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Strongly frustrated triangular spin lattice emerging
from triplet dimer formation in honeycomb Li2IrO3
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Ioannis Rousochatzakis1,3 & Jeroen van den Brink1,5

Iridium oxides with a honeycomb lattice have been identified as platforms for the much

anticipated Kitaev topological spin liquid: the spin-orbit entangled states of Ir4þ in principle

generate precisely the required type of anisotropic exchange. However, other magnetic

couplings can drive the system away from the spin-liquid phase. With this in mind, here we

disentangle the different magnetic interactions in Li2IrO3, a honeycomb iridate with two

crystallographically inequivalent sets of adjacent Ir sites. Our ab initio many-body calculations

show that, while both Heisenberg and Kitaev nearest-neighbour couplings are present, on one

set of Ir–Ir bonds the former dominates, resulting in the formation of spin-triplet dimers. The

triplet dimers frame a strongly frustrated triangular lattice and by exact cluster

diagonalization we show that they remain protected in a wide region of the phase diagram.
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A
s early as in the 1970s it was suggested that quantum spins
in a solid can, instead of ordering in a certain pattern,
form a fluid type of ground state—a quantum spin

liquid1,2. Theory predicts a remarkable set of collective
phenomena to occur in spin liquids3. In the honeycomb lattice
Kitaev spin model4, for instance, a spin-liquid state that has
different topological phases with elementary excitations
displaying Majorana statistics has been anticipated. This has
been argued to be relevant for applications in topological
quantum computing5–9.

The essential feature of the Kitaev model is that there is a
different type of spin coupling for each of the three magnetic
bonds originating from a given S¼ 1/2 spin site, KSxi S

x
j , KS

y
i S

y
k and

KSzi S
z
l , where j, k and l are S¼ 1/2 nearest neighbours (NN’s) of

the reference site i and K is the Kitaev coupling strength.
However, finding materials in which the Kitaev spin model and
the spin-liquid ground state are realized has proven to be very
challenging3. In this respect the strongly spin-orbit coupled
honeycomb iridates have recently been brought to the fore10,11.
These compounds have the chemical formula A2IrO3, with
A¼Na or Li, and contain Ir4þ ions in the centre of oxygen
octahedra that form a planar hexagonal network. Each Ir4þ ion
has five electrons in the 5d shell which the crystal field splits into
a t2g and an eg manifold. Since the crystal field splitting is large,
the lowest-energy electron configuration is t52g . This is equivalent
to the t2g shell containing a single hole with spin S¼ 1/2.
However, the t52g state additionally bears a finite effective angular
moment Leff¼ 1. The strong spin-orbit coupling for 5d electrons
therefore splits up the t52g manifold into an effective total angular
momentum J ¼ Leff þ Sj j ¼ 3=2 quartet and a J ¼ Leff � Sj j ¼
1=2 doublet. As for the hole the latter is lowest in energy,
an effective spin J ¼ 1=2 doublet (often referred to as a
pseudospin ~S) defines to first approximation the local ground
state of the Ir4þ ion.

Whereas the formation of such a local J ¼ 1=2 doublet is well-
known for Ir4þ ions inside an undistorted oxygen octahedron12,
the remarkable insight of refs 10,11 is that when two such
octahedra share an edge, the magnetic superexchange interactions
between the J ¼ 1=2 sites are in principle precisely of Kitaev
type. This observation has made the A2IrO3 honeycomb iridates
prime candidate materials in the search for Kitaev spin-liquid
ground states.

Experimentally, however, both Na2IrO3 and Li2IrO3 have been
found to order magnetically below 15K (refs 13,14).
While inelastic neutron scattering15, X-ray diffraction16 and
resonant inelastic X-ray scattering experiments17 indicate an
antiferromagnetic (AF) zigzag ordering pattern in Na2IrO3, the
nature of the magnetic order of Li2IrO3 is to date unknown13,14.
The questions that arise are therefore, (i) which magnetic
instability preempts the formation of the spin-liquid state, and
how close does the system remains to that state.

To answer these fundamental questions it is essential to
quantify the relative strengths of the NN magnetic interactions in
Li2IrO3, which are already known to be not only of Kitaev, but
also of Heisenberg type. The observed zigzag order in its
counterpart system Na2IrO3 has indeed been rationalized on
the basis of ferromagnetic (FM) Heisenberg J and AF Kitaev K
couplings18–20, but also interpreted in terms of an AF J and FM K
(refs 13,15,21,22). Recent ab initio many-body calculations favour
the latter scenario, with a relatively large FM Kitaev exchange and
significantly weaker AF NN Heisenberg interactions in this
material23. This scenario is also supported by investigations of
model Hamiltonians derived by downfolding schemes based on
density functional theory calculations24. Besides the NN terms,
strongly frustrating longer range exchange couplings involving
the second (J2) and third (J3) iridium coordination shells were

also shown to be relevant13,15,20, resulting in very rich magnetic
phase diagrams13,23,25.

On the basis of the similarity in crystal structure, one might
naively expect that the magnetic interactions in A¼ Li are similar
to the ones in A¼Na. Here we show that this is not at all the
case. The strengths of the NN interactions J and K turn out to
crucially depend on the Ir–O–Ir bond angles and distances.
Employing ab initio wave-function quantum chemistry methods,
we find in particular that in contrast to Na2IrO3 (ref. 23) the
Heisenberg coupling J in Li2IrO3 even has opposite signs for the
two crystallographically inequivalent sets of adjacent Ir sites. This
behaviour follows a general trend of J and K as functions of bond
angles and interatomic distances that we have established through
a larger, additional set of quantum chemistry calculations. The
latter show that the NN Heisenberg J has a parabolic dependence
on the Ir–O–Ir bond angle and at around 98� changes sign. This
explains why in Na2IrO3, with Ir–O–Ir angles in the range of
98–100� (ref. 15), all J0s are positive, while in Li2IrO3, which has
significantly smaller bond angles B95�(ref. 26), the FM
component to the NN Heisenberg exchange is much stronger.
The large FM coupling J ’ � 19meV on one set of Ir–Ir links in
Li2IrO3 gives rise to an effective picture of triplet dimers
composing a triangular lattice. To determine the magnetic phase
diagram as a function of the strength of the second and third
neighbour exchange interactions (J2 and J3) we use for this
effective triplet-dimer model a semiclassical approach, which we
further confront to the magnetic phase diagram for the original
honeycomb Hamiltonian calculated by exact cluster diagonaliza-
tion. This comparison shows that indeed the triplet dimers act as
rigid objects in a wide range of the J2–J3 parameter space. We
localize Li2IrO3 in a parameter range where the phase diagram
has incommensurate magnetic order, the nature of which goes
beyond the standard flat helix modulation scenario, owing to the
Kitaev exchange anisotropy.

Results
Heisenberg–Kitaev Hamiltonian. The experimental data
reported in ref. 26 indicate C2h point-group symmetry for one set
of NN IrO6 octahedra, denoted as B1 in Fig. 1, and slight
distortions of the Ir2O2 plaquettes that lower the symmetry to Ci

for the other type of adjacent octahedra, labelled B2 and B3.
The most general, symmetry allowed form of the effective spin
Hamiltonian for a pair of NN Ir d5 sites, as discussed in Methods
and Supplementary Note 1, is then

H ijh i2b ¼ Jb~Si � ~Sj þKb~S
zb
i
~Szbj þ

X
aob

Gb
ab

~Sai ~S
b
j þ~Sbi ~S

a
j

� �
: ð1Þ

The b index refers to the type of Ir–Ir link (bA{B1,B2,B3}).
Whereas the Hamiltonians H ijh i on the Ir–Ir links B2 and B3 are
related by symmetry, the bond B1 is distinct from a symmetry
point of view. Further, ~Si and ~Sj denote pseudospin-1/2 operators,
Jb is the isotropic Heisenberg interaction and Kb the Kitaev
coupling. The latter plus the off-diagonal coefficients Gb

ab define
the symmetric anisotropic exchange tensor. It is shown below that
these Gb

ab elements are not at all negligible, as assumed in the
plain Kitaev–Heisenberg Hamiltonian.

In equation (1), a and b stand for components in the
local, Kitaev bond reference frame {xb, yb, zb}10. The zb axis
is perpendicular to the Ir2O2 plaquette (Methods section,
Supplementary Note 2 and Supplementary Fig. 1).
In the following, we denote JB1¼ J, JB2¼ JB3¼ J0, KB1¼K,
KB2¼KB3¼K0 and similarly for the Gb

ab elements.

NN exchange interactions. To make reliable predictions for the
signs and strengths of the exchange coupling parameters we rely

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10273

2 NATURE COMMUNICATIONS | 7:10273 | DOI: 10.1038/ncomms10273 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


on many-body quantum chemistry machinery, in particular,
multireference configuration interaction (MRCI) computations27

on properly embedded clusters. Multiconfiguration reference
wave functions were first generated by complete active space
self-consistent field (CASSCF) calculations. For two NN IrO6

octahedra, the finite set of Slater determinants was defined in the
CASSCF treatment in terms of ten electrons and six (Ir t2g)
orbitals. The self-consistent field optimization was carried out for
an average of the lowest nine singlet and nine triplet states
associated with this manifold. All these states entered the spin-
orbit calculations, both at the CASSCF and MRCI levels. On top
of the CASSCF reference, the MRCI expansion additionally
includes single and double excitations from the Ir t2g shells and
the 2p orbitals of the bridging ligands. Results in good agreement
with the experimental data were recently obtained with this
computational approach for related 5d5 iridates displaying
corner-sharing IrO6 octahedra28–30.

Relative energies for the four low-lying states describing the
magnetic spectrum of two NN octahedra and the resulting
effective coupling constants are provided in Table 1. To derive the
latter, we map the quantum chemically computed eigenvalues
listed in the table to the eigenvalues of the effective magnetic
Hamiltonian in equation (1). For the effective picture of ~S ¼ 1=2
pseudospins assumed in equation (1), the set of four eigen-
functions contains the singlet Fb

S ¼ "# � #"ð Þ=
ffiffiffi
2

p
and the

triplet components Fb
1 ¼ "# þ #"ð Þ=

ffiffiffi
2

p
, Fb

2 ¼ "" þ ##ð Þ=
ffiffiffi
2

p
,

Fb
3 ¼ "" � ##ð Þ=

ffiffiffi
2

p
. In C2h symmetry, the ‘full’ spin-orbit wave

functions associated to Fb
S, F

b
1, F

b
2 and Fb

3 transform according to
the Ag, Bu, Bu and Au irreducible representations, respectively.

Since two of the triplet terms may interact, the most compact
way to express the eigenstates of the effective Hamiltonian in
equation (1) is then Cb

1 ¼ Fb
1cosab þ iFb

2sinab, C
b
2 ¼ iFb

1sinab
þFb

2cosab, C
b
3 ¼ Fb

3 and Cb
S ¼ Fb

S. The angle ab parametrizes
the amount of Fb

1 �Fb
2 mixing, related to finite off-diagonal Gb

ab
couplings. This degree of admixture is determined by analysis of
the full quantum chemistry spin-orbit wave functions. The
effective parameters provided in Table 1 are obtained for each
type of Ir–Ir link by using the Eb

1, E
b
2, E

b
3, E

b
S MRCI relative

energies and the Fb
1 �Fb

2 mixing coefficients (see Methods and
Supplementary Note 1). For a comparison of the effective
parameters derived from CASSCF and MRCI relative energies,
see Supplementary Tables 1 and 2.

For the B1 links in Li2IrO3 (Li213) we find that both J and K
are FM, in contrast to Na2IrO3 (Na213) where J is AF for all pairs
of Ir NN’s23. Insights into this difference between the Li and Na
iridates are provided by the curves plotted in Fig. 2, displaying the
dependence of the NN J on the amount of trigonal distortion for
simplified structural models of both Li213 and Na213. The
trigonal compression of the O octahedra translates into Ir–O–Ir
bond angles 490�. Additional distortions giving rise to unequal
Ir–O bond lengths, see the footnotes in Table 1, were not
considered in these idealized lattice configurations. Interestingly,
we find that for 90� bond angle—the case for which most of the
superexchange models are constructed10,11,18,22—both J and K
are very small, t1 meV.

In Fig. 2, while |K| monotonously increases with the Ir–O–Ir
bond angle, J displays a parabolic behaviour and with a minimum
at B94�. Indeed on the basis of simplified superexchange models
one expects J to be minimal at around a bond angle close to 90�.
However, from superexchange models it is at the same time
expected that K is substantial for such bond angles. The difference
between the ab initio results for 90� Ir–O–Ir angles and the
predictions of simplified superexchange models originates from
assuming in the latter perfectly degenerate Ir 5d and O 2p orbitals
and from the subsequent cancellation of particular intersite d–p–d
exchange paths. The quantum chemistry calculations show that
the Ir 5d levels are not degenerate (nor the O 2p functions at a
given site); the symmetry lowering at the Ir/O sites and this
degeneracy lifting are related to the strongly anisotropic, layered
crystal structure. For the actual honeycomb lattice with trigonal
distortions of oxygen cages, one should develop a superexchange
theory using the trigonal 5d orbital basis, as well as the
correspondingly oriented oxygen orbitals. This produces a more
general anisotropy than the Kitaev one. This is the essential
reason we find at 90� for Na213 (Ir–Ir average distances of
3.133Å): J¼ 0.32, K¼ � 0.43, Gxy¼ 2.6, Gzx¼ � 1.3, Gyz¼ 1.3
and for Li213 (Ir–Ir average distances of 2.980Å): J¼ 0.40,
K¼ � 1.60, Gxy¼ 5.4, Gzx¼ � 2.8, Gyz¼ 2.8meV. For both
materials K actually turns out to be the smallest of the anisotropic
exchange constants at 90�. The small value of K may give the
impression that only a weak uniaxial anisotropy is active
(Supplementary Table 3). However, if one diagonalizes the full
G matrix to obtain its principal axes (which in general are distinct
from any crystallographic directions) and corresponding aniso-
tropies, one finds sizable anisotropic exchange constants as large
as few meV.

Our investigation also shows that the large FM J value obtained
for the B1 Ir–Ir links in Li213 is the superposition of three
different effects (Fig. 2): (i) an Ir–O–Ir bond angle smaller than
the value of E98� where J changes sign which in contrast to
Na213 takes us into the FM regime, (ii) the shift to lower values of
the minimum of the nearly parabolic J curve in Li213 as
compared with Na213 and further (iii) the additional distortions
giving rise to three different sets of Ir–O bond lengths for each

B1
Li

J2
J3

J ′,K ′

J,K
JbB1

B2 B3

b

a

Ja

Ja–2b

B2B3

irO

Figure 1 | Honeycomb structure of Li2IrO3 and mapping onto an effective

triangular lattice of triplet spins. (a) The two distinct sets of NN links26

are labelled as B1 (along the crystallographic b axis) and B2/B3.

(b) The large FM interaction J¼ � 19.2meV on B1 bonds stabilizes rigid

T¼ 1 triplets that frame an effective triangular lattice. The triplet dimers

remain protected in a wide region of the phase diagram, including

the incommensurate ICx and (c) diagonal-zigzag phase, see text.

(d) Representative exchange couplings for B1 (J, K), B2/B3 (J0, K0),

second neighbour (J2) and third neighbour (J3) paths on the original

hexagonal grid are shown. Jd (dA{a, b, a� 2b}) are isotropic exchange

interactions on the effective triangular net.
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IrO6 octahedron. The latter are significantly stronger in Li213,
remove the degeneracy of the Ir t2g levels and make that the NN
B1 J is even lower than the minimum of the parabola displayed in
Fig. 2. It is also interesting that the off-diagonal Gyz and Gzx

couplings on B1 have about the same strength with the Kitaev K
(Table 1). Our ab initio results justify more detailed model
Hamiltonian investigations of such off-diagonal couplings along
the lines of refs 21,22,24.

For the B2 and B3 links, the Ir–O bonds on the Ir–O2–Ir
plaquette have different lengths and the symmetry of the two-
octahedra block is lowered to Ci (ref. 26). The ab initio data show
that consequently the FM exchange is here disfavoured such that
J0 turns AF. This is illustrated in the inset of Fig. 2, where we plot
the evolution of the NN Heisenberg coupling when in addition to
trigonal distortions the bridging ligands on the Ir–O2–Ir plaquette
are gradually shifted in opposite senses parallel to the Ir–Ir axis.
For the reference equilateral plaquette, the Ir–O–Ir bond angle is
set to the average value in the experimental structure, 95�
(ref. 26). It is seen that such additional distortions indeed enhance
the AF contribution to the Heisenberg superexchange. Although
the bond symmetry is lower for the B2/B3 links, the analysis
of the spin-orbit wave functions shows however negligible
additional mixing effects and the ab initio results were still
mapped onto a C2h model with Gb

zbxb
¼ �Gb

ybzb
.

Longer range interactions. Having established the dominant NN
couplings we now turn to the magnetic phase diagram of Li213
including the effect of second and third neighbour Heisenberg
interactions J2 and J3. The latter are known to be sizable22 and to
significantly influence certain properties13,15,23,25. However, since
correlated quantum chemistry calculations for these longer range
interaction terms are computationally much too demanding, we
investigate their effect by computations for extended effective
Hamiltonians that use the ab initio NN magnetic interactions
listed in Table 1 and adjustable isotropic J2, J3 exchange couplings.

Triplet dimers. With strong FM exchange on the B1 bonds, a
natural description of the system consists in replacing all B1 pairs
of Ir 1/2 pseudospins by rigid triplet degrees of freedom. This
mapping leads to an effective model of spin T¼ 1 entities on a
triangular lattice, captured by the Hamiltonian

Heff ¼
X
R

TR � G1 � TR þ
X
d

JdTR � TRþ d þTR � G2;d � TRþ d

� � !
;

ð2Þ
where dA{a, b, a� 2b} (Fig. 1d and Supplementary Fig. 2).
It includes both on-site (C1) and intersite (Jd, C2,d) effective

interaction terms. While the explicit expressions of these terms
are given in Methods, the essential features of the model are as
follows. First, among the few different contributions to C1, there
is an effective coupling of the form K

2 Tz
R

� �2
. Since Ko0, this term

selects the two triplet components with Tz¼±1 and therefore
acts as an easy-axis anisotropy. Second, there are two different
types of effective exchange couplings between NN triplets, see
Fig. 1d. This asymmetry reflects the constitutive difference
between bonds B1 and B2/B3. Finally, there is also an effective
longer range exchange driven by the J3 interaction in the original
hexagonal model.

According to our ab initio results, the on-site anisotropy
splitting is Kj j=2 ’ 3meV, about twice the ordering temperature
in Li213. Naively, this may suggest a truncation of the local
Hilbert space such that it includes only the Tz¼±1 components,
which would lead to an effective doublet instead of a triplet
description. However, such a truncation would not properly
account for transverse spin fluctuations driven by intersite
exchange (which may even exceed the on-site splitting, depending
on the values of J2 and J3) or for the coupling to the Tz¼ 0
component via off-diagonal terms in C1. Lacking a priori a clear
separation of energy scales, one is thus left with a description in
terms of T¼ 1 triplets.

In momentum space, the effective model takes the form

Heff ¼
X
a;b;k

Ta
k � Lab kð Þ � Tb

� k; ð3Þ

where Tk ¼ 1
N

P
R e

ik�RTR, N is the number of B1 bonds and K(k)
is a symmetric 3� 3 matrix (Supplementary Note 3). Since T¼ 1,
the classical limit is expected to yield a rather accurate overall
description of the phase diagram. The minimum eigenvalue lQ of
K(k) over the Brillouin zone provides a lower bound for the
classical ground-state energy31–34. As shown in Fig. 3a, there exist
five different regions for jJ2;3jt6meV, three with commensurate
(FM, diagonal zigzag and stripy) and two with incommensurate
(IC) Q (we call them ICx and ICy, with Q¼ (q, 0) and (0, q),
respectively). In all commensurate regions, the state TR ¼ eiQ�RvQ

Table 1 | Magnetic spectra of two adjacent Ir4þ sites and
effective exchange interaction parameters in Li2IrO3.

Energies and effective couplings b¼B1* b¼B2/B3w

EbS Cb
S

� �
0.0 0.0

Eb1 Cb
1

� �
� 17.1 1.3

Eb2 Cb
2

� �
� 24.8 � 3.4

Eb3 Cb
3

� �
� 21.6 � 7.1

Jb � 19.2 0.8
Kb � 6.0 � 11.6
Gb
xbyb

� 1.1 4.2
Gb
zbxb

¼ �Gb
ybzb

�4.8 � 2.0

Relative energies of the four low-lying magnetic states and the associated effective exchange
couplings (meV) for each of the two distinct types of (Ir2O10) units, B1 and B2/B3 (ref. 26), are
shown. The energy of the singlet is taken as reference. Results of spin-orbit MRCI calculations.
*,(Ir–O–Ir)¼ 95.3�, d(Ir–Ir)¼ 2.98 (� 2), d(Ir–O1,2)¼ 2.01Å.
w,(Ir–O–Ir)¼ 94.7�, d(Ir–Ir)¼ 2.98 (�4), d(Ir–O1)¼ 2.08, d(Ir–O2)¼ 1.97Å. O1 and O2 are the
two bridging O’s.
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Figure 2 | Variation of the Heisenberg and Kitaev exchange couplings

with the Ir–O–Ir angle in idealized honeycomb structural models. Results

of spin-orbit MRCI calculations are shown, for NN Ir–Ir links in both Li213

(continuous lines) and Na213 (dashed). For each system, the NN Ir–Ir

distances are set to the average value in the experimental crystal

structure15,26 and the Ir–O bond lengths are all the same. Consequently,

J¼ J0 and K¼ K0 . The variation of the Ir–O–Ir angles is the result of gradual

trigonal compression. Note that Jj j, Kj jt1meV at 90�. Inset: dependence of
the NN J in Li213 when the bridging O’s are gradually shifted in opposite

senses parallel to the Ir–Ir axis.
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(where vQ is the eigenvector associated with lQ) saturates the
above lower energy bound and in addition satisfies the spin length
constraint |TR|¼ 1 for all R. We note in particular that compared
to the more symmetric case of Na213 (ref. 23), only the
diagonal-zigzag configurations are favoured in Li213, with FM
correlations along the two diagonal directions of the lattice. The
third, horizontal zigzag configuration is penalized by the strong
FM Heisenberg coupling on the B1 links. Correspondingly, we
expect Bragg peaks only at two out of the three M points of the
Brillouin zone, namely Q ¼ ðp; � pffiffi

3
p Þ (see SðQÞ in Fig. 3c and

Supplementary Fig. 3). Turning to the incommensurate regions
ICx and ICy, the minimum eigenvalue lQ is nondegenerate,
which implies that one cannot form a flat helical modulation that
saturates the low energy bound and satisfies the spin length
constraint for all R. Especially for ICx that is the most likely
candidate for Li213 (see below), this opens the possibility for
nontrivial nonplanar modulations of the magnetization.

Exact diagonalization calculations. To establish the effect of
quantum fluctuations and further test the triplet-dimer picture,

we additionally carried out exact diagonalization calculations on
24-site clusters for the original honeycomb spin-1/2 model
including the effect of J2 and J3. Periodic boundary conditions
were applied, as in previous studies18,23. We calculated the static
spin-structure factor S Qð Þ ¼

P
ij

~Si � ~Sj
� �

exp iQ � ri � rj
� �	 


as a
function of J2 and J3 while fixing the NN magnetic couplings to
the ones in Table 1. For a given set of J2 and J3 values, the
dominant order is determined according to the wave number
Q¼Qmax providing a maximum of S Qð Þ. The resulting phase
diagram is given in Fig. 3b. For each phase, the real-space spin
configuration and the reciprocal-space Bragg peak positions are
shown. In the absence of J2 and J3, the system is in a spin-liquid
phase characterized by a structureless S Qð Þ (Fig. 3c) that is
adiabatically connected to the Kitaev liquid phase for �K � J
(ref. 10). By switching on J2 and J3, we recover most of the
classical phases of the effective spin-1 model, including the ICx
phase, albeit with a smaller stability region due to finite-size
effects. That the 24-site cluster correlations do not show the ICy
phase may well be an intrinsic effect, given that the classical ICy
region is very narrow. We also find an AF Néel state region,
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Figure 3 | Magnetic phase diagrams and spin structure factor. Phase diagram of Li213 in the J2–J3 plane with the NN couplings listed in Table 1, along with

schematic spin configurations and Bragg peak positions (red circles) for each phase. (a) Classical phase diagram of the effective spin T¼ 1 model on the

triangular lattice, found by a numerical minimization of the interaction matrix K(k) in the Brillouin zone (BZ). The actual ground-state configurations in the

incommensurate regions ICx and ICy can be much richer than the standard coplanar helix states owing to anisotropy, see text. (b) Quantum mechanical

phase diagram for the original spin-1/2 model. (c) Structure factor S kð Þ for representative momenta in different phases. Note that in the ICx phase, the

peak position (±Qa, 0) takes values between 0oQar2p/a, depending on J2 and J3. (d) Long range spin–spin correlation profiles ~Si � ~Sj
� �

at J2¼ J3¼ 3

(that is, inside the diagonal-zigzag phase), as obtained by exact diagonalization (ED) calculations. The reference Ir site is shown as a black square rectangle,

positive (negative) correlations are denoted by filled blue (open red) circles whose radii scale with ~Si � ~Sj
� ��� ��. We also show explicitly the actual values for

the NN correlations.
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which is now shifted to larger J3’s as compared with Na213
(ref. 23), due to the large negative J on B1 bonds.

We note that detecting the diagonal-zigzag phase by exact
diagonalization calculations requires large-size setups of lattice
sites. This is related to the proximity of this phase to the special
point C¼ 0 where the model is highly frustrated. Indeed, in this
limit the classical ground-state manifold consists of a one-
parameter family of states with two sublattices of spins with
arbitrary relative orientation angle. This situation is common in
various well-known frustrated models, such as the J1–J2 model on
the square lattice35–37. The lifting of the accidental degeneracy,
either by quantum fluctuations or due to a finite C
(Supplementary Note 4, Supplementary Figs 4 and 5), and the
associated locking mechanism between the two sublattices involve
a very large length scale38,39. This explains why our exact
spin–spin correlation profiles provided in Fig. 3d show that the
two sublattices are nearly decoupled from each other.

Except for the Néel and the spin-liquid phase, all other phases
feature rigid triplets on the B1 bonds. This is shown in Fig. 3d for
the diagonal-zigzag phase at J2¼ J3¼ 3, where the NN correlation
function on the B1 bonds, hSi � Sji ’ 0:24, almost saturates to
the full spin-triplet value of 1/4. This shows that the effective
triplet picture is quite robust.

Comparison to experiment. Our result for rigid triplet degrees of
freedom finds support in recent fits of the magnetic susceptibility
data, which yield effective moments of 2.22 mB for Li213 (ref. 40),
much larger than the value of 1.74 mB expected for an isotropic
1/2 spin system. Triplet dimerization was earlier suggested to
occur in the chain-like compound In2VO5 (ref. 41). FM, quintet
dimers were also proposed to form in ZnV2O4 (ref. 42).

Turning finally to the nature of the actual magnetic ground
state of Li213, we first note that the longer range couplings J2 and
J3 are expected to be both AF13,15 and to feature values not larger
than 5–6meV (ref. 15) in honeycomb iridates, which suggests
that Li213 orders either with a diagonal-zigzag or ICx pattern.
Recent magnetic susceptibility and specific heat measurements
indeed show indications (ref. 14) that the magnetic ground state of
Li213 could be different from AF zigzag, while powder diffraction
and inelastic neutron scattering data (R. Coldea, personal
communication) show signatures of incommensurate magnetic
order. These experimental findings are consistent with the ICx
spin configuration. As explained above, the actual nature of this
phase goes beyond the standard flat helical modulations because
the latter are penalized by the anisotropic exchange terms in the
Hamiltonian. It should be noted that the incommensurate type of
magnetic order in Li2IrO3 has also been rationalized with model
Hamiltonian calculations by including additional long range
anisotropic Kitaev couplings on the honeycomb lattice43.

Conclusions
To summarize, we have established a microscopic spin model and
zero-temperature phase diagram for the layered honeycomb
iridate Li2IrO3, one of the proposed realizations of the spin-1/2
Kitaev–Heisenberg model with strongly spin-orbit coupled Ir4þ

magnetic ions. Ab initio quantum chemistry electronic-structure
calculations show that, in contrast to Na2IrO3, the structural
inequivalence between the two types of Ir–Ir links has a striking
influence on the effective spin Hamiltonian, leading in particular
to two very different nearest-neighbour superexchange pathways,
one weakly antiferromagnetic ’ 1 meVð Þ and another strongly
ferromagnetic (� 19meV). The latter gives rise to rigid spin-1
triplets on a triangular lattice that remain well protected in a large
parameter regime of the phase diagram, including a diagonal
zigzag and an incommensurate ICx phase. In view of these
theoretical findings and the experimental observation of an

incommensurate magnetic propagation vector in neutron diffrac-
tion (R. Coldea, personal communication), we propose that the
magnetic ground state of Li2IrO3 lies in the incommensurate ICx
phase. Settling its detailed nature and properties calls for further,
dedicated experimental and theoretical investigations.

Methods
Embedded-cluster quantum chemistry calculations. All ab initio calculations
were carried out with the quantum chemistry package Molpro44. Embedded
clusters consisting of two NN edge-sharing IrO6 octahedra were considered.
To accurately describe the charge distribution at sites in the immediate
neighbourhood45,46, the four adjacent Ir4þ ions and the closest 22 Liþ neighbours
were also explicitly included in the actual cluster. The surrounding solid-state
matrix was modeled as a finite array of point charges fitted to reproduce the crystal
Madelung field in the cluster region. The spin-orbit treatment was carried out
according to the procedure described in ref. 47, using spin-orbit pseudopotentials
for Ir (Supplementary Note 1).

Even with trigonal distortions of the oxygen cages, the point-group symmetry of
a given block of two NN IrO6 octahedra is C2h. Since the C2 axis lies here along the
Ir–Ir bond, the effective magnetic Hamiltonian for two adjacent Ir sites is most
conveniently expressed in a local reference system {Xb, Yb, Zb} with Xb along the
Ir–Ir link (Zb is always perpendicular to the Ir2O2 plaquette). It reads

H ijh i ¼ J 0ð Þ
b

~Si � ~Sj þ ~Si �
Ab 0 0
0 Bb Cb

0 Cb �Ab �Bb

0
@

1
A � ~Sj; ð4Þ

where bA{B1,B2,B3}. The diagonal elements in the second term on the right hand
side sum up to 0 to give a traceless symmetric anisotropic exchange tensor. If Xb is
C2 axis, only one off-diagonal element is nonzero.

In the local Kitaev reference frame {xb, yb, zb}, that is rotated from {Xb, Yb, Zb}
by 45o about the Zb¼ zb axis (Supplementary Note 2, Supplementary Fig. 1 and
refs 10,23), the Hamiltonian shown above in equation (4) is transformed to the
Hamiltonian in equation (1). For the latter, the effective exchange couplings are
obtained for each type of Ir–Ir link as

Jb ¼ J 0ð Þ
b þ Ab þ Bb

2 ; Kb ¼ � 3
2 Ab þBbð Þ;

Gb
xy ¼ Ab � Bb

2 ; Gb
yz ¼ �Gb

zx ¼ Cbffiffi
2

p ;

where the connection to the quantum chemically computed eigenvalues provided
in Table 1 (and Supplementary Tables 1 and 2) is

J 0ð Þ
b ¼ 1

3
Eb
1 þEb

2 þEb
3

� �
�Eb

S ;

Ab ¼
2
3

Eb
1 þ Eb

2

� �
� 4

3
Eb
3 ;

Bb ¼
1
2

�Ab � 2 Eb
1 �Eb

2

� �ffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2b

p
" #

and

Cb ¼
Zb Ab þ 2Bbð Þ

2
:

ð5Þ

Eb
S , E

b
1, E

b
2 , E

b
3 are the ab initio eigenvalues, Zb ¼

2zb
ffiffiffiffiffiffiffiffiffi
1� z2b

p
1� 2z2b

and zb¼ sinab, where ab
is the mixing parameter.

Effective spin T¼ 1 description. To find the effective interactions between the B1
triplet dimers, we begin by deriving the equivalent operators in the TR¼ 1 manifold
for a B1 bond at position R, where TR¼ SR,1þ SR,2 and SR,1, SR,2 are the ionic Ir
pseudospins defining the B1 bond. If the projector in the TR¼ 1 manifold is tagged
as PT, we obtain for the dipolar channel PTSR;1PT ¼ PTSR;2PT ¼ 1

2TR, while for the
quadrupolar channel

PT SaR;1S
b
R;2 þ SbR;1S

a
R;2 �

2
3

SR;1 � SR;2
� �

dab
� 

PT ¼ xQab
R :

Qab
R ¼ Ta

RT
b
R þTb

RT
a
R � 4

3 d
ab is here the quadrupolar operator for a spin-1 degree

of freedom and x¼ 1/2. Using equivalent operators we then find the first-order
effective Hamiltonian Heff ¼ PTHPT of equation (2). The only non-zero
elements of the symmetric on-site tensor C1 are Gzz

1 ¼ K
2, G

xy
1 ¼ A� B

4

and Gyz
1 ¼ �Gxz

1 ¼ C
2
ffiffi
2

p , while those of G2,d are Gyy
2;b ¼ Gxx

2;a� b ¼ K 0

4 ,

Gxy
2;b ¼ Gxy

2;a� b ¼ � C0

4
ffiffi
2

p , Gxz
2;b ¼ �Gyz

2;a� b ¼ � A0 � B0

8 and Gyz
2;b ¼ �Gxz

2;a� b ¼
� C0

4
ffiffi
2

p . Finally, the intersite isotropic exchange interactions are Ja¼ (J2þ J3)/2,

Ja� 2b¼ J3/4, Jb¼ Ja� b¼ J2/2þ J0/4. We here employed the global coordinate
system {x, y, z} corresponding to the Kitaev-like frame {xb, yb, zb} with b¼B1
(Supplementary Figure 1). J0 , K0 , A0 , B0 and C0 are effective coupling constants on
the bonds B2 and B3, as also mentioned in the main text. We stress that the on-site
quadrupolar term Tz

RT
z
R scales with K/2, while in the classical treatment of the

original spin-1/2 model such a term would scale with K/4. We can trace this back
to the value of x¼ 1/2 found above, which in the classical treatment is xclas¼ 1/4.
This means that the quantum mechanical correlations strongly enhance the effect
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of the ‘on-site’ anisotropy term K. The latter favours alignment along the z axis,
against the effect of K0 which favours alignment within the xy plane. This point is
further discussed in Supplementary Note 3 and 4, where we compare the classical
treatment of the original spin-1/2 hexagonal model with the effective spin-1
triangular model.
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