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Individual heritable differences result in unique
cell lymphocyte receptor repertoires of naı̈ve
and antigen-experienced cells
Florian Rubelt1,*, Christopher R. Bolen1,*,w, Helen M. McGuire1,w, Jason A. Vander Heiden2,

Daniel Gadala-Maria2, Mikhail Levin3, Ghia M. Euskirchen4, Murad R. Mamedov5, Gary E. Swan6,

Cornelia L. Dekker7, Lindsay G. Cowell3, Steven H. Kleinstein2,8,9 & Mark M. Davis1,10,11

The adaptive immune system’s capability to protect the body requires a highly diverse

lymphocyte antigen receptor repertoire. However, the influence of individual genetic and

epigenetic differences on these repertoires is not typically measured. By leveraging the unique

characteristics of B, CD4þ T and CD8þ T-lymphocyte subsets from monozygotic twins, we

quantify the impact of heritable factors on both the V(D)J recombination process and on

thymic selection. We show that the resulting biases in both V(D)J usage and N/P addition

lengths, which are found in naı̈ve and antigen experienced cells, contribute to significant

variation in the CDR3 region. Moreover, we show that the relative usage of V and J gene

segments is chromosomally biased, with B1.5 times as many rearrangements originating

from a single chromosome. These data refine our understanding of the heritable mechanisms

affecting the repertoire, and show that biases are evident on a chromosome-wide level.
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T
he human adaptive immune response controls defence
against pathogens by expressing a diverse repertoire of
antigen-specific receptors. During early developmental

stages, a set of V (variable), D (diversity) and J (joining) gene
segments are chosen from the genetically encoded repertoire to
create a typically unique receptor for each B and T cell. This
process is known as V(D)J recombination1.

Uncovering the mechanisms that create these antigen receptor
repertoires is crucial, as the makeup of an individual’s repertoire
determines which cells are available to respond to individual
antigens. Although the process of selecting gene segments for
recombination is largely random, some are used more often than
others. Studies have shown that overall biases in gene segment
usage are the product of a variety of mechanisms, including a
preferred recombination between certain V and (D)J segments2;
receptor selection based on binding affinity for different major
histocompatibility complexes (MHCs; for T-cell receptor (TCR)
rearrangements)3,4; and bias based on the distance between V, D
and J segments (for immunoglobulin (Ig) rearrangements)5.
However, detailed studies using monozygotic (MZ) twins
have shown that additional unidentified genetically encoded
mechanisms must also contribute to the relative usage of
individual gene segments6–10. Bulk sequencing approaches
using total B cells have also demonstrated similarities in the
CDR3 length between twins10, and detailed analysis of class-
switched sequences suggested similar trends in memory B cells.
However, the influence of heritable factors on the total memory
repertoire of B cells (class-switched and IgM), and on the
memory repertoire of T cells, has not yet been examined.

Recent studies have shown that the naı̈ve and memory
repertoires within an individual are highly correlated, and that
activation of naı̈ve cells and subsequent transition of those cells to
the memory population does not appear to be dependent on
V gene usage11,12. Although these studies hypothesize that
genetically determined biases in the naı̈ve repertoire will be
propagated to the memory compartment, this has not been
clearly demonstrated. Determining the influence of genetics on
the memory compartment is important for understanding the
relationship between the naı̈ve and memory subsets and, more
generally, how genetics affects response to infection.

In this study, we analyse the repertoires of sorted naı̈ve
and memory B and T cells from five pairs of human MZ twins
using a sensitive and reliable next-generation sequencing (NGS)
approach. This protocol uses a multistep process to amplify all
B-cell receptor or TCR sequences and add unique molecular
identifiers (UMIs) to each individual mRNA molecule13. The
addition of the UMIs provides substantial benefits for repertoire
sequencing experiments, because of both significant reductions in
PCR amplification bias and from the improved sequence accuracy
that is obtained by combining reads from the same molecule14–16.
Combined with a novel bioinformatics pipeline, we are able to
detect minute changes in an individual’s repertoire down to the
allele level. Our results confirm and quantify the strong influence
of heritable features on both the recombination process and
receptor repertoire of naı̈ve B cells, CD4þ T cells and CD8þ

T cells, and show that these heritable differences are propagated
into the memory compartment. We confirm that biases exist in V,
D and J gene usage, as well as biased junction and N/P addition
length. We also demonstrate for the first time that particular
chromosomes contribute unequally to the repertoire, leading to a
1.5-fold increased preference for V gene segments originating
from the major chromosome.

Results
For this study, we recruited five nominally healthy MZ male and
female twin pairs (a total of ten donors) from the Twin Research

Registry at SRI International17, with ages ranging from 22 to 27
years. Peripheral blood samples were collected from each subject,
and naı̈ve (CD20þ , CD27� ) and memory (CD20þ , CD27þ ,
CD38low) B cells as well as naı̈ve (CD45RO� ) and central
memory (CD45ROþCCR7þ ) CD4þ T and CD8þ T cells were
isolated from each sample. An mRNA-based library was created
from these individual cell subsets using a 50 Rapid Amplification
of cDNA Ends protocol including molecular barcoding (see the
Methods for complete description).

All cDNA-based samples were sequenced on the Illumina
MiSeq platform, resulting in a total of 181,285,548 raw reads.
These were processed to remove low-quality or non-immune-
related reads, identify reads sharing the same UMI and determine
the original donor, cell type and constant region isotype. An
additional filter step was then performed for naı̈ve B-cell samples
to remove all reads not containing either IgM or IgD as the
constant region isotype. The resulting data set comprised 2.07
million molecules from 60 separate samples (6 cell subsets from
10 donors).

To identify heritable sources of variation in the B- and T-cell
repertoires, we chose to focus on biases in V, D and J gene usage
resulting from genetic influences on the recombination process.
For each mRNA molecule, the V(D)J gene segments alleles and
CDR3 region sequence were identified using the IMGT/HighV-
QUEST online tool18, and an additional quality control step was
performed to remove reads with low confidence V segment
assignments. Finally, because certain receptors will be greatly
over-represented in the data set because of clonal expansion, we
chose to collapse all clonally related sequences into clonal groups.
The final data set consisted of 1,154,858 clones, each representing
a unique V(D)J recombination event (a breakdown of the total
number of cDNA molecules and clonal groups per sample is
presented in Supplementary Data set 1).

Naı̈ve Ig and TCR repertoires show heritable biases. For the
initial analysis of heritability, we chose to focus on the naı̈ve
B- and T-cell repertoires, specifically on the relative usage of V,
D and J gene segments of the Ig-heavy and TCR-beta repertoire,
because of their crucial role in antigen recognition. It is
reasonable to assume that environmental factors and past
infections will have relatively little effect on the naı̈ve repertoire
(although some antigen experienced lymphocytes do revert to a
naı̈ve phenotype, this is not expected to have a significant effect
on the repertoire), making it an ideal system to study the genetic
basis of recombination and negative selection.

We first compared V and J gene segment usage among
all participants in the study. In general, we found a strong
correlation between V and J segment usage frequencies in the
naı̈ve populations of any two donors, regardless of relatedness.
Correlations between repertoires ranged from 0.790 to 0.999 in
naı̈ve B cells (see Fig. 1a,b for representative examples and
Supplementary Data set 2), and 0.75–0.90 in naı̈ve CD4þ T cells
and CD8þ T cells. However, we found that this correlation was
always highest among MZ twins. To quantify this, we developed
the Repertoire Dissimilarity Index (RDI) as a measure of distance
between repertoires. This metric uses random subsampling to
control for heterogeneity in repertoire sizes between individuals,
allowing direct comparison of repertoires from multiple cell
subsets and donors simultaneously. This controls for variation in
both cell subset frequency and sequencing depth, which would
otherwise complicate the comparison of repertoires between
individuals. In addition, by focusing on frequency of V(D)J gene
segments instead of the total repertoire diversity, we are able to
generate accurate estimates of gene frequency with only a limited
sample size in comparison to the total repertoire. Using the
RDI, we compared V segment usage in the naı̈ve B-cell and

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11112

2 NATURE COMMUNICATIONS | 7:11112 | DOI: 10.1038/ncomms11112 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


CD4þ /CD8þ T-cell repertoires of all donors in a pairwise
manner to generate a dissimilarity matrix. Hierarchical clustering
analysis of these dissimilarities revealed that each donor
consistently clustered with their twin in both B-cell (Fig. 1c)
and T-cell (Fig. 1d) subsets. To estimate the statistical significance
of this trend, the RDI values were separated into genetically
related (twin-pair) and unrelated (non-twin) comparison groups,
and RDI values in the groups were compared using a Wilcoxon
Ranked Sum test. In addition, RDI values from simulated data
sets with fixed levels of variation were included in order to
estimate the average fold difference in the expression of gene
segments for the measured RDI value. Using this metric, we
found that the repertoire distance between twin-pairs was
significantly lower than the non-twin distance for all three cell
subsets when comparing both V segment usage (Fig. 1e;
Wilcoxon Po0.001) and J segment usage (Fig 1f; Po0.05). In
unrelated pairs, the average estimated fold change in gene
segment usage varied from 1.5- to 2-fold for V segments and 1- to
1.5-fold for J segments, in contrast to only minor differences
(1- to 1.2-fold) in both V and J segments for MZ twins. The same
pattern was also observed in V and J repertoires for the TCR
alpha chain, despite a lower sequence count and a higher number
of genetically encoded V segments (Supplementary Fig. 1).
Together, these results indicate that the genetic differences
between unrelated individuals have a measureable effect on V
and J segment usage among naı̈ve B-cell receptor and TCRs,
leading to a unique individual receptor repertoire.

Heritable recombination bias is also found in memory cells.
Memory cells are derived from an individual’s naı̈ve B- and T-cell

pool, and it is conceivable that heritable biases in the naı̈ve
repertoire may affect the likelihood of clones with specific
recombinations becoming activated and transiting to the memory
compartment. The naı̈ve biases could therefore play a role in
the activated immune response, as some antigen-receptor gene
segments have been shown to associate with specific diseases19,20.
To test this, we examined the memory subsets of B and T cells
using the same procedure as described above (Fig. 2a). Again, we
found that the RDI value between V segment repertoires of
identical twins is significantly lower than for unrelated individuals
in B cells (Wilcoxon Po0.001), CD4þ T cells (Po0.001) and
CD8þ T cells (Po0.01), with average gene segment usage
between the most discordant donors varying around two- to
threefold. The same pattern was found when memory cells
were separated into IGHMþ and class-switched groups
(Supplementary Fig. 2), and smaller, but still significant changes
were observed for J segment repertoires in memory cells,
with around 1.2- to 1.5-fold differences in memory B-cell and
CD8þ T-cell repertoires of unrelated individuals (Supplementary
Fig. 3; Wilcoxon Po0.05). Notably, because segment usage
was quantified among clonal groups rather than by cell count,
bias resulting from clonal expansion of cells containing the
same combination of gene segments will only affect the
probability of recovering a specific clone, instead of artificially
inflating the total number of reads from the same clone.
Rather, these changes are primarily a reflection of the
probability that a single cell will be selected (and subsequently
expanded) from the naı̈ve repertoire, indicating that the content
of the naı̈ve repertoire exerts a strong influence on the memory
repertoire.
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Figure 1 | Gene usage in naı̈ve cells is affected by heritable factors. The relative proportions of recombined V and J genes were determined for naı̈ve B cells,

CD4þ T cells and CD8þ T cells using high-throughput sequencing. The percentage of sequences using the 42 IGHV genes were plotted against the 1:1 line

(dotted line) for a monozygotic twin pair (a) or for two unrelated individuals (b). Axes are arcsinh transformed. Hierarchical clustering analysis was performed

on the RDI dissimilarity structures of the naı̈ve B IGH (c) and naı̈ve T-cell (CD4þ and CD8þ combined) TCRb (d) V segment repertoires. V segment

repertoires (e) or J segment repertoires (f) of the IGH B-cell, TCRb CD4þ and TCRb CD8þ T-cell naı̈ve subsets were compared between each pair of donors,

and RDI dissimilarities were split into related (twin pair; blue) and unrelated (non-twin; green) comparison groups. Individual RDI distances (tick marks) and a

smoothed kernel density estimate (curved line) are shown for each group. Simulated data with controlled levels of variance (average fold change of V or J

genes¼ 1, 1.2, 1.5 or 2; indicated numbers) were included in each set of calculations (FC ladder) to estimate the relative difference between repertoires. The

significance of the difference between the two groups was assessed using the Wilcoxon Ranked Sum test (*Po0.05; **Po0.01; ***Po0.001).
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Because environmental factors and an individual’s history of
antigenic exposure can have a significant impact on the makeup
of the memory compartment, it is necessary to control for the
shared environment of the MZ twins. To account for this, we
compared the memory repertoires of CD4þ and CD8þ T cells,
which respond to antigens that are presented on different MHC
complexes, and are therefore not expected to share the same
environmental influences. If the genetic bias observed in the naı̈ve
repertoire are carried over into memory, there will still be a
measureable similarity between the memory CD4þ versus CD8þ

repertoires of MZ twins. Indeed, we found that twin pairs were
significantly more similar than non-twins (Wilcoxon Po0.001;
Fig. 2b). In addition, there was no significant difference in RDI
values between the Twin A-CD4þ versus Twin A-CD8þ (within
donor) and the Twin A-CD4þ versus Twin B-CD8þ (twin pair)
comparison, implying that the increased similarity between
the CD4þ and CD8þ repertoires is driven entirely by inherited
influences.

As memory cells are selected from the existing naı̈ve repertoire,
we hypothesize that the observed similarity is most likely a result
of highly expressed V gene segments being selected by chance
more often than rare V segments. Although the frequencies
of some V segments change significantly in both the B- and
T-cell memory repertoires (Fig. 2c and Supplementary Fig. 4; an
B1.5-fold change in gene usage on average), a comparison of the

two repertoires using RDI revealed that an individual’s memory
repertoire was equally similar to their twin’s naı̈ve repertoire as to
their own naı̈ve repertoire, and that the memory repertoire is
significantly less similar to the naı̈ve repertoires of unrelated
individuals (Fig. 2d). In particular, this means that the donors
with the highest expression of an individual V segment in the
naı̈ve compartment were generally still the highest in the memory
compartment. Together these data emphasize the far-reaching
downstream effects of heritable differences to the repertoire, and
show that differences in the naı̈ve cell compartments affect the
eventual makeup of the memory repertoire.

Heritable factors affect the CDR3 repertoire in B cells. In
addition to gene segment usage, receptor specificity is highly
dependent on the sequence of the CDR3 region. Factors that
affect this include the recombined D segment (for Ig-Heavy and
TCR-b chains) and the random additions between V-J or V-D
(N1) and D-J (N2) segments. To analyse heritable biases in the
CDR3, we selected a subset of sequences with high-quality CDR3
annotations, and calculated the RDI for D segment repertoires,
N1 and N2 lengths (length of N and P additions combined), and
junction lengths. We found significant heritable biases in D-gene
usage for both naı̈ve (Wilcoxon Po0.001) and memory B cells
(Po0.05; Fig. 3a), although differences in the memory cell
repertoires of identical twins tended to vary from 1.2- to 1.4-fold.
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T (CD4þ and CD8þ combined) repertoire was compared with the memory repertoires either within an individual (orange), with an individual’s identical

twin (blue) or with unrelated individuals (green). Significance for all comparisons was assessed using the Wilcoxon Ranked Sum test (*Po0.05;

***Po0.001).
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Direct comparison of naı̈ve and memory repertoires also revealed
significant differences between the memory repertoires either
within an individual or between twin pairs (Wilcoxon Po0.001;
Fig. 3b), showing that CDR3 sequence selection leads to an
approximately 1.2- to 1.5-fold increase in the variance of D
segment usage. However, this variance is still much smaller than
the difference between unrelated individuals (Po0.01), which
could vary by up to 1.7-fold, implying that heritable factors still
affect the CDR3 despite the obvious importance of antigen-driven
selection.

In addition to biases in D gene usage, we observed significant
heritable biases in junction length for Naı̈ve B-cell (Wilcoxon
Po0.01) and Naı̈ve T-cell (CD4 and CD8; Po0.001) repertoires
(Fig. 3c), but not in memory subsets (P40.05; Supplementary
Fig 5). The heritable biases in the naı̈ve compartment are most
likely due, at least in part, to the heritable differences in V, D and
J segment utilization. However, it is also possible that junction
lengths are subject to further bias because of differences in N1
and N2 length. Surprisingly, although we did not find any
heritable bias in N1 or N2 length for Naı̈ve B cells or in N1 length
for Naı̈ve T cells, there was a significant difference in RDI values
between twin-pair and non-twin comparisons for N2 length in

Naı̈ve T cells (Wilcoxon Po0.01; Fig. 3d), although the bias could
not be verified in memory cell subsets (Supplementary Fig. 5).

Given that the N2 bias was only observed in Naı̈ve T cells, we
sought to understand the mechanisms underlying this pattern.
The TCR-b locus only contains two D segments, and each
segment is associated with a defined family of J segments such
that each J will usually recombine with the same D. Given the
limited number of TCR-b J segments (13 in total), this limited
number of total D–J combinations means that biases inherent to
each individual combination could affect the total distribution of
N2 lengths. Indeed, when N2 lengths resulting from two different
J genes (TRBJ2-1 and TRBJ2–7) are compared, we found a
pronounced shift in the N2 length distribution (Fig. 3e), with
TRBJ2–1 preferring longer N2 additions than TRBJ2–7. Given
that this pattern appears to be associated with specific D–J
combinations, it is possible that the pattern exists for specific
V–D recombinations as well. Indeed, when reads containing
TRBD2 segments were considered, a thorough search of the V
segment repertoire revealed differences in N1 length distributions
for individual V segments (Fig. 3f, representative example). When
considered in combination with the D–J rearrangement, these
N1 and N2 biases additively determine the CDR3 length, with

Ju
nc

tio
n 

le
ng

th

**

1.
2

1

***

1.
2

1

0

0.5

1

1.5

2

2.5

R
D

I

Naive B Naive TNaive B Memory B
D

 g
en

es
***

1.
5

1.
2

1

*

1.
5

1.
2

1

0

0.5

1

1.5

2

2.5

R
D

I

Tw
in

 p
ai

r
N

on
-tw

in
FC

 la
dd

er

Tw
in

 p
ai

r
N

on
-tw

in
FC

 la
dd

er

Naive B Naive T

N
1 

le
ng

th

1.
5

1.
2

1

1.
2

1

0

0.5

1

1.5

R
D

I
N

2 
le

ng
th

1.
2

1

**

1.
2

1

0

0.5

1

1.5

R
D

I

Tw
in

 p
ai

r
N

on
-tw

in
FC

 la
dd

er

Tw
in

 p
ai

r
N

on
-tw

in
FC

 la
dd

er

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
D

I

1.
5

1.
2

1
**

***
*

Tw
in

 p
ai

r
N

on
-tw

in
FC

 la
dd

er

W
ith

in
 d

on
or

Nai
ve

 v
s 

na
ive

M
em

 v
s 

m
em

Naive vs memory

0 5 10 15 20

0 5 10 15 20

0
2
4
6
8

10
12

N2 Length

P
er

ce
nt

TRBJ2−1

TRBJ2−7

0
2
4
6
8

10
12

N1 length

P
er

ce
nt

TRBV20−1

TRBV29−1

5 10 15 20 25 30

0
5

10
15
20
25

Junction length (aa)

P
er

ce
nt

TRBV20−1 TRBJ2−1
TRBV20−1 TRBJ2−7
TRBV29−1 TRBJ2−1
TRBV29−1 TRBJ2−7

a

b

c

d

e

f

g

Figure 3 | Heritable bias in CDR3 region characteristics of naı̈ve and memory cell subsets. (a) D segment repertoires of the IGH B-cell naı̈ve and

memory subsets were compared between each pair of donors, and the RDI dissimilarities were split into related (twin pair; blue) and unrelated (non-twin;

green) comparison groups. Individual RDI distances (horizontal ticks) and a kernel density plot (curved line) are shown for each group. Simulated data with

controlled levels of variance (average fold change of V and J genes¼ 1, 1.2, 1.5 or 2; indicated numbers) were included in each set of calculations (FC ladder)

to estimate the relative difference between repertoires. (b) The IGH B-cell naı̈ve D gene repertoires were compared with either the naive repertoire of a

donor’s identical twin (blue) or the memory repertoires either within an individual (orange), with an individual’s identical twin (blue) or with unrelated

individuals (green). (c) The junction length distributions and (d) the N1 and N2 length of the IGH B cell or TCRb (CD4þ and CD8þ combined) naı̈ve

repertoires were compared between each pair of donors, and RDI dissimilarities were split into related (twin pair; blue) and unrelated (non-twin; green)

comparison groups. Significance for all comparisons was assessed using the Wilcoxon Ranked Sum test (*Po0.05; **Po0.01; ***Po0.001). The

distribution of N2 nucleotide lengths (e) in clones containing either TRBJ2–1 (orange) or TRBJ2–7 (blue), or N1 lengths (f) in clones containing both TRBD2

and either TRBV20–1 (orange) or TRBV29–1 (blue) was calculated for each donor, and the average percentages and 95% confidence interval across all ten

donors are shown. (g) The distribution of junction amino-acid lengths was calculated for all in-frame clones containing both TRBV20–1 and TRBJ2–1

(orange), TRBV20–1 and TRBJ2–7 (green), TRBV29–1 and TRBJ2–1 (yellow) or TRBV29–1 and TRBJ2–7 (blue), and the average percentage and 95%

confidence interval across all ten donors is shown.
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rearrangements that prefer shorter N1 and N2 additions resulting
in shorter junctions, and combinations of short and long
rearrangements resulting in more median length CDR3s
(Fig. 3g). Together with the biases in V and D segment usage,
this demonstrates that the CDR3 repertoire is subject to
significant heritable biases, resulting both from differences in
V(D)J sequences, and biases in N1, N2 and total junction length.

Heritable variation results from multiple mechanisms. There
are at least two potential mechanisms that might explain the
observed influence of genetics on gene segment usage. The first
possibility is that genetic differences in non-receptor genes are
affecting gene segment frequency during the negative and positive
selection processes. In this case, the different transcriptomes of
unrelated individuals would lead to different selective pressures
on the repertoire, and lead to biases in gene usage. The second
possibility is that polymorphisms within the Ig and TCR loci
affect the recombination machinery’s ability to target particular
gene segments. For example, mutations in or around an
individual V gene might result in it being targeted more or less
often by the recombinase machinery, leading to significant
changes in usage relative to the other genes in the locus.

A distinct example of differences in selective pressures can be
seen within an individual during the maturation process of
CD4þ and CD8þ T cells, where recombination occurs before
lineage determination. However, because these subsets bind
different MHC molecules, they will differ both in positive
selective pressures (ability to bind either MHC class I or
class II) and negative selective pressures (affinity for self-
peptides), both of which have been shown to alter the gene
segment composition of the repertoire9,21. A direct comparison of
the two naı̈ve repertoires revealed that gene segment usage varied
significantly more in this comparison than either CD4þ versus
CD4þ or CD8þ versus CD8þ , representing an average 1.4-fold
difference in gene segment usage resulting from thymic selection
(Fig. 4a). However, these differences are still much smaller than
the differences between an individual’s CD4þ repertoire and the
CD8þ repertoire of unrelated individuals, implying that selective
pressures alone cannot explain the observed difference between
individuals. Interestingly, when the two subsets were compared
either within the same individual or between MZ twins, no
significant difference between RDI values was observed, implying
that the recombination process is not influenced by external
factors such as health or previous environmental exposure.

To examine the influence of the recombination machinery on
B and T cells together, we considered only sequences containing
out-of-frame rearrangements in the CDR3 region. These
non-productive sequences are never translated into a functional
protein, and we may therefore assume they are not subject to
positive or negative selective pressure. Within the non-productive
repertoire, we again observed that the RDI values between twins
were significantly lower than between unrelated individuals,
confirming that the genetic bias in the recombination machinery
also affects Ig, TCR-a and TCR-b gene usage in the absence of
selection (Fig. 4b). Taken together, these results confirm that
biases in the recombination machinery due to genetic differences
are crucially important for determining the distribution of V and
J gene segment usage within an individual, and that at least TCR
repertoires (and most likely Ig repertoires as well) are subject to
additional selective biases based on both MHC affinity and
negative selective pressure.

Genomic differences between donors drive recombination bias.
To further elucidate the mechanisms driving the observed
recombination bias, we can use the allelic differences between an

individual’s two chromosomes as a model for more general dif-
ferences between donors. The Ig and TCR loci are expected to
have a large number of heterozygous polymorphisms, both within
genes and in non-coding regions, and the interaction between
these polymorphisms and the recombination machinery is likely
to lead to complex and unpredictable changes in the recombi-
nation process. These polymorphisms are most likely a driving
factor behind the observed heritable repertoire differences, but
due to the complex interactions that many single-nucleotide
polymorphisms can have, it is unlikely that any given single-
nucleotide polymorphism would have a strong effect on the usage
of a specific gene. To overcome this limitation, we sought to
examine the contribution of all the polymorphisms in the loci as a
whole by comparing the relative usage of a gene between the
two chromosomes. This was accomplished by using the allelic
information from gene segments at heterozygous loci to group
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Figure 4 | Gene usage variance is driven by the effect of heritable

features on recombination. (a) The TCRb CD4þ naı̈ve repertoire was

compared with TCRb CD8þ naı̈ve repertoires either within an individual

(orange), with an individual’s identical twin (blue) or with unrelated

individuals (green). (b) Non-productive sequences were isolated from the

IGH B cell, TCRa or TCRb T-cell repertoires, and the RDI distance was

calculated between identical twins (blue) or between unrelated individuals

(green). Individual RDI distances (horizontal ticks) and a smoothed kernel

density estimate (curved line) are shown for each group. Simulated data

with controlled levels of variance (average fold change of V and J genes¼ 1,

1.2, 1.5 or 2; indicated numbers) were included in each set of calculations

(FC ladder) to estimate the relative difference between repertoires.

Significance for all comparisons was assessed using the Wilcoxon

Ranked Sum test. (***Po0.001).
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sequences, with the different alleles assumed to originate from
separate chromosomes.

We used the TIgGER allele finder22 to determine the Ig V
segment genotypes of the donors, and heterozygous loci were
selected for additional analysis. When comparing the relative
frequencies of individual V segments in naı̈ve B cells, we found
significant variation in the usage of heterozygous alleles (Fig. 5a),
with up to eightfold increased expression in the major versus the
minor allele of the same gene. However, the allele ratios were
highly consistent between MZ twins (Fig. 5b; R2¼ 0.90),
confirming that the observed allelic biases are determined
primarily through heritable features.

Although the most likely source of this heritable bias is the set
of genetic differences between individual V alleles, specifically the
collection of mutations, insertions, deletions and duplications
differentiating these donors, it is also possible that the allele ratios
could be affected by an overall imbalance in the usage of the two
chromosomal loci. If such a chromosomal bias exists, it would
leave a characteristic pattern among the non-productively
rearranged sequences, where sequences from the active locus

will be more common compared with the productive repertoire.
This is due to the fact that cells with two non-productive
rearrangements are deleted from the repertoire, meaning that all
observed non-productive sequences would be from the first
rearrangement in a cell. In contrast, the pool of productive
sequences will also contain some fraction of sequences from the
second rearrangement, which will bring the ratio of major/minor
chromosome usage closer to 50:50 (Fig. 5c). As an example, if the
first rearrangement is on chromosome A 80% of the time, then
alleles from A should account for 80% of non-productive
sequences, whereas, on average, the major chromosome should
only account for 63% of the total reads (see the Methods for
details).

To investigate this hypothesis, we calculated the major/minor
allele ratios for the non-productive sequences for each gene/
donor, and compared them to the allele ratios calculated using the
combined productive and non-productive sequences for each
gene/donor (Fig. 5d). Overall, we found that the two ratios were
very similar (R2¼ 0.94), implying that chromosomal biases are
not a strong contributor to the allelic imbalance. However, this
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does not rule out a small imbalance in chromosomal usage. Using
a simple model of recombination23 (Fig. 5c and Methods), we
estimate the expected deviation of the non-productive and total
allele ratios under the null model of no chromosomal bias
(Fig. 5d; contours and 5e; red line), and find that the differences
in non-productive versus total allele ratios are significantly higher
than predicted by this model (Po0.001). Indeed, by optimizing
the model to fit the observed data, we predict that the major locus
is chosen B60% of the time (Fig. 5e; blue line). This effect is
small in comparison to the individual genetic effects observed for
some genes, but when combined with the genetic biases, a
difference in which chromosome is chosen to rearrange first
could potentially lead to swings in gene frequency as high as
1.5-fold, particularly in cases where a deletion or duplication of
V(D)J genes on one chromosome exists.

Discussion
V(D)J recombination is a complex process that allows the
immune system to create a diverse repertoire of receptors. In this
paper, we utilized the power of UMIs and NGS to investigate the
influence of heritable features on the lymphocyte receptor
repertoire. By leveraging the unique characteristics of B, CD4þ

T and CD8þ T lymphocyte subsets isolated from MZ twins, we
have confirmed and extended previous studies on the impact of
heritable factors on the recombination process, developed a
quantitative method of estimating those biases systematically, and
also revealed gene segment-associated biases in the N/P addition
process. We have also shown that biases in B-lymphocyte
compartments are further controlled by a chromosomal bias
causing one chromosome to be rearranged 1.5-fold more often
than the other.

The similarity in V, D and J gene usage between MZ twins is a
clear indication of the importance of heritable factors during the
recombination process. Although previous studies of identical
twins have revealed similar patterns in naı̈ve B and T cells7,9,24,
our results extend previous work by quantifying the extent of
heritable changes in gene usage in terms of fold change
differences, while also showing that heritable similarities are
present even in the memory subsets. The surprisingly high
correlation observed between naı̈ve and memory subsets indicates
that selection and environmental exposure have a consistent
effect on the human V and J gene repertoires. Interestingly, we
also observed that the naı̈ve repertoires of MZ twins are equally
similar to both their own and their twins’ memory repertoires,
suggesting that the naı̈ve repertoires of twins are functionally
interchangeable, and that aside from genetics and random noise,
there are no other factors affecting the naı̈ve repertoire that could
lead to systematic differences in an individual’s response to
infection. This aspect of repertoire diversity, which to our
knowledge has not been reported previously, highlights the
importance of genetic and epigenetic factors in ensuring diversity
in immune repertoires.

Although previous work has suggested that the correlation
between naı̈ve and memory gene usage could result from
predominantly random activation of naı̈ve cells11,12 (that is, the
V and J segments of a receptor has little effect on antigen-driven
selection), our results suggest that the choice of V(D)J segments
most likely has a direct impact on antigen specificity. In this
study, we saw a significant and consistent shift in the proportions
of many IgV segments after immune activation (see Fig. 2c for
details, for example, genes 1–69 and 3–23), showing that some V
gene segments are more ‘useful’ than others. These large shifts
demonstrate that V segments significantly influence antigen
specificity in B-cell receptors. However, this contribution may still
be secondary to the critical role of the CDR3 region25. Given that

a very large portion of the diversity in CDR3s result from both the
D segment and N/P additions6, the heritable biases observed in
both of these regions may have a significant impact on antigen-
driven selection. In addition, the influence of V–D and D–J
recombination on the N/P length distribution shows that
gene segment choice is important for reasons beyond simply
the differences in sequence between segments. Our results
demonstrate that the CDR3 is subject to significant amounts of
heritable bias, and the fact that some of these heritable biases can
still be seen in memory repertoires confirms the far-reaching
effects of genetics on the immune system.

Previous research has shown that the broad differences in gene
usage are determined by the structure of these loci, such as gene
copy number variation and proximity of V gene segments to the
D and J loci5. However, the similarity of twins’ CD4þ and CD8þ

repertoires, as well as the similarity of the non-productive B-cell
repertoires in twin-pairs, shows that these broadly defined
patterns can be altered within an individual to create a unique
repertoire. Some specific polymorphisms, such as the MHC-I and
II genotypes, have well-characterized effects on gene usage3,4,
whereas other differences can be explained by larger changes,
such as gene duplications or deletions. However, smaller genetic
differences between individual gene segments are likely to have
significant effects on their total expression. When heterozygous
alleles are compared within an individual, we find large
differences in the expression of a number of V gene segments.
Some of the observed changes are likely the result of
duplications of the major allele, but it is likely that the
large number of polymorphisms in the Ig and TCR loci would
together have a significant effect on the usage of individual gene
segments.

Differences in epigenetic modifications can also contribute to
the heritable recombination bias. Previous studies have shown
that chromatin remodelling and transcription of the Ig and
TCR loci is important for successful recombination and allelic
exclusion of the unused gene rearrangement26–28. Epigenetic
modification may also be an important factor in determining the
order of rearrangement for the two chromosomes, as unequal
methylation levels at the onset of recombination could delay the
rearrangement of the methylated chromosome29. In this paper,
we observed an increase in variance when comparing
chromosomal usage ratios in productive versus non-productive
sequences, consistent with a model where one chromosome is
preferentially rearranged 1.5-fold more often (on average). We
hypothesize that this preferential rearrangement is likely the
result of epigenetic modification of the minor chromosome,
leading to an inhibition of recombination and an increased
probability that the major chromosome recombines first.
Although the effect on individual gene segments can be
considered small compared with the genetic bias, the
cumulative effect on the repertoire could be significant. These
results suggest that any model of recombination, which could be
very useful in testing hypotheses about the formation of the
repertoire30, should account for the effects of epigenetics and
chromosomal bias.

More work is required to elucidate exactly what effects
epigenetic biases have on the repertoire. Studies of the repertoires
in mother–children pairs, such as those performed by Putintseva
et al.31, would be particularly interesting in this context. Future
work can also focus on the mechanisms underlying the
chromosomal bias, specifically how epigenetic modification
could lead to a recombination bias, and whether these
epigenetic mechanisms are put in place upon fertilization or
in utero.

In summary, by using a combination of molecular barcoding
and a novel bioinformatics pipeline, we have analysed hundreds
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of thousands of single clones in tandem, enabling us to compare
the V and J gene segment frequency and CDR3 sequence
contributions in multiple cell populations simultaneously. These
results clearly show the impact of heritable factors on the immune
system, and demonstrate for the first time that chromosomal bias
leads to unequal representation of individual V alleles within the
repertoire.

Methods
Sample collection. Peripheral blood mononuclear cells (PBMCs) from peripheral
blood were collected from five pairs of adult MZ twins (ten total samples). Written
informed consent was obtained from all subjects who then participated in studies
of licensed seasonal influenza vaccines under the Institutional Review Board
approval at the Stanford University School of Medicine. The donors were all
nominally healthy at sample collection, and their ages ranged from 22 to 27 years.
The cells were first analysed via FACS, sorted into RNAprotect (Qiagen) solution,
and stored at � 80 �C. RNA was purified using RNAeasy Plus Mini kit (Qiagen).

Naı̈ve B cells were defined by the expression of CD20 (BD Biosciences, Cat#
563126, RRID:AB_2313579) and the absence of CD27 (BD Biosciences, Cat#
563092, RRID:AB_2313577), and were further filtered after sequencing to contain
only reads with IGHM or IGHD constant region isotypes. Memory B cells were
defined by the expression of CD20 and CD27. Naı̈ve CD4þ T cells were defined by
the expression of CD4 (BD Biosciences, Cat# 562281, RRID:AB_11154597), the
absence of CD8 (BD Biosciences, Cat# 557760, RRID:AB_396865) and CD45RO
(BD Biosciences, Cat# 555493, RRID:AB_395884). Naı̈ve CD8þ T cells were
defined by the expression of CD8 and the absence of CD4 and CD45RO. Central
memory T cells were differentiated from naı̈ve cells by the expression of CD45RO
and CCR7 (BD Biosciences, Cat# 557648, RRID:AB_396765).

Purified RNA was then reverse transcribed using SMARTScribe Reverse
Transcriptase (Clontech) with self-designed oligos (isoC-50-GTCAGATGTGTATA
AGAGACAGnnnnnnnnnnCGATAGrGrGrG-30-C3_Spacer and for the Poly A tail
50-GTGTCACGTACAGAGTCATCtttttttttttttttttttttttttttttt-30 VN). The C3 Spacer
at the 30End of the oligo for the RT reaction inhibits an oligo founded extension by
Polymerases in the RT reaction as well as in the following amplification cycle.
Obtained ss cDNA was purified with AmpureXP beads (Beckman Coulter). The
first amplification of the total transcriptome was obtained using Advantage 2
Polymerase (Clontech) and the self-designed oligos (N501 50C3-Spacer- 50-AATG
ATACGGCGACCACCGAGATCTACACTAGATCGCTCGTCGGCAGCGTCAG
ATGTGTATAAGAGACAG-30 and reverse oligo 5’C3-Spacer-50-AGGAGTCGTG
TCACGTACAGAGTCATC-30 ; see Supplementary Table 1 for additional MIDs
oligos) in order to add the Illumina Nextera Multiplex Identifier (MID) P5 Adapter
sequences. Enrichment for the receptor-specific sequences was performed with Q5
Hot Start Master Mix from New England Biotechnology and the oligo 50-AATG
ATACGGCGACCACCGAGATCTAC-30 as well as constant region-specific oligos
(Supplementary Table 2). Adding the Nextera P7 MID sequences was performed in
the final PCR using the same polymerase with the oligos 50-(AATGATACGGC
GACCACCGA-30 and reverse oligo with different MIDs 50-CAAGCAGAAGAC
GGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGG-30; Supplementary
Table 3).

Sequencing. PCR purification was performed after each round of amplification
using SPRIselect beads (Beckman Coulter). Illumina MiSeq sequencing services
with the V3 (2� 300 base) kit were performed by the Stanford Center for
Genomics and Personalized Medicine. All data are deposited in ImmPort with
accession id SDY675, and in the NCBI Sequence Read Archive under accession
number SRP065626.

Sequence processing. The Illumina NGS raw reads were processed using a multi-
step pipeline. The pre-processing of the sequencing data was done using the
VDJPipe NGS processing software (https://vdjserver.org/software, manuscript in
preparation). Briefly, sample IDs were extracted from the external identifier
(P5 and P7), UMIs were extracted from the first 10 bases of read 1, and the receptor
constant region was identified by alignment with a reference library to identify the
isotype of the receptors. Together, the sample index, UMI and constant region
primer were used to assign a barcode group for each read. Reads where constant
region gene or index could not be successfully matched with the original library
were discarded. After assignment to a UMI group, reads in the same group were
further subdivided using the ‘usearch’ sequence clustering algorithm (v7.0.1090)
(ref. 32) to account for randomly overlapping UMIs. The final barcodes were
defined based on clusters of sequences that shared at least 75% identity in positions
100–200 of read 2. The resulting individual barcode groups are each assumed to
represent multiple reads from a single mRNA molecule.

Additional processing was performed using the pRESTO toolkit33. Low-quality
reads (average Phred quality score Qo20) were discarded. Reads within a UMI
group were aligned, and a consensus sequence for each UMI group was generated
(minimum total quality for unambiguous base assignment was set to 30; groups
containing large numbers of reads were randomly subsampled to 2,000 reads
before alignment). After building a consensus sequence, paired-ends were

assembled using pRESTO’s sequence aligner, and pairs where no significant
overlap could be found were joined end-to-end. Finally, a second filtering step was
performed to remove consensus reads with total length o310 bases or average
Phred quality score o30.

For each processed sequence, V, D and J genes and alleles, locations of
complementarity determining regions (CDRs) and the location, length and
nucleotide sequence of the junctions were identified using the IMGT/HighV-
QUEST online tool34 (version 1.3.1). Sequences were further filtered based on the
quality of the V gene alignment, with a V gene score cutoff of 4900 used to
remove low-confidence alignments. For comparison, we also processed our data
using the VDJServer analysis pipeline (https://vdjserver.org). VDJServer performs
raw read processing and repertoire characterization, and relies on a local
installation of IgBLAST35 for making gene assignments.

Determination of clonality. To mitigate the effects of clonal expansion on the
memory repertoires of B and T cells (and to re-combine reads that were incorrectly
separated into distinct molecules during the sequence processing step), sequences
were grouped by clonality using Change-O36, and each clone was only counted
once in all future analyses. Sequences from an individual donor were first grouped
by V gene, J gene and CDR3 length. For T cells, sequences with similarity less than
or equal to 1 nucleotide (nt) mutation (to account for amplification or sequencing
error) in their CDR3 regions were considered clonally related, and were grouped
into a clonal group. For B cells, where somatic hypermutation must be accounted
for, sequences differing from one another by a weighted distance of less than 0.15
within the junction region were defined as clones. Distance was measured as the
number of point mutations weighted by a symmetric version of the nucleotide
substitution probability as previously described37. A distance of 0.15 corresponds
to 15 transition mutations per 100 nt, or B5 per 100 nt of the least likely
mutations.

Analysis of repertoire dissimilarity. Each processed sequence was linked with a
number of phenotypic characteristics, including: donor, cell type, constant region
isotype, sequencing run, V, D and J genes and alleles, and junction sequence/
length. For the purposes of this paper, we will use the term repertoire to refer to
any collection of sequences that share some set of these properties (for example,
naı̈ve B cells from a single donor, or TCRb chain sequences from either memory
CD4þ or CD8þ T cells). A complete table of gene segment counts for each sample
is included in Supplementary Data set 2. Because each clone represents a unique
rearrangement, the fraction of reads containing a specific V or J gene segment can
be used as an estimate of the underlying likelihood of generating that specific gene
rearrangement.

There are a number of challenges associated with comparing these gene
frequencies directly. First, the high variance in prevalence of different V, D and J
gene segments can often result in orders of magnitude differences in frequencies. In
addition, variability in sequencing depth can result in higher variance in repertoires
containing small numbers of sequences. To account for these challenges, and to
make meaningful comparisons between repertoires, we use a multi-step process to
define a RDI. This process consists of five steps:

Step 1: Subsample the repertoire. When comparing two distinct repertoires, the
larger of the two is randomly subsampled to have the same number of clones as the
smaller repertoire. When multiple repertoires are being compared simultaneously,
all repertoires are subsampled to the size of the smallest repertoire.

Step 2: Count occurrence of each gene segment. Clones within each repertoire are
binned by gene segment (V, D or J), and the number of clones for each segment is
counted.

Step 3: Normalize and transform counts. To improve the consistency of the RDI
metric, the total number of clones in each repertoire was normalized to an arbitrary
constant (n¼ 500). The counts were then transformed using the ArcSinh function,
which is approximately linear for values around zero and logarithmic for values
greater than 1.

Step 4: Calculate the RMS deviation of repertoire counts. Pairwise comparisons of
all repertoires are made, and the root-mean-square (RMS) deviation (Euclidean
distance) between each pair of repertoires is calculated.

Step 5: Repeat steps 1–4 and average. The subsampling process is repeated 100
times, and the RMS values from all repeats are averaged together to create the final
RDI value.

One drawback to using counts to estimate true frequency is that the error
associated with our estimate will be negatively correlated with the size of the
repertoire. Larger repertoires will more closely estimate the underlying gene
frequencies, and the distance between two repertoires will decrease towards the
true value as their sizes increase. By subsampling all repertoires to the same size, we
account for this size dependence, thus enabling direct comparison of RDI values
regardless of the actual repertoire size. However, this also results in a loss of power
when subsampling larger repertoires. Thus, rather than choosing to subsample
down to a set size for all comparisons, we choose a repertoire size based only on the
repertoires being compared in each individual figure. The result is that the RDI
values calculated for the exact same comparison may increase as the subsampled
repertoire size decreases, and RDIs in different figures may not be directly
comparable to each other.
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Calculation of fold change ladder. To provide a standard reference for each RDI
calculation, we used a simulation approach to create data sets with fixed levels of
variation. A baseline recombination probability vector, Pbase, was generated for
immunoglobulin heavy (IgH) T-cell receptor alpha (TRA) and T-cell receptor beta
(TRB) repertoires separately by calculating the total frequency of each gene in all
donors and cell types. From these baseline vectors, random variation was added
using a normally distributed perturbation vector, N, such that:

Pf ¼ 2 log2 Pbaseð ÞþNð Þ; where N � Norm 0; sð Þ

The perturbation vector, N, represents the log-fold change difference between two
data sets, and the absolute value of N will reflect a folded normal distribution, with
mean m¼s�

ffiffiffiffiffiffiffiffi
2=p

p
. To generate a data set with a predetermined absolute fold

change (f), the standard deviation of the normal distribution (s) was determined
using the following formula:

s ¼ log2 fð Þffiffiffiffiffiffiffiffi
2=p

p

The resulting vector was used to create a simulated data set where the expression of
each gene segment is on average f-fold higher or lower when compared with
baseline.

For each set of RDI calculations, sets of simulated sequences of the same size as
the real data were generated by randomly choosing gene segments based on the
probability vector P. For the baseline vector, 200 distinct sets of sequences were
drawn, and an additional 100 sequence sets were drawn from individually
calculated PFC vectors at each fold change points (f¼ 1, 1.25, 1.5 and so on).
For each simulated data set, the dissimilarity from the baseline sequence sets were
calculated, and the set of RDI values was used to create a distribution. The resulting
set of RDI distributions, starting from the baseline (f¼ 1), are plotted alongside the
calculated RDI values, and can be used to estimate the true fold change between
two sets of sequences.

Comparison of RDI values. All statistical comparisons between RDI values were
performed using the Wilcoxon signed-rank test. RDI values were grouped into
within-donor, twin-pair or non-twin groups based on the relation of the two
repertoires being compared. All pairwise comparisons between unrelated donors
were included in the non-twin group.

Analysis of CDR3 region characteristics. The IMGT platform was used to
determine CDR3 characteristics for each clone, including the junction nucleotide
length, the total number of random ‘N’ and palindromic ‘P’ nucleotide additions
between V–J or V–D (N1) and D–J (N2) gene segments, and the D segment
germline sequence. N and P nucleotide additions were combined into a single ‘NP’
length in order to improve confidence in the length estimation. Before calculating
RDI values on CDR3 regions, additional quality control steps were performed to
ensure the reliability of the CDR3 statistics. Clonal groups were considered ‘high
quality’ if they met the following criteria: (i) N1 and N2 length were less than
20 nucleotides. (ii) Total junction length was less than 100 nucleotides but greater
than 5 nucleotides. (iii) Less than 20% of the junction contained ambiguous
nucleotide calls (Ns). (iv) The majority of the reads in a clone contained the same
N1 and N2 length assignment. (v) The majority of reads in a clone contained the
same unambiguous D segment call (IGH clones only).

Comparison of D gene repertoires was then performed as described above. For
N1, N2 and junction length comparisons, clones were binned according to the
length, and the RDI procedure was performed as if each length was a separate gene
segment.

Analysis of non-productive rearrangements. To distinguish the effects of the
recombination machinery from selection, a set of non-productive rearrangements
were selected from the total repertoire. Sequences were defined as non-productive
if they contained out of frame junctions as defined by IMGT. Other potential
causes of non-productive sequences such as stop codons or mutated invariant
regions were not considered, as these can result from somatic hypermutation
and would therefore be susceptible to selective pressures. As a result, the reads
considered to be non-productive will only be a subset of the actual non-productive
set, and the remaining sequences should not be considered to be the ‘productive’
set. Rather, for future analyses, we chose to compare non-productive sequences
with the total set of reads (that is, non-productiveþ productive).

Analysis of allelic differences. Subject-specific genotypes, including alleles not in
the IMGT database, were found using the TIgGER allele finder22. Briefly, novel
IGHV alleles were identified based on analyses of mutation patterns in IGHV
sequences by comparing each sequence to that of the germline allele assigned by
IMGT/HighV-QUEST. Sequences that aligned better to novel germline alleles were
then reassigned from their initial IMGT/HighV-QUEST assignments, and sequences
that perfectly matched a germline allele (novel or known) were determined. Among
these sequences, frequencies of allele assignments were calculated for each gene, and
the minimum number of alleles required to explain seven out of eight of the observed
sequences was determined. These alleles were considered to constitute an individual’s

genotype. Allele assignments were then re-calculated by alignment with germline
sequences from only the individual’s genotype.

Following genotype determination, V genes with heterozygous alleles were
considered for further analysis. The number of reads containing each allele was
counted in both the non-productive sequences and in all sequences, and the ratios
of matched heterozygous alleles were calculated for each subject. For consistency
across donors, the ratio was calculated by setting the numerator to the first allele
numerically (that is, IGHV1–69*01/IGHV1–69*02), and the correlation between
ratios was measured using the Pearson metric.

Modelling recombination. To estimate the expected variance between
non-productive and productive allele ratios, we created a simple model of
recombination (see Fig. 5c for details). The model can be broken up into five steps:
(i) Select a chromosome for first rearrangement. (ii) Select V gene. (iii) Determine
if rearrangement is productive. (iv) If not productive, repeat steps ii and iii for
second chromosome. (v) If neither recombination is productive, delete cell.

Each step is parameterized by a set of probabilities: CA for the probability of
picking chromosome A, GXA for the probability of picking gene X on chromosome
A and D for the probability of a productive rearrangement. For the sake of
simplicity, the parameters are assumed to be independent; that is, the probability of
a productive rearrangement was not dependent upon the gene or chromosome
being rearranged.

Given this model, the probability of observing a specific productive
rearrangement is:

P P X;Ajð Þ ¼ GXA� DCA þD 1�Dð Þ 1�CAð Þð Þ ð1Þ
And the probability of observing a non-productive rearrangement is:

P NP X;Ajð Þ ¼ GXA�CA 1�Dð Þ ð2Þ
Incidentally, because our data set contains two groups—‘non-productive’ and ‘all
clones’—we do not consider the productive probability alone, and thus we define
the probability of any read as the sum of the two probabilities:

P All X;Ajð Þ ¼ P P X;Ajð ÞþP NP X;Ajð Þ ð3Þ
Rather than working with these probabilities directly, it is more useful to consider
them as a set of ratios, which will be equivalent to the expected major/minor
sequence count ratios for a set of heterozygous alleles:

R All Xjð Þ ¼ P All Xj ;A ¼ 1ð Þ
P All Xj ;A ¼ 2ð Þ ð4Þ

To reduce the number of parameters, the probabilities used to define the function
can also be redefined as ratios, resulting in the following simplified set of equations:

R P Xjð Þ ¼ RX�
1þRC �D

1þRC �RCD
ð5Þ

R NP Xjð Þ ¼ RX�RC ð6Þ

R All Xjð Þ ¼ RX�
1þ 2RC �D 1þRCð Þ
2þRC �D 1þRCð Þ ð7Þ

where RX¼GX1=GX2 and RC¼CA= 1�CAð Þ. Note that when RC¼ 1 (that is, there is
no chromosomal bias), the second term of the equation drops out, and the expected
value of all three ratios is equal to RX (that is, the relative likelihood of choosing
gene X on chromosome A versus gene X on chromosome B). However, as RC

increases, the ratios will diverge, with R(NP) increasing at a faster rate than R(P) or
R(All). The difference in these ratios can therefore be used to estimate the effect of
chromosomal bias.

Estimating noise. Although equations 5–7 can be used to calculate the expected
ratios for a particular gene, the observed ratios will also be affected by noise because
of sampling of the repertoire. For a single gene X, the total number of reads that
come from the primary allele (X1) can be modelled using a binomial distribution:

X1 � Binom N; Pð Þ ð8Þ
where N is the total number of reads observed for gene X, and P is the probability
of observing the major allele, given by:

P ¼ R Xð Þ
1þR Xð Þ ð9Þ

with R(X) being the ratio defined from one of the equations 5–7. The resulting
allele ratio for the gene X is then:

R X1ð Þ ¼
X1

N �X1
ð10Þ

To estimate the noise in our data set assuming the null model of no chromosomal
bias, we set RC¼ 1 and randomly sample from the binomial distribution using a
range of read counts and RX values. The read counts used are drawn from the
actual read counts of heterozygous alleles in the data set, and the distribution is
sampled twice for each RX value; once with N¼ total number of reads, and again
with N¼ number of non-productive reads. These two ratios can then be directly
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compared to estimate the expected variance between the non-productive and total
read group.

To calculate a P-value for the observed difference between a total ratio and a
non-productive ratio in a single allele, a total of 250,000 ratios were randomly
generated for both the total read count and the non-productive read count, using
RX values ranging from 0.2 to 5, and the absolute log difference between the two
ratios was calculated (because the allele ratios will be linearly correlated with the RX

values in both sequence sets, the RX values should not affect the final distribution).
The ratio differences were used to create a sample distribution, and the P-value was
calculated as the total number of repetitions that were greater than the observed
ratio. An overall P-value was then calculated by combining together the P-values of
the individual alleles using Fisher’s method.

Estimating chromosomal bias parameter. To estimate the true value of the
chromosomal bias parameter, a modified gradient descent algorithm was used. The
genetic parameter, RX, was optimized for each allele individually, whereas the
chromosomal bias parameter, RC, was assumed to be constant across all alleles.
Because we do not know which of the two alleles is on the major chromosome, we
consider both RC and 1/RC, and define the error as the smallest difference between
the observed ratio and the model prediction using either parameter.
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