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Identifying genetically driven clinical phenotypes
using linear mixed models
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C. Michael Stein1, Elizabeth Phillips1, Scott J. Hebbring4, Murray H. Brilliant4, John Mayer5, Zhan Ye5,

Dan M. Roden1,* & Joshua C. Denny1,3,*

We hypothesized that generalized linear mixed models (GLMMs), which estimate the

additive genetic variance underlying phenotype variability, would facilitate rapid

characterization of clinical phenotypes from an electronic health record. We evaluated 1,288

phenotypes in 29,349 subjects of European ancestry with single-nucleotide polymorphism

(SNP) genotyping on the Illumina Exome Beadchip. We show that genetic liability estimates

are primarily driven by SNPs identified by prior genome-wide association studies and SNPs

within the human leukocyte antigen (HLA) region. We identify 44 (false discovery rate

qo0.05) phenotypes associated with HLA SNP variation and show that hypothyroidism is

genetically correlated with Type I diabetes (rG¼0.31, s.e. 0.12, P¼0.003). We also report

novel SNP associations for hypothyroidism near HLA-DQA1/HLA-DQB1 at rs6906021

(combined odds ratio (OR)¼ 1.2 (95% confidence interval (CI): 1.1–1.2), P¼ 9.8� 10� 11) and

for polymyalgia rheumatica near C6orf10 at rs6910071 (OR¼ 1.5 (95% CI: 1.3–1.6),

P¼ 1.3� 10� 10). Phenome-wide application of GLMMs identifies phenotypes with important

genetic drivers, and focusing on these phenotypes can identify novel genetic associations.
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E
lectronic health records (EHRs) linked to genetic data
have become an efficient tool to identify genetic factors
modulating clinical phenotypes1–5. The integration of large

amounts of individual-level genetic and phenotypic data provides
a unique opportunity to identify genetically mediated disease
entities and have enabled hypothesis-free approaches such as
phenome-wide association studies (PheWAS)6–10. While a broad
range of phenotypes can be rapidly extracted from EHR data
sources, only a portion of these phenotypes may be modulated by
underlying genetics. Indeed, many diseases currently lack clinical
or genetic heritability (or liability) estimates. We hypothesized
that linear mixed models could be used to rapidly identify and
characterize genetically modulated phenotypes among a large set
of EHR-derived phenotypes. These genetic phenotypes could then
be subjected to more detailed genetic analysis.

Variance component approaches that employ generalized
linear mixed models (GLMMs) quantify the additive phenotypic
genetic variation attributable to a collection of common
single-nucleotide polymorphisms (SNPs) genotyped in unrelated
individuals11–13. For continuous traits, this variation represents a
narrow-sense (additive) estimate of the phenotypic variability
attributable to the SNPs. For binary traits, such as those used in
these analyses, the models estimate the proportion of genetic
variation captured on a continuous underlying liability scale so
that estimates are not biased by a disease’s prevalence14. The
estimated genetic variation often exceeds the variance attributable
to SNPs significantly associated by genome-wide association
studies (GWAS)15,16. Hence, these methods are sensitive for
ascertaining whether additive genetics modulate phenotypic
risk15,17. These approaches can also parse the genetic variance
across subsets of SNPs, which can facilitate the biological
interpretation of sources of this variability18. These features
of GLMMs make this approach well-suited to identifying
the genetically driven phenotypes among a large collection of
phenotypes.

We evaluate our hypothesis using a mixed-modelling approach
in conjunction with 1,288 binary phenotypes defined by
EHR-based PheWAS phenotypes6,19, which are derived from
International Classification of Disease, Ninth revision, Clinical
Modification (ICD-9)20 billing codes, ascertained in 29,349
subjects of European ancestry (EA) who were genotyped on the
Illumina Exome Beadchip. Of relevance to these analyses,
the exome chip contains limited and highly selective common
SNP variation, including an over-representation of SNPs with
phenotypic associations identified by GWAS and dense coverage
of common SNPs in the human leukocyte antigen (HLA) region
on chromosome 6p. We use GLMMs to show that many
phenotypes have an underlying genetic risk attributable to
SNPs on the exome chip, and that this risk is almost entirely
attributable to the HLA-associated or GWAS-associated
SNPs. We then identify specific SNPs associated with two
HLA-associated phenotypes using GWAS, and replicate these
findings. Our results support the use of linear mixed modelling to
identify genetic phenotypes and demonstrate how this approach
can efficiently lead to discovery of new genetic loci associated
with phenotypes.

Results
SNP variation in HLA underlies many liability estimates. The
analyses used 29,349 subjects of EA with existing exome array
data extracted from BioVU, Vanderbilt’s EHR-linked DNA
biobank. Approximately 13% of subjects were under 18 years old
and 53% were men (Supplementary Table 1). Subjects had a
median length of follow-up of 8 years (interquartile range (IQR)
4–14) and a median number of 22 (IQR 10–41) distinct
PheWAS-based phenotypes—typically diseases or other clinical

findings. A list of the most common phenotypes is shown in
Supplementary Table 1. We determined the genetic liability
attributable to all common autosomal SNPs (minor allele
frequency (MAF)41%) on the exome chip (n¼ 33,233 SNPs) for
1,288 PheWAS-defined clinical phenotypes with 50 or more cases
(Fig. 1 and Supplementary Data 1). A quantile plot shows a
higher-than-expected rate of low P-values, indicating that liability
estimates for some phenotypes are greater than expected by
chance (Supplementary Fig. 1a). To ensure unbiased liability
estimates, the Restricted Maximum Likelihood (REML) statistical
model was not constrained to force heritability estimates to be
positive. Hence, 461 (35.8%) phenotypes had a negative herit-
ability estimate. While a negative value does not have a biological
interpretation, it suggests that the genetic liability is likely small.
Phenotypes with negative heritability estimates tended to have
smaller numbers of cases (median cases¼ 211, IQR¼ 102–467)
than phenotypes with positive estimates (median¼ 385, IQR:
153–1,001), suggesting that model instability was due to small
numbers of cases. Of those phenotypes with positive heritability
estimates, 68 were significant at a false discovery rate (FDR)
threshold of 0.1, and 56 were significant at FDR qo0.05. When
we restricted the analyses to phenotypes with over 200 cases,
there were 58 and 46 phenotypes, respectively, that were
significant at these thresholds. Two phenotypes with a negative
heritability estimate had an FDR qo0.1, and both had fewer than
100 cases.

Two significant sources of biologically significant common
SNP variation captured on this array are SNPs with significant
associations (Po5� 10� 8) reported in the NHGRI GWAS
Catalog (n¼ 2,199, 6.6% of SNPs) and SNPs located around the
immune-associated HLA gene cluster of chromosome 6p
(n¼ 2,147, 6.3%). When liability estimates were calculated
omitting SNPs in the HLA region, there was a marked decrease
in the number of phenotypes with significant liability estimates
(Supplementary Fig. 1b), indicating that SNP variation in this
region was a significant contributor to genetic liability estimates
for many of the most significant phenotypes. When we further
removed SNPs with phenotype associations reported in the
GWAS Catalog (4,641 SNPs, including SNPs in linkage disequili-
brium with the Catalog SNPs (r240.2)), the distribution of
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P-values approached expectations based on chance (Supplementary
Fig. 1c). Hence, genetic variation seen using the exome chip was
driven primarily by HLA SNPs and SNPs previously identified by
GWAS. Based on these analyses, further exploration of
phenotypes associated with SNP variation in the HLA region
was expected to offer the most potential for new discovery.

Analysis of phenotypes associated with HLA SNP variation.
We identified phenotypes that had a significant genetic liability
associated with the SNPs located in the HLA region to more
fully elucidate the spectrum of HLA-associated diseases. HLA-
associated phenotypes were identified by modelling two variance
components (using two genetic relationship matrices) in the
mixed model, one comprising SNPs located around the HLA
region and the other comprising the remaining SNPs, and testing
whether the liability associated with HLA component was
significantly greater than 0. Many phenotypes were associated
with SNP variability in the HLA region (Supplementary Data 2).
In order to select a P-value threshold where there was optimal
enrichment in phenotypes likely to represent true associations,
we tallied the number of clinically recognized auto-immune
diseases for three P-value bins. At FDR qo0.05, there was the
most marked enrichment of auto-immune diseases (26 of 44
phenotypes below this threshold) (Supplementary Figs 1d and 2).
Among the 18 other phenotypes below this threshold, there were
a number of diagnoses that could have an immune-mediated
aetiology but were not specific, such as ‘Other demyelinating
diseases of the central nervous system’, which describes
the pathological findings associated with multiple sclerosis.
Thirteen of the 44 phenotypes were represented in the GWAS
Catalog (Table 1). Of the remaining phenotypes, only five
corresponded to specific disease entities. Four of the five
(sicca syndrome, dermatomyositis/polymyositis, polymyalgia
rheumatic, cholangitis) are known autoimmune diseases21, while
the fourth, dermatophytosis, has variably been associated with the
HLA region22,23.

Genes within the HLA region activate immune responses
through different mechanisms and are grouped into two major
histocompatibility complex (MHC) classes. For the HLA-
associated phenotypes, we subdivided the HLA regions based
on whether they fell into genes comprising the MHC Class I,
MHC Class II regions or the remaining HLA region and then
determined whether genetic liability for the 44 phenotypes was
associated with these regions. For these analyses, a mixed model
with four variance components was adopted: two comprised of
SNPs located in and around genes corresponding to each MHC
Class, respectively, one comprised of HLA region SNPs other
than those in a MHC gene and one comprising the remaining
SNPs. A phenotype was considered associated with a HLA class
or region if the corresponding variance component had a
Po0.05. A comparison of our class associations to those
identified by prior GWAS studies (that is, a significant SNP
association within the corresponding HLA regions was previously
reported by GWAS) is shown in Table 1. All HLA class
assignments, with one exception, either agreed with prior
associations identified by GWAS or were not localized in our
study. The exception was hypothyroidism, where we observed a
Class II association not seen in prior GWAS, which had identified
a Class I association.

We measured genetic correlations between the HLA-associated
phenotypes shown in Table 1 to ascertain whether there was
evidence of shared genetic risk among the phenotypes. Type 1
diabetes was significantly genetically correlated with both celiac
disease (rG¼ 0.84 (s.e. 0.50), P¼ 0.00007, FDR q¼ 0.007) and
hypothyroidism (rG¼ 0.31 (s.e. 0.12), P¼ 0.003, FDR q¼ 0.09),
and juvenile rheumatoid arthritis was correlated with primary
biliary cirrhosis (rG¼ 0.55 (s.e. 0.21), P¼ 0.003, FDR q¼ 0.09) at
a significance threshold of FDR qo0.1 (Supplementary Table 2).

Exome chip association studies. To further explore these
observations, we performed an exome chip association study for
these six phenotypes with novel HLA localizations. No SNPs on

Table 1 | PheWAS phenotypes associated with SNP variation in the HLA region*.

PheWAS disease Genetic liability (s.e.)w P-valuew Class Iz Class IIz Other HLAz

Known associations
Ankylosing spondylitis 0.074 (0.013) o1.0� 10� 20 0.0006y 1 0.012
Type I diabetes 0.099 (0.014) o1.0� 10� 20 1 0.00002y 0.0033y

Rheumatoid arthritis 0.035 (0.008) o1.0� 10� 20 1y 0.005y 0.041y

Multiple sclerosis 0.023 (0.006) o1.0� 10� 20 0.68y 0.01y 0.23y

Hypothyroidism 0.009 (0.003) 5.6� 10� 9 0.7y 0.067 0.13y

Psoriasis 0.017 (0.005) 6.5� 10� 9 0.044y 0.97 0.17
Juvenile rheumatoid arthritis 0.025 (0.008) 1.1� 10� 8 0.21 0.026y 0.42
Primary biliary cirrhosis 0.017 (0.006) 6.7� 10� 8 0.41 0.057y 0.19
Coeliac disease 0.008 (0.004) 3.8� 10� 7 1 0.062y 0.31
Macular degeneration 0.013 (0.005) 3.2� 10� 5 1 1 0.014y

Ulcerative colitis|| 0.007 (0.003) 3.9� 10� 5 n/a n/ay n/ay

Systemic lupus erythematosus 0.005 (0.003) 2.7� 10�4 0.89 0.59y 0.22y

Premature menopause 0.006 (0.003) 1.0� 10� 3 0.72 0.72 0.25y

Novel associations
Sicca syndrome 0.009 (0.004) 1.8� 10�6 1 0.14 0.28
Dermatomyositis and polymyositis 0.008 (0.004) 1.1� 10� 5 0.11 0.88 0.61
Polymyalgia rheumatica 0.010 (0.005) 3.5� 10�4 1 0.8 0.042
Cholangitis 0.006 (0.004) 5.8� 10�4 0.38 1 0.17
Dermatophytosis of the body 0.004 (0.003) 6.8� 10�4 1 1 0.16

*Only phenotypes with an FDR qo0.05 and that mapped to the GWAS Catalog or have unreported associations are shown.
wFrom a multivariable GLMM analysis that incorporated a HLA and non-HLA GRM and adjusted for age and sex each of the PheWAS phenotypes. P-values correspond to the HLA variance component.
zShown are P-values from a multivariable GLMM analysis incorporating GRMs comprising SNPs within the specificied HLA region (see Methods).
||An estimate could not be obtained because the statistical model did not converge.
yA SNP association with a P-valueo5� 10�8 in the GWAS Catalog reported in the specified region.
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the exome chip reached genome-wide significance using an
additive logistic regression model for the sicca syndrome,
dermatomyositis/polymyositis, dermatophytosis and cholangitis
phenotypes (Supplementary Fig. 3).

Three SNPs reached genome-wide significance for hypo-
thyroidism (Fig. 2a and Supplementary Figs 4 and 5). Two of
the associations have been previously reported3,24: rs6679677
near PHTF1/PTPN22 and rs965513 in the papillary thyroid
cancer susceptibility candidate 2 (PTCSC2) gene. The third was a
novel association at rs6906021 (chr6: odds ratio (OR)¼ 1.2
(95% confidence interval (CI): 1.1–1.3), P¼ 3.8� 10� 8) located
near the HLA class II HLA-DQA1 and HLA-DQB1 genes (Fig. 2b
and Table 2). Using data from the Marshfield Clinic Research
Foundation, another EHR-based cohort, we were able to replicate
this association (OR¼ 1.2 (95% CI: 1.1–1.3), P¼ 2.0� 10� 4),
and meta-analysis gave a combined association of OR¼ 1.2
(95% CI: 1.1–1.2), P¼ 9.8� 10� 11 (Table 2).

For polymyalgia rheumatica (PMR), two SNPs in the HLA
region reached genome-wide significance: rs3096702 (OR¼ 1.5
(95% CI: 1.3–1.8), P¼ 2.0� 10� 8) and rs6910071 (OR¼ 1.6
(95% CI: 1.3–1.8), P¼ 2.7� 10� 8) located upstream of Notch4
and in C6orf10, respectively (Fig. 2c,d, Table 3 and
Supplementary Figs 4 and 5). Only SNP rs6910071 replicated in
the Marshfield data set: (OR¼ 1.5 (95% CI: 1.2–2.0), P¼ 0.002)

(Table 3). The rs6910071 SNP was previously examined as part of
a broad-based PheWAS study through the eMERGE network
and was found to be associated with PMR (OR¼ 1.2 (95% CI:
1.01–1.5), P¼ 0.04)19. The meta-analyses for rs6910071 across
data sets was significant (combined OR¼ 1.5 (95% CI: 1.3–1.6),
P¼ 1.3� 10� 10) (Table 3).

In order to identify specific allelic variants associated with the
SNP association signals, we tested for associations between the
phenotypes and imputed classical 2- and 4-digit alleles at HLA-A,
-B, -C, -DQA1, -DQB1 and -DRB1. For hypothyroidism,
the strongest 4-digit allelic associations were seen at the
HLA-DQA1*0501, HLA-DQB1*0201, HLA-DRB1*0301 alleles
(Po10� 6 for each allele), which collectively comprise the
HLA-DR3-DQ2 haplotype (Supplementary Table 3). For
polymyalgia rheumatic, the strongest allelic associations were
with the HLA-DQA1*0301 and HLA-DRB1*04 alleles (Po10� 6)
(Supplementary Table 4).

Discussion
We measured the genetic liability for 1,288 EHR-derived
ICD-9-based phenotypes ascertained in a cohort of subjects with
exome chip genotyping. We identified 44 HLA-associated
phenotypes, five of which had not yet been studied by GWAS,
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and found that hypothyroidism was associated with SNP
variation in the HLA class II region. This class II association
was supported by the finding of a significant genetic correlation
between hypothyroidism and Type 1 diabetes. Exome chip
association analyses for hypothyroidism and PMR identified
replicating SNP associations for both diseases in the HLA region.

One motivation for this analysis was to ascertain whether
mixed models could identify phenotypes that had an underlying
genetically mediated risk using rapidly assigned EHR phenotypes.
By conducting the analyses using the highly selective set of SNPs
captured on the Illumina exome chip platform, we were limited in
the range of genetic variation we were able to interrogate. We
found that the genetic liabilities were predominantly driven by
SNPs located in the HLA region and with SNPs previously
associated with phenotypes in the GWAS Catalog. This result
would be expected as these SNPs have known biological
significance and constitute a large proportion of the common
SNP variation represented on the exome chip. Hence, we could
not make broad interpretations about the global heritability of the
phenotypes. However, the purpose of these analyses was to
identify genetic phenotypes where further genetic characteriza-
tion by a SNP association analysis using the SNPs on the exome
chip platform could yield novel associations. In support of our
analytical approach, we were able to reduce our set of 1,288
candidate phenotypes to six for which there was potential
for novel SNP discovery on the exome chip. We were able to
identify novel associations for two of these six phenotypes,

hypothyroidism and PMR. Our general analytic approach would
apply to any data set that genotyped common SNPs, even if the
composition of SNPs on that platform were skewed toward
distinct subsets. Application of this method to other large
EHR-linked genotyped sets that are now becoming available, such
as the Million Veterans Project, could yield robust heritability
estimates across a much more diverse set of phenotypes.

The dense representation of common SNPs located within the
HLA region provided a unique opportunity to identify pheno-
types associated with this region. SNPs within this region were
significant contributors to many of the most significant liability
estimates. This is consistent with previous studies that have
shown that a large portion of the genetic risk for autoimmune
phenotypes is captured in this region14. We identified 44
phenotypes associated with this region at an FDR qo0.05.
Eighteen of these phenotypes were specific autoimmune diseases,
13 of which were captured by the GWAS Catalog. Many of the
other phenotypes represented clinical findings that could be
consistent with an auto-immune aetiology but were not specific to
any particular disease. Our inclusion criteria for this analysis may
have been overly stringent, as there were a number of additional
autoimmune diseases that fell slightly below this FDR threshold,
including sarcoidosis, Crohn’s disease, Grave’s disease and uveitis,
all of which have known HLA associations.

For most of the autoimmune diseases in the GWAS Catalog,
we were able to assign their correct HLA class using mixed-
modelling approaches. An exception was hypothyroidism, which

Table 2 | Significant SNP associations and replication of HLA-associated SNPs for hypothyroidism.

Data set/SNP Location* Reference allele MAF cases/controls OR 95% CI P-value

Discovery cohortw (3,242 cases, 6,484 controls)
rs6679677 chr1:113761186 A 0.12/0.09 1.39 1.25–1.53 2.5� 10� 11

rs2476601 chr1:113834946 A 0.12/0.09 1.39 1.26–1.53 2.1� 10� 11

rs6906021 chr6:32658534 C 0.49/0.44 1.19 1.12–1.27 3.8� 10� 8

rs965513 chr9:97793827 A 0.30/0.35 0.78 0.73–0.84 1.6� 10� 13

Marshfield replicationz (1,645 cases, 7,127 controls)
rs6906021 chr6:32658534 C 0.49/0.46 1.16 1.07–1.26 2.0� 10�4

Meta-analysis
rs6906021 chr6:32658534 C 1.18 1.12–1.24 9.8� 10� 11

*Coordinates are for genome assembly GRCh38.p2.
wFrom an additive logistic regression model, adjusting for age, gender and three principal components.
zFrom an additive logistic regression model, adjusting for age and gender.

Table 3 | Significant SNP associations and replication of HLA-associated SNPs for polymyalgia rheumatica.

Data set/SNP Location* Reference allele MAF cases/controls OR 95% CI P-value

Discovery cohortw (413 cases, 5,782 controls)
rs3096702 chr6:32224554 T 0.48/0.39 1.52 1.31–1.76 2.0� 10� 8

rs6910071 chr6:32315077 G 0.30/0.22 1.58 1.34–1.85 2.7� 10� 8

PheWAS Catalogz (273 cases, 13,464 controls)
rs6910071 chr6:32315077 G n/a 1.24 1.01–1.52 0.04

Marshfield replicationy (146 cases, 9,838 controls)
rs3096702 chr6:32224554 T 0.40/0.36 1.20 0.84–1.52 0.14
rs6910071 chr6:32315077 G 0.26/0.18 1.53 1.17–2.0 0.002

Meta-analysis
rs6910071 1.46 1.30–1.63 1.3� 10� 10

*Coordinates are for genome assembly GRCh38.p2.
wFrom an additive logistic regression model, adjusting for age, gender and three principal components (PCs).
zResults extracted from the PheWAS Catalog for an additive logistic regression model, adjusting for age, gender and three PCs.
yFrom an additive logistic regression model, adjusting for age and gender.
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had a class I association in the GWAS catalogue, and a weak class
II association in our mixed models analysis. An exome chip
association study identified a significant association near the class
II HLA-DQA1 and HLA-DQB1 genes, suggesting that the class
assignment by the mixed model was correct. Consistent with our
findings, a prior GWAS found a suggestive SNP association in
this same region, though the P-value did not reach genome-wide
significance24. An HLA class II signal within this region is also
supported by the significant genetic correlation we observed
between hypothyroidism and type 1 diabetes, which has
known HLA class II SNP associations, including HLA-DQA1
(ref. 25). The pattern of HLA allelic associations for
hypothyroidism was also suggestive of a HLA-DR3-DQ2
haplotype (DRB1*03:01-DQA1*05:01-DQB1*02), which is
associated with type 1 diabetes and coeliac disease26. Clinically,
hypothyroidism and type 1 diabetes co-occur frequently27.

PMR was also associated with SNP variation in the HLA
region. PMR is a steroid-responsive autoimmune disease of the
musculature that typically presents in adults over 50 years old28.
We identified two SNPs associated with PMR that reached
genome-wide significance. One SNP, rs6910071, located in
C6orf10 has previously been associated with the autoimmune
disease rheumatoid arthritis29. The second SNP has no reported
associations, and did not replicate in our analyses. HLA typing
studies have shown that PMR is associated with HLA gene allelic
variants in the HLA-DR region and the HLA-DR4 antigen30,31.
Hence, the rs6910071 SNP may be tagging this haplotype.

This study has limitations. Of primary importance, the exome
chip contains a highly selected panel of SNPs and most common
SNPs across the genome are not covered on the platform. The
limited representation of common SNPs on the exome chip,
beyond those in the GWAS catalogue and the HLA region, makes
it difficult to ascertain whether a low-significance genetic risk
estimate is the result of a poor-specificity phenotype definition or
a lack of relevant SNPs included on the exome chip platform.
However, within the context of the primary aims of this analysis,
a non-significant genetic liability estimate indicated that pursuing
the phenotype further based on the SNPs available on the exome
chip was unlikely to identify novel associations. To control for
stratification and cryptic relatedness, we either included a large
number of principal components (PCs) or, when possible, used a
second genetic relationship matrix (GRM)17 in our data models.
Finally, for many of the phenotypes, there were a relatively small
number of cases and, hence, we may have been underpowered to
measure a genetic component for these phenotypes. This may
have contributed to our inability to identify significant
associations for four of the auto-immune diseases that we
evaluated by a SNP association study. In addition, we observed
that low case counts were more frequently associated with
negative liability estimates, suggesting that there may be more
false-positive findings among phenotypes with few cases.

In summary, we used mixed models to analyse the genetic risk
underlying a large set of EHR-derived phenotypes and were
able to efficiently identify a subset of genetically modulated
phenotypes that led to the identification of novel SNP-phenotype
associations. Hence, these analyses demonstrate the utility of the
mixed-models approach to identify and broadly classify genetic
phenotypes.

Methods
Study population. The study population comprised 29,349 previously
genotyped adult and paediatric subjects of genetic EA identified through BioVU,
a de-identified collection of patients whose DNA was extracted from discarded
blood and linked to phenotypes through a de-identified electronic medical
record32. The study subjects were genotyped on the Illumina Human Exome
Beadchip v1.1 as part of a broad-based genotyping initiative. Genetic ancestry
assignment was determined using STRUCTURE33 in conjunction with 2,652

ancestry informative markers, with EA defined as490% probability of being in the
HapMap CEU cluster.

Ethics statement. The Vanderbilt BioVU resource operates as nonhuman subjects
research according to the provisions of the 45 Code of Federal Regulations, part 46,
with oversight by Vanderbilt’s Institutional Review Board, as previously descri-
bed32. This project was deemed nonhuman subjects by the Vanderbilt Institutional
Review Board.

Phenotype data. The phenotypes evaluated in this study were based on PheWAS
codes (phenotypes), which are collections of related ICD-9 codes6,19,20,34. ICD-9
codes capture clinical data related to the diagnoses, signs and symptoms, and
history of disease. PheWAS phenotypes have a hierarchical structure, such that
some phenotypes are comprised of collections of other phenotypes that represent
diseases with similar clinical characteristics. For instance, the ‘Diabetes Mellitus’
code incorporates both Type 1 and Type 2 diabetes and has ‘children’ concepts of
Types 1 and 2 diabetes. For each PheWAS phenotype, cases are subjects with two
or more instances of the PheWAS code appearing in their medical record on
separate dates19. Birth decade- and sex-frequency-matched controls with no
instances of that code are randomly selected for each PheWAS phenotype There
are over 1,600 defined PheWAS codes, of which 1,288 had 50 or more cases and
were used in these analyses. PheWAS phenotypes and their respective ICD-9
mappings are available at http://PheWAScatalog.org. PheWAS phenotypes were
manually mapped to the NHGRI GWAS Catalog phenotypes (http://www.
genome.gov/gwastudies/), as previously described19. A subset of phenotypes with a
significant genetic liability component (described below) were reviewed by a
clinician and classified as to whether they had a known autoimmune aetiology
(shown in Supplementary Data 1).

Genotyping data. Genotype data were acquired on the Illumina Infinium Exome
BeadChip v1.1. A subset of individuals was also genotyped on the OMNI
HumanOmni1-Quad and HumanOmni5-Quad platforms35. The OMNI
genotyping data were used only to establish relatedness thresholds, as described
below. Quality control was performed on the Exome BeadChip data by VANGARD
(Vanderbilt Technologies for Advanced Genomics Analysis and Research Design)
using Genome Studio and PLINK, as previously described36,37. Briefly, SNPs were
clustered using Genome Studio, and to ensure correctness, manual reclustering was
performed based on quality control measurements such as GenTrain Scores,
Cluster Separation, Call Freq scores. Samples were evaluated for heterozygous
consistency rates between duplicated samples, heterozygous consistency rate
between HAPMAP samples and their 1000 Genome genotyping calls, sex
mismatches, and genotype consistency between duplicated SNPs on the SNP chip.
After QC, there were 33,233 SNPs with a MAF41% and a Hardy-Weinberg
P40.001. PCs were computed using EIGENSTRAT38 to adjust for residual
population structure. Intensity plots and quality control statistics for the three
SNPs in the HLA region with novel findings in these analyses are shown in
Supplementary Fig. 6.

Primary analyses. Generalized linear mixed models (GLMMs) were used to
estimate the global genetic contributions of SNP variation to the underlying
variation of each phenotype. We employed the GLMM algorithms implemented in
the Genome-wide Complex Trait Analysis program11,15,39–41. First, a GRM was
computed using autosomal SNPs with a MAF41%. Due to the small number of
highly selected SNPs represented on the exome chip, when the recommended
relatedness exclusion threshold of 0.025 was applied15,42, almost all subjects were
excluded. In order to empirically determine a relatedness cut-off appropriate to the
Exome chip, we examined a subset of 4,564 subjects who also had genome-wide
genotyping on OMNI HumanOmni1-Quad and HumanOmni5-Quad platforms
and who had a genome-wide relatedness score less than 0.025 on these genome-
wide SNP platforms. We then computed a GRM for these subjects using the exome
chip in conjunction with a LD-reduced set of 6,541 SNPs. The upper limit of the
relatedness score in these subjects was 0.07. When we applied this threshold to the
entire exome data set, 3,154 subjects were removed (10.7%), a proportion
consistent with the exclusion rates that we have observed in analyses using
genome-wide SNP genotyping involving data derived from other analyses using the
Vanderbilt University EHR.

Genetic liability estimates for each PheWAS phenotype were computed using a
GLMM in conjunction with a GRM derived from exome chip SNPs. Estimates were
adjusted for age, sex and 20 PCs. P-values were computed by a likelihood ratio test
(LRT) comparing a full model with a model excluding the GRM. FDR-adjusted
P-values (q-values) were determined using a Benjamini-Hochberg adjustment.
Genetic liability estimates for each phenotype were also computed using a GRM
that excluded 2,147 SNPs located in the chromosomal region surrounding the HLA
region on chromosome 6 (chr6:26,000,000–34,000,000), and using a GRM that
further excluded 4,641 SNPs representing 2,199 SNPs from the GWAS catalogue
with a phenotype association at Po5� 10� 8 and exome chip SNPs with an
r240.2 with any of these SNPs.

In order to identify phenotypes associated with the HLA region, a mixed model
employing two GRMs, one based on SNPs in the HLA region and the other based
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on all remaining SNPs, and partitioning the genetic variance between the GRMs
was used. The P-value associated with the HLA GRM was computed using a LRT
comparing the full model (both GRMs) to a model that excluded the HLA GRM.
Those diseases with a FDR qo0.05 were further evaluated. These phenotypes were
further evaluated to identify the HLA class-association regions associated with the
phenotype. For each phenotype, a model that incorporated four GRMs (three
related to HLA SNP subgroups and a fourth for the remaining non-HLA SNPs)
was fit. The three HLA subgroups comprised all Exome chip SNPs located within
25 kb of MHC Class I genes (HLA-A, -B, -C, -E, -F and -G genes) (n¼ 141 SNPs);
MHC Class 2 genes (HLA-DP, -DQ, -DR, -DM and -DO genes) (n¼ 208 SNPs),
and all other genes located in the HLA region (n¼ 1,698 SNPs). A P-value for each
HLA subgroup was determined by dividing the square of the (genetic liability
estimate divided by its standard error) and calculating the corresponding P-value
assuming a chi-square distribution with 1 degree of freedom. Where possible, the
results of these analyses were compared to associations reported in the NHGRI
GWAS catalogue by manually mapping each PheWAS code to a disease in the
GWAS catalogue and identifying the genes within the respective MHC regions that
contained SNPs with association P-values o5� 10� 8.

Genetic correlations were computed for pairs of phenotypes associated with the
HLA region and that had mapped to a GWAS catalogue phenotype by fitting a
bivariate GLMM, adjusting for age, gender and 20 PCs. P-values were determined
by computing the log likelihood from full model (L1) and a model where the
genetic correlation was constrained to be 0 (L0). The P-value was based on a LRT
� 2(L1� L0), assuming a chi-square distribution with 1 degree of freedom.

To identify SNPs associated with the hypothyroidism and PMR phenotypes,
an association study employing an additive logistic model and adjusting for age,
sex and three PCs was run using all SNPs on the exome chip with MAF41%.
A P-value below Po5� 10� 8 was considered genome-wide significant.

Replication analyses. Significant SNP associations within the HLA region were
replicated using data from 10,124 PMRP patients in the Personalized Medicine
Research Project (PMRP)43,44, which has been used for PheWAS analysis
previously7,9,45. Use of the Marshfield data was approved by the Marshfield Clinic
Research Foundation Institutional Review Board. All individuals genotyped are
self-reported white/non-Hispanic, with over 70% claiming German ancestry. The
PMRP subjects are 63% female, with a mean age of 65 years and having on average
over 30 years of clinic data in Marshfield Clinic’s EHR system. Subjects were
genotyped on the Illumina HumanCoreExome BeadChip as part of a case-control
study of AMD. PMR and hypothyroidism phenotypes in this data set were derived
using the same ICD-9 codes as the primary analyses, defined by the PheWAS code
mappings. Replications were tested using an additive logistic model and adjusting
for age and sex. An association Po0.05 was considered significant. In addition, one
significantly associated SNP (rs6910071) had been previously evaluated by a
PheWAS as part of the eMERGE consortium and its association with PMR was
obtained from the publicly available PheWAS catalogue (http://phewas.mc.
vanderbilt.edu/)19.

HLA allele imputation. HLA alleles were imputed from SNP data on the
HumanExome BeadChip using SNP2HLA with the Type 1 Diabetes Genetics
Consortium reference panel and a marker window size of 1,000 (ref. 46). We
imputed in each of the samples individual dosages for 298 classical 2- and 4-digit
alleles at HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1. A total of 173 classical 4-digit
HLA alleles included in the analysis had a MAF41%. Association testing for each
allele and the polymyalgia and hypothyroidism phenotypes was performed using
an additive logistic model and adjusting for age, sex and three PCs.

Data analysis. All quality control analyses and SNP association analyses were
performed using PLINK v1.07 (ref. 47). Genetic liability estimates were computed
using the Genome-wide Complex Trait Analysis v1.24 (ref. 39). All other analyses
were performed using SAS v9.3 (SAS Institute, Cary, NC). SNP data were visualized
using LocusZoom48. HLA allele imputation was performed using SNP2HLA46.
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