mm sections from each
tumour using the MagAttract DNA M48 Kit (Qiagen) on the BioRobot M48
(Qiagen) according to manufacturer’s instructions. DNA was quantified with the
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Qubit Fluorometer (Thermo Fisher Scientific, MA, USA) and quality assessed by
gel electrophoresis.

Library preparation and sequencing. DNA was quantified using Qubit HS
dsDNA assay (Life Technologies, CA) and libraries were prepared from a total of
50 ng of DNA using Illumina’s Nextera Custom Target Enrichment kit (Illumina,
CA). In brief, a modified Tn5 transposase was used to simultaneously fragment
DNA and attach a transposon sequence to both end of the fragments generated.
This was followed by a limited cycle PCR amplification (11 cycles) using barcoded
oligonucleotides that have primer sites on the transposon sequence generating 96
uniquely barcoded libraries per run. The libraries were then diluted and quantified
using Qubit HS dsDNA assay.

Five hundred nanograms from each library were pooled into a capture pool of
12 samples. Enrichment probes (80-mer) were designed and synthesized by
Illumina; these probes were designed to enrich for all exons of the target genes, as
well for 500 bp up- and downstream of the gene. The capture was performed twice
to increase the specificity of the enrichment. Enriched libraries were amplified
using universal primers in a limited cycle PCR (11 cycles). The quality of the
libraries was assessed using Bioanalyser (Agilent Technologies, CA) and quantified
using KAPA Library Quantification Kits (Kapa Biosystems, MA).

Products from four capture reactions (that is, 48 samples) were pooled for
sequencing in a lane of Illumina HiSeq 2,000. Sequencing (paired-end, 100 bp) of
samples and demultiplexing of libraries was performed by Illumina (Great
Chesterford, UK).

Alignment and quality assessment. The sequenced reads were aligned with
Novoalign, and the resulting BAM files were preprocessed using the GATK
Toolkit60. Sequencing quality statistics were obtained using the GATK’s
DepthOfCoverage tool and Picard’s CalculateHsMetrics. Coverage metrics are
presented in Supplementary Fig. 1. Samples were excluded if o25% of the targeted
bases were covered at a minimum coverage of 50� .

The identities of those samples with copy number array data available were
confirmed by analyzing the samples’ genotypes at loci covered by the Affymetrix
SNP6 array. Genotype calls from the sequencing data were compared with those
from the SNP6 data that was generated for the original studies. This was to identify
possible contamination and sample mix-ups, as this would affect associations with
other data sets and clinical parameters.

Variant calling. To identify all variants in the samples, we used MuTect61 (without
any filtering) for SNVs and the Haplotype Caller60 for indels. All reads with a
mapping quality o70 were removed prior to calling. Variants were annotated with
ANNOVAR62 using the genes’ canonical transcripts as defined by Ensembl
(Supplementary Data 1). Custom scripts were written to identify variants affecting
splice sites using exon coordinates provided by Ensembl. Indels were referenced by
the first codon they affected irrespective of length; for example, insertions of two
bases and five bases at the same codon were classed together.

To obtain the final set of mutation calls, we used a two-step approach, first
removing any spurious variant calls arising as a consequence of sequencing
artefacts (generic filtering) and then making use of our normal samples and the
existing data to identify somatic mutations (somatic filtering). For both levels of
filtering, we used hard thresholds that were obtained, wherever possible, from the
data itself. For example, some of our filtering parameters were derived from
considering mutations in technical replicates (15 samples sequenced in triplicate)63.
We compared the distributions of key parameters (including quality scores, depth,
VAF) for concordant (present in all three replicates) and discordant (present in
only one out of three replicates) variants to obtain thresholds, and used ROC
analysis to select the parameters that best identified concordant variants.

SNV filtering

� Based on our analysis of replicates, SNVs with MuTect quality scores o6.95
were removed.

� We removed those variants that overlapped with repetitive regions of MUC16
(chromosome 19: 8,955,441–9,044,530). This segment contains multiple tandem
repeats (mucin repeats) that are highly susceptible to misalignment due to
sequence similarity.

� Variants that failed MuTect’s internal filters due to ‘nearby_gap_events’ and
‘poor_mapping_regional_alternate_allele_mapq’ were removed.

� Fisher’s exact test was used to identify variants exhibiting read direction bias
(variants occurring significantly more frequently in one read direction than in
the other; FDR¼ 0.0001). These were filtered out from the variant calls.

� SNVs present at VAFs smaller than 0.1 or at loci covered by fewer than 10 reads
were removed, unless they were also present and confirmed somatic in the
Catalogue of Somatic Mutations in Cancer (COSMIC). The presence of
well-known PIK3CA mutations present at low VAFs was confirmed by digital
PCR (see below), and supported the use of COSMIC when filtering SNVs.

� We removed all SNVs that were present in any of the three populations (AMR,
ASN, AFR) in the 1,000 Genomes study (Phase 1, release 3) with a population
alternate allele frequency of Z1%.

� We used the normal samples in our data set (normal pool) to control for both
sequencing noise and germline variants, and removed any SNV observed in the
normal pool (at a VAF of at least 0.1). However, for SNVs present in more than
two breast cancer samples in COSMIC, we used more stringent thresholds,
removing only those that were observed in 45% of normal breast tissue or in
41% of blood samples. The different thresholds were used to avoid the
possibility of contamination in the normal pool affecting filtering of known
somatic mutations. This is analogous to the optional ‘panel of normals’ filtering
step used by MuTect in paired mode, in which mutations present in normal
samples are removed unless present in a list of known mutations61.

Indel filtering

� As for SNVs, we removed all indels falling within tandem repeats of MUC16
(coordinates given above).

� We removed all indels deemed to be of ‘LowQual’ by the Haplotype Caller with
default parameters (Phred-scaled confidence threshold¼ 30).

� As for SNVs, we removed indels displaying read direction bias. Indels with
strand bias Phred-scaled scores Z40 were removed.

� We downloaded the Simple Repeats and Microsatellites tracks from the UCSC
Table Browser14, and removed all indels overlapping these regions. We also
removed all indels that overlapped homopolymer stretches of six or more bases.

� As for SNVs, indels were removed if present in the 1,000 Genomes database at
an allele frequency 41%, or if they were present in normal samples in our data
set. Thresholds were adjusted as for SNVs if the indel was present in COSMIC.
The same thresholds for depth and VAF were used.

Pathogenic germline variants. We used the ClinVar database15 to identify
pathogenic germline mutations, using only those SNVs and indels recorded as
being ‘probable-pathogenic’ or ‘pathogenic’, and ‘germline’, ‘inherited’, ‘paternal’,
‘maternal’, ‘biparental’ or ‘uniparental’. Variants classified as ‘germline’ by the
unpaired pipeline were classified as ‘pathogenic’ using the ClinVar annotation,
unless they were also present at allele frequencies 41% in the 1,000 Genomes
resource.

In addition, we classified SNVs absent in ClinVar but present in between one
and six (1%) normal samples as ‘pathogenic’ if they were either inactivating
(truncating or affecting splice sites), or identified as being ‘deleterious’ or
‘damaging’ by Provean64 Pathogenic indels present in one to six normal samples
but absent from ClinVar were classified as ‘pathogenic’ if they were predicted to
disrupt the reading frame or disrupt a splice junction.

TP53 Sanger sequencing. To assess the sensitivity and specificity of our variant
calls, we compared a large number of TP53 variants called in our study with those
from Sanger sequencing (SS). In a previous study, we studied the mutation
spectrum of TP53 in primary breast tumours from METABRIC12. Details of the
exons sequenced and primers used can be found in Supplementary Table 7.
A total of 1,523 cases were evaluated. Of the remaining variants, there was 93%
concordance between the 2 sequencing projects (988 wild type in both studies, 429
mutants in both studies). There were 40 cases (3.9%) for which a TP53 mutation
was identified by SS but not in our study, and we identified 66 cases (4.6%) with
TP53 mutations that were not previously called. We note that the increased
sensitivity of next-generation sequencing and the depth of coverage obtained for
this study may have helped identify variants that were either not identified or not
called in the SS project.

PIK3CA digital PCR. To ensure that hotspot variants with low VAF (range:
2–10%) that we retained are true (see variant filtering above), we performed digital
TaqMan-based quantitative PCR on 23 cases with PIK3CA H1047R mutations
using the BioMark qdPCR 37K Digital Array Chip (Fluidigm, CA). Briefly, 3.5 ml
of template DNA was mixed with specific concentrations of primer and probes in
the presence of 1� TaqMan Universal PCR Master Mix (Thermo Fisher Scientific)
and 1� sample loading buffer. The cycling profile was as follows: initiation at
50 �C for 2min and incubation at 95 �C for 10min followed by 60 cycles of 95 �C
for 15 s and 60 �C for 1min. The data were analyzed with the Digital PCR Analysis
Software v4.0.1 (Fluidigm). In each panel of the chip, we diluted the sample to
ensure that there was not more than an average of one template molecule. The
quantitative performance of the platform was assessed by using serial twofold
dilutions of HCC1954, a breast cancer cell line known to carry the H1047R
PIK3CA mutation. Each sample was analyzed in duplicate. All 23 cases were
positive for PIK3CA H1047R mutations with mutations frequency detected by
digital PCR ranging 1–17%.

Copy number analyses. The SNP6 data for 2,087 tumours were reanalysed using
ASCAT65 to obtain segmented copy number calls and estimates of tumour ploidy
and purity. Somatic CNAs were obtained by removing germline CNVs as defined
in the original METABRIC study3. We defined regions of LOH as those in which
there were no copies present of either the major or minor allele, irrespective of total
copy number. Recurrent CNAs were identified with GISTIC2 (ref. 66), with log2
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ratios obtained by dividing the total number of copies by tumour ploidy for each
ASCAT segment. Thresholds for identifying gains and losses were set to 0.4 and
(� )0.5, respectively; these values were obtained by examining the distribution of
log2 ratios to identify peaks associated with copy number states. A broad length
cut-off of 0.98 was used, and peaks were assessed to rule out probe artefacts and
CNVs that may have been originally missed. The percentage of each tumour
genome altered was computed after correcting for tumour ploidy.

Survival analyses. Univariable or multivariable Cox proportional hazards models
were used to examine the association between mutations and survival. BCSS was
used as the endpoint. Patients with deaths due to other or unknown causes were
censored at the date of death, and all other patients were censored at the date of last
contact. For the multivariable models, we included as variables: grade size (greater
or less than 50mm), lymph node status (positive or negative) and age (greater or
less than 55). This coding scheme was chosen taking into consideration the
minimum level of data available across the cohorts in the study. The same scheme
was used when performing logistic regression for identifying associations between
clinical parameters and mutation presence. To identify associations between events,
we used Fisher’s exact test for 2� 2 contingency tables.

Driver gene identification. To identify genes that may be relevant to breast
cancer, we looked for those that harboured multiple recurrent or inactivating
mutations, as these are mutation patterns typical of oncogenes and tumour
suppressors. Recurrent mutations were defined as missense SNVs and in-frame
substitutions that affected the same codon of the annotation transcript, whereas
inactivating mutations included nonsense SNVs, frameshift substitutions and
variants that affected splice sites. The proportions of recurrent (ONC) and
inactivating (TSG) mutations for each gene (out of the total number of mutations)
were computed, and a threshold of 0.2 was used (20/20 rule). Genes with an ONC
score 40.2 and with a TSG score 40.05 were classified as tumour suppressors.
A minimum of five recurrent or inactivating mutations was required for a gene to
be selected as putative drivers. The method was adapted from the study by
Vogelstein et al.16

Clonal states of Mut-driver mutations. To infer the CCFs in which the observed
mutations occurred, we used VAFs, and copy number data and tumour purity
estimates as obtained from ASCAT. The CCF was defined as in ref. 40:

CCF ¼ VAF
p

� 1� pð ÞCNnorm þ pCNtumf g ð1Þ

where p is the tumour purity estimate, and CNnorm and CNtum refer to the normal
(that is, 2) and tumour copy number states, respectively. We used the ‘binconf’
function in the R package Hmisc (http://CRAN.R-project.org/package=Hmisc) to
obtain an estimate and CI for the VAF given the depth and the number of reads
harbouring the mutant allele at the mutant locus.

To identify ‘clonal’ (present in the entire tumour) or ‘subclonal’ (present in only
a subset of tumour cells) mutations, we computed 95% CIs for each CCF estimate
based on the VAF and depth of coverage at the mutation loci. Mutations were
labelled as ‘subclonal’ if their CCF CIs did not overlap 1 (ref. 40).

Intra-tumour heterogeneity. To quantify the level of intra-tumour heterogeneity
present in a sample, we used the MATH measure described in ref. 46:

MATH ¼ MADðVafsÞ
medianðVafsÞ ð2Þ

where MAD(Vafs) is the median absolute deviation of the VAFs of all the
mutations (coding and noncoding) in a tumour.

Data availability. All primary data (BAM files) are deposited at the European
Genome-phenome Archive (EGA) under study accession number
EGAS00001001753, and may be downloaded on request and authorization by the
METABRIC Data Access Committee. Somatic mutation calls and ASCAT segment
files for 2,433 primary tumours are available at http://github.com/cclab-brca, which
also hosts the code used to perform key analyses and produce the figures. A matrix
of coding mutations is provided as Supplementary Dataset 3. Clinical data (tumour
morphology, ER and HER2 status, patient characteristics, treatment, follow-data,
metastasis data and relapse data), gene expression data, copy number data and
somatic mutations data for the 1980 patients from the original METABRIC
publication can be found on cBioPortal, and are freely available.
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