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Understanding cell type identity in a multicellular organism 
requires the integration of gene expression profiles from 
individual cells with their spatial location in a particular 
tissue. Current technologies allow whole-transcriptome 
sequencing of spatially identified cells but lack the throughput 
needed to characterize complex tissues. Here we present 
a high-throughput method to identify the spatial origin of 
cells assayed by single-cell RNA-sequencing within a tissue 
of interest. Our approach is based on comparing complete, 
specificity-weighted mRNA profiles of a cell with positional 
gene expression profiles derived from a gene expression atlas. 
We show that this method allocates cells to precise locations 
in the brain of the marine annelid Platynereis dumerilii with a 
success rate of 81%. Our method is applicable to any system 
that has a reference gene expression database of sufficiently 
high resolution.

High-throughput single-cell RNA-sequencing by automated reaction  
processing in multiwell plates1 or by microfluidics devices2 is becom-
ing an established experimental technique3. The sample collection 
step in these protocols results in the dissociation of tissue and there-
fore loss of spatial information. However, investigating the molecular 
composition of individual cells in the context of spatial location is 
important, especially when studying primary cells. This is particularly 
relevant when looking at complex tissues, such as the early embryo 
or the brain, where multiple heterogeneous cell types are located in 
close proximity.

Single-molecule fluorescence in situ hybridization (FISH)4 has been 
widely used to quantitate transcript numbers at single-cell resolution 
within the context of a tissue of interest. This allows gene expression to 
be assayed in many cells but it can only be applied to a small number 
of genes. More recently, methods for high-throughput, spatially  
resolved single-cell RNA-seq have been developed using in vivo marking  

and picking of selected cells from predefined spatial coordinates4, or 
in situ amplification of cellular transcriptomes on tissue sections5. 
Although these approaches facilitate analysis of all expressed genes in 
each captured cell, they are limited in terms of the number of cells that 
can be labeled and then processed (Supplementary Note 1). An alter-
native approach is to carry out unbiased single-cell RNA-sequencing  
(where cells are dissociated without knowledge of their spatial 
location) followed by computational approaches, such as Principal 
Component Analysis, to partially recover the spatial structure of 
the tissue of interest6. However, such approaches do not facilitate a 
fine-grained reconstruction whereby the location of each cell can be 
precisely determined.

To overcome these limitations, we propose an integrated approach that 
combines previously generated in situ hybridization (ISH)-based gene 
expression atlases with unbiased single-cell transcriptomics (Fig. 1).  
Notably, ISH atlases exist for many species and developmental stages 
(Table 1) making our approach broadly applicable. Moreover, beyond 
the model systems for which comprehensive maps are typically avail-
able, targeted ISH of tens of marker genes is commonly used to study 
spatially restricted patterns of gene expression in systems that provide 
key insights into evolution and development7–9. Such screens could 
also be used as a mapping reference for RNA-seq data, and, for several 
‘nonmodel’ species (e.g., zebra finch or the ascidian Ciona intestinalis),  
high-quality gene expression data are already being assembled into 
structured databases (Table 1).

RESULTS
Experimental design and quality control
We used the developing brain of a marine annelid, P. dumerilii, to dem-
onstrate the utility of our approach. P. dumerilii is an important model 
system for studying bilaterian brain evolution10,11 so obtaining spatially 
registered transcriptomic profiles of cells within its brain is valuable for 
understanding how cell types in the vertebrate brain evolved.

At 48 h post-fertilization (hpf), the P. dumerilii larval brain is 
composed of a relatively low number of cells (~2,000). However, this 
small number of cells harbors a wide range of cell types, including 
several types of differentiated neurons, sensory cells and proliferat-
ing progenitor cells12–16. Previously, whole-mount in situ hybridi-
zation (WMISH) was used to study the expression pattern of 169 
differentially expressed candidate genes such as transcription factors, 
regulators of cell fate and body plan patterning, within the brain of 
P. dumerilii, thus facilitating the creation of a WMISH expression 
atlas14,17. Subsequently, this WMISH data set was divided into 3-µm3  
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voxels and binarized, resulting in a matrix (Fig. 1) where genes  
are arranged in the rows and spatial coordinates (voxels) in the  
columns17. Using a previously described approach17, we removed  
genes with low-quality WMISH signals, resulting in a reduced  
reference set of 98 genes. Considering the 3-µm3 voxel size and  
the observation that cell diameters range from 4 to 25 µm, most  
cells in the P. dumerilii brain are expected to correspond to  
11–174 voxels. An entry in the matrix (one voxel) is set equal to 1 if  
the corresponding gene is expressed in the voxel of interest and  
set equal to 0 otherwise.

To generate the single-cell RNA-sequencing (scRNA-seq) data,  
we dissociated P. dumerilii larval brains, and followed that by cell 
capture, cDNA synthesis and amplification on the C1 Single-Cell Auto 
Prep IFC. In total, we sequenced 213 samples, of which 155 (73%) 
corresponded to single cells (as judged by visual inspection of the 
captured cells) with the remainder consisting of single dead cells, wells 
containing multiple cells and empty wells, which were sequenced as 
a negative control (Supplementary Table 1).

For each cell, the scRNA-seq data were mapped to the P. dumerilii 
reference transcriptome augmented with the ERCC spike-in molecule 
sequences18. The quality of the data was evaluated by calculating the 
percentage of all reads mapping to the reference transcriptome and 
to the ERCC spike-in sequences (Supplementary Fig. 1). Samples 
where >10% of reads mapped to the ERCC sequences and <10% of 
reads mapped to the reference transcriptome were excluded from 
further analyses. In addition, samples containing no cells or multiple 
cells were excluded, leaving 139 high-quality filtered cells (QF cells) 
that were used in downstream analyses (Supplementary Table 1). 
We note that 139 cells corresponds to ~7% of all cells in the larval 
brain of P. dumerilii.

To assess whether the 139 QF cells represented a random sample 
of cells from across the whole brain, we compared the proportion of 
sequenced cells in which each gene was expressed with the proportion 
of voxels showing expression of the same gene in the binarized refer-
ence atlas (Supplementary Fig. 2). This revealed that the ratios display 
good concordance (Supplementary Fig. 2; Spearman’s Rho = 0.48,  
P < 2 × 10−5 Spearman’s Rank Test), thus providing confidence that 
the sequenced cells represent a broad sample of cells from across the 
P. dumerilii brain.

Mapping of individual cells
To determine the spatial origin of each sequenced cell we applied a 
three-step approach. First, for each cell, we calculated a specificity 
score that indicates to what extent each gene is specifically expressed 
in that cell relative to all other cells (Supplementary Note 2). For each 
cell, its score vector was then transformed using a logistic function 
such that its elements took values between 0 and 1, where a value 
near 1 indicates that a gene is highly specific to the cell of interest. 

Subsequently, a ‘correspondence score’ was determined for each  
cell-voxel combinations. For each gene expressed in the scRNA-seq 
data and present in the WMISH atlas (72/98 genes; others correspond 
to genes expressed at low levels or expressed exclusively in cells that 
we did not capture), a match or mismatch between the scRNA-seq 
and the WMISH data resulted in the transformed specificity weight 
being added or subtracted from the cell-voxel score, respectively. This 
yielded a cell-voxel correspondence score for all combinations of cells 
and voxels. Third, we used simulations to determine, for each cell, the 
significance of the cell-voxel correspondence scores (Supplementary 
Figs. 3 and 4). More specifically, we generated a randomized data 
set by permuting the specificity scores 100 times for each cell and 
mapped these simulated cells back to the reference. Based upon this 
simulated data set, we determined the empirical probability that each 
true cell was mapped back to a particular number of voxels at a given 
correspondence score threshold.

We mapped 69 cells (50%) with high confidence (at least 21 voxels 
with a score >1.5 corresponding to <10% chance of occurrence in 
the simulated data), 43 cells (31%) with medium confidence (at least 
16 voxels with a score > 0.5 corresponding to <30% chance of occur-
rence in the simulated data) and 14 cells (10%) with low confidence 
(>11 voxels with a score > 0 corresponding to <50% chance of being 
observed in the simulated data; Supplementary Figs. 3 and 4). We 
considered the voxels with the highest confidence for each sample 
as being the most likely loci from which the cell assayed by means 
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Figure 1  Overview of the spatial mapping workflow using the P. dumerilii 
scRNA-seq data set. We used an existing gene expression atlas (right 
column) to link scRNA-seq data (left column) from cells extracted from 
the developing brain of P. dumerilii (top left) with spatial coordinates. The 
gene expression atlas was binarized, resulting in a matrix of n positions 
that each comprise presence and absence values for m genes. For each 
sequenced cell c, expression data for the same set of m genes was 
compared to expression profiles at all n positions in the reference matrix 
and matched based on highest similarity. An example of the likely position 
for one cell is indicated in the two images at the bottom by the red circle 
in the bottom left (ventral view of P. dumerilii larva) and red voxels in 
the apical view at bottom right. The upper right panel of this figure is 
modified from ref. 17. Scale bars, 50 µm.
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Figure 2  Examples of the spatial mapping  
of single cells. (a) An example of a cell  
mapped at single-cell precision (<150 voxels).  
83% of cells in our data set fit this mapping  
profile. (b) An example of a cell mapping to  
a small brain region. 13% of cells in our  
data set fit this mapping profile. (c) An example 
of a broad mapping where many voxels score  
above the threshold. 4% of cells in our data  
set fit this mapping profile. Note that for  
mapping profiles shown in b and c, smaller  
high-score voxel groups (dark red) can be  
identified within the large number of  
above-threshold voxels. Such high-score  
domains likely correspond to the precise  
positions of the cell. The samples shown  
in a–c are mapped with high confidence.  
(a–c) apical view of the brain; (a′–c′) lateral  
view; (a″–c″) dorsal view. Voxels with a  
correspondence score < 1.5 are colored blue. 
Upper right corner: cell ID; lower right:  
number of voxels above threshold (in 
parentheses: voxels localized in the  
left/right-side of the brain, respectively).  
(d) Distribution of mapped cells across the defined confidence levels stratified by the number of voxels to which each cell is mapped back.  
(e) Percentage of cells mapping back to each category (high/medium/low/unmapped) for the reference used in this study (72 genes out of the 98 genes 
in the full P. dumerilii spatial reference atlas that were expressed in at least one of the sequenced cells; right-hand side) and the mean (± s.e.m.) 
number of cells assigned to each category when simulated references containing different numbers of genes (30, 40, 50 and 60) are used.

of scRNA-seq originated (Supplementary Table 2). Altogether, we 
established a likely location for 91% of cells in our data set (Fig. 2d), 
with the median number of voxels per mapped cell being 54 (inter-
quartile range: 30 – 110).

Notably, the set of voxels to which each cell is mapped back to are 
typically arranged in small, bilaterally symmetric and spatially coher-
ent groups (Fig. 2a-a″, 2b-b″ and Supplementary Table 2). This is 
expected, because the voxel size in our model is much smaller than 
one cell, and the P. dumerilii brain shows strong bilateral symme-
try at 48 hpf. Given that the captured cells are between 8 and 17 µm 
in diameter (Supplementary Note 2) and the voxels are all 3 µm3,  
our results suggest that we can map back the majority (83%; number 

of corresponding voxels <150, Fig. 2d) of sequenced cells to a  
precise, single location (considering bilateral symmetry; Fig. 2a-a″). 
The remaining cells map back to either a small number of voxels  
(13%; number of corresponding voxels between 150 and 500; Fig. 2b-b″)  
or, in three cases, to a broader domain (4%; number of correspond-
ing voxels >500; Fig. 2c-c″). Broad mapping domains are indicative 
of relative molecular homogeneity of the respective brain regions, at 
least when considering the genes included in the reference. In this 
case, augmenting the reference atlas with genes that display variable 
patterns of expression in the cells mapped back to such regions should 
improve the precision of the mapping. A summary of the locations 
across the brain to which all cells are mapped back can be found in 

Table 1  List of existing ISH atlases
Species Tissue Database Resolution (ISH) Number of genes (ISH)

Mouse Brain http://mouse.brain-map.org/ Region (0.008 mm3) ~20,000a

Prenatal brain http://developingmouse.brain-map.org/ Region (fine) ~2,000
Developing embryo (E14.5) http://www.genepaint.org/;  

http://www.eurexpress.org/ 
Region (fine) 16,193

Chicken Developing embryo,  
various stages

http://geisha.arizona.edu/ Region 4,072

Xenopus laevis Whole animal, various stages http://www.xenbase.org/ Region (broad) 360b

Drosophila melanogaster Whole animal, various stages http://insitu.fruitfly.org/ Region (broad) 7,808
http://bdtnp.lbl.gov/ Cell 95

Caenorhabditis elegans Whole animal, various stages http://www.wormbase.org/ Cell, cell group 3,363
Arabidopsis thaliana Root http://www.arexdb.org/ Cell 20,872c

Non-model species
Human Brain http://human.brain-map.org/ Selected regions ~1,000
Zebra finch Brain http://www.zebrafinchatlas.org/ Region (fine) 187
C. intestinalis Whole animal, various stages http://www.aniseed.cnrs.fr/aniseed/ Region (fine, broad) up to 2,600d

Marine invertebrates, 21 species Whole animal, various stages http://www.kahikai.org/index.php?content=genes Region (broad) 306
P. dumerilii Developing brain Tomer et al., 2010 (ref. 14); Pettit et al., 2014 (ref. 17) Subcellulare 168

ISH atlases for an array of model and non-model species are listed, alongside information about the number of genes analyzed, the resolution of possible co-expression analyses 
in each system, tissues and developmental stages for which the atlas exists, and web links to the databases. In most systems, cellular resolution is impossible to achieve owing to 
the variability in the cell positions between individuals. In these cases, we labeled region-specific resolution as “fine” when expression analysis is performed on tissue sections and 
imaged at high resolution, and “broad” when only whole-mount images are available.
aCo-expression analyses at 0.008 mm3 resolution are available for 4,104 genes with brain-wide expression23; bmanually curated set of whole-mount in situ hybridization images are available 
for 360 genes in Xenopus; cincluding a microarray data set of different cell populations in A. thaliana root; dnumber of genes varies for different stages, usually ~200-2,000 genes are shown; 
ethree-dimensional stacks of 169 ISH images for P. dumerilii larval brains allow co-expression analyses at resolution of 3 µm3.
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Supplementary Figure 5. The individual 
cell mappings can be viewed at the following 
link: http://www.ebi.ac.uk/~jbpettit/map_
viewer/?dataset=examples/coord_full.
csv&cluster0=examples/resultsBio.csv.

The size of the reference atlas
To investigate how the number of reference genes affected the map-
ping, we generated simulated spatial reference atlases, each containing 
a subset of the genes used in the initial atlas (30, 40, 50 and 60 gene 
subsets were used), and mapped each cell back to these simulated 
references. We observed that the fraction of cells mapped back with 
medium or high confidence increased as a function of the number 
of reference genes. On average, 58% of cells were mapped back with 
medium or high confidence when only 30 reference genes were used, 
in contrast to the 81% of cells that were mapped back when the full ref-
erence set of 72 genes (corresponding to genes included in the WMISH 
atlas and expressed in the scRNA-seq data) was deployed (Fig. 2e). 
This suggests that a relatively small number of genes (between 50 
and 100) with spatially distinct patterns of expression are needed 
to map cells to a specific location with a high degree of confidence 
(Discussion). Critically, pre-existing ISH resources often contain more 
genes (Table 1) than the P. dumerilii reference used in this study.

Mapping validation and the associated challenges
Overall, our approach enables the majority of cells to be mapped 
back with medium to high confidence. However, even for these cases, 
there exist discrepancies where, for example, a highly specific gene 
is not expressed in the region to which a cell is mapped (Fig. 3). This 
can occur as our approach uses a relatively large reference set and 
is therefore robust to such mismatches assuming that other, highly 
specific, genes exist. However, understanding the factors that lead to 
such discrepancies between the ISH and scRNA-seq data sets provides 
valuable insights into the quality of both data sets.

First, our WMISH database used averaged expression patterns, 
which can lead to both false ‘presence’ and ‘absence’ calls in the refer-
ence matrix, especially for genes with variable expression across indi-
viduals. Indeed, in 13 cells where one of the four most specific genes 
was never co-expressed in the same domain as the remaining three 
genes, we observed that overlaying the averaged, nonbinarized ISH 
images revealed areas of co-expression (Fig. 3a–c and Supplementary 
Fig. 6). Altering the binarization threshold can overcome this prob-
lem and improve the reference.

Second, imperfections in our WMISH database, such as missing  
expression domains due to probe design, low gene expression  
levels in particular cells or insufficient signal development, can  
also lead to misannotation of a gene expression value. Illustrating 
this, we chose four additional cells where one of the top four  
most-specific genes was not co-expressed with any of the other three 
most-specific genes and where the mismatch was not explained  
by overlaying the nonbinarized WMISH patterns. In all four cases 
we performed new dual ISHs between the mismatch gene and 
at least one of the remaining highly specific genes. The domains  
of dual ISH co-labeling overlapped the locations indicated by the 
spatial mapping in all cases (Fig. 3 and data not shown), affirming 
the initial mapping.

Finally, scRNA sequencing is susceptible to substantially more  
technical noise than bulk sequencing approaches19. It is possible  
that such biases might lead to a disproportionately large number  
of reads being associated with a particular gene in a given cell and, 
consequently, a high specificity score. As the quality of scRNA-seq 
data improves, this will become less of a problem.
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Scale bar, 50 µm.
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Nevertheless, we identified the probable 
loci of origin for 81% of cells with high or 
medium confidence, suggesting that our 
approach is robust to technical challenges.

Validation using reference-independent 
marker genes
To validate the mapping, we selected four 
genes expressed in a small number of voxels 
(each gene expressed in <2% of voxels) that 
were expressed specifically in few cells (spe-
cificity score > 4 in each cell). We removed 
each gene, in turn, from the reference and 
compared the mapping results obtained using 
the reduced reference with those generated 
with the full atlas (Fig. 4).

For each cell in which the gene of inter-
est was specifically expressed, we considered 
mapping successful when there was statistically significant overlap 
(Fisher Exact Test; P-values were corrected for multiple testing using 
the Benjamini-Hochberg approach; significance threshold = 0.05) 
between the voxels to which it was mapped back and the expression 
domain of the selected marker gene (Supplementary Table 3). Of 
the 17 cells tested, 14 displayed concordant results with both refer-
ences (13/14 of these cells were mapped back to domains that showed 
statistically significant overlap with the relevant marker gene; for 1 
of the 14 cells, no significant overlap was observed when either ref-
erence was used). For the remaining three cells, one was marginally 
significant when the full reference was used but showed a statistically 
insignificant overlap when the reduced reference was employed. The 
final two cells were not mapped back to voxels expressing the gene of 
interest only when the reduced reference was used. However, in both 
cases, closer inspection of the reference atlas revealed weak expression 
of the respective gene in the areas matching the predicted position of 
these unsuccessfully mapped cells (data not shown).

Our approach provides a tool for identifying genes co-expressed 
with known markers, thus revealing new biological insights. To dem-
onstrate this, we registered new WMISH patterns for three genes that 
were expressed in a subset of cells in the scRNA-seq data set, which sug-
gests they each have a spatially restricted expression pattern. We then 
assessed whether the expression domain of each marker conforms to 
the spatial mapping. We found that Ten3 (Supplementary Fig. 7c,d),  
Cux1/2 (Supplementary Fig. 7g,h,l) and Fezf (Supplementary  
Fig. 7k,l) were each co-expressed with known reference genes in the 

locations indicated by spatial mapping (Supplementary Fig. 7a,e,i,  
white arrows). In all cases, combination with the new marker defined 
the location even more precisely than the known genes. Thus,  
new marker genes identified from the scRNA-seq experiment inde-
pendently validated the spatial mapping and could be used to further 
refine the reference atlas.

These validations strongly support the quality of our mapping 
approach and demonstrate how it can be used to exploit a relatively 
small, spatially referenced in situ atlas alongside scRNA-seq to identify 
new marker genes that can form the basis of downstream studies.

DISCUSSION
In this manuscript, we developed a computational approach that com-
bines a spatially referenced ISH atlas with single-cell transcriptome 
profiles generated using scRNA-seq to map each cell back to the tissue 
under study. We demonstrated the utility of our approach using cells 
taken from the brain of the marine annelid, P. dumerilii, at 48 hpf. 
Profiling over 7% of cells in its brain, we observed that 81% of cells 
were mapped back to a relatively precise location. We validated our 
results both computationally and using ISH for genes that displayed 
variability in expression in the scRNA-seq data.

Recently, alternative approaches for profiling the transcriptomes 
of spatially referenced cells have been proposed5,20. Transcriptome 
in vivo analysis (TIVA)20 allows individual cells to be fluorescently 
labeled within a tissue, visualized and then sequenced after capture.  
In practice, this is extremely useful when a particular cell, or small 
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Figure 4  Comparison of mapping success using 
highly specific marker genes. (a–d) Comparison 
of the mapping success before and after a 
highly specific marker gene is removed from 
the reference. For each gene, we considered 
cells showing specific expression of that gene 
in the scRNA-seq data (specificity score > 4). 
From these cells, we assessed the number 
of successfully mapped cells against the full 
reference atlas (blue bar) and after removing the 
respective gene from the reference (yellow bar). 
The expression pattern of the gene is shown 
on the right (WMISH). Scale bar, 50 µm. One 
example of the mapping result (corresponding 
voxels in red) against the full reference (ref: 
full) and the reference lacking the respective 
gene (ref: removed, gene indicated in the top 
right corner) is shown for each case.
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number of cells, is of interest. However, the throughput of this 
approach is potentially limited by the manual photoactivation and 
picking steps and also the number of tags that can be employed simul-
taneously.

By contrast, fluorescent in situ RNA-seq (FISSEQ)5 sequences  
individual cells in situ (i.e., directly on cells or tissue mounted  
on a coverslip). Such an approach can, in theory, be broadly  
applied, although the practical challenges are substantial. Moreover, 
only cells that are relatively close to one another can be assayed in  
the same experiment.

Our approach is complementary to these experimental strategies. 
Fundamentally, we do not aim to maintain the tissue structure through 
the experimental process, but aim to recover this structure post hoc 
by combining the scRNA-seq data with a pre-existing spatially refer-
enced ISH atlas. Unlike TIVA, we do not need to label cells a priori 
and, unlike FISSEQ, we can assay cells from across a relatively large 
tissue simultaneously. However, the spatial origin of the cells assayed 
by TIVA and FISSEQ can be determined unambiguously, which may 
have advantages in certain circumstances.

From a computational perspective, our method could be extended 
in a number of ways. First, instead of using a binarized threshold 
for determining whether a gene is expressed from the ISH data, we 
could treat the reflection data for each gene as a continuous variable. 
Second, the in situ data used in our study have a very high resolution,  
with 11–174 voxels making up a typical cell. As discussed below this 
is somewhat atypical, with most resources having substantially lower 
resolution. Nevertheless, when such high-resolution information 
exists, one option is to first build a cellular model and to map each 
cell back to this new atlas. Finally, our method penalizes mismatches 
when a gene is expressed in the scRNA-seq data and not in the refer-
ence atlas. This is justified by noting that current scRNA-seq protocols 
display a substantial degree of technical noise, meaning that calling 
a gene as unexpressed in a given cell is challenging19. As scRNA-seq 
protocols improve, a two-way penalization criterion may become 
more appropriate (Supplementary Note 3).

Our approach depends critically upon the quality of the reference 
atlas. Consequently, it is important to filter out genes with low-quality 
ISH patterns, because these can create co-expression domains that 
in reality do not exist, but can lead to false-positive mappings. In 
practice, this can be done using automated approaches that process  
and filter out low-quality images21. Additionally, the number of genes 
in the reference database is of high importance. In this paper we used 
simulations to demonstrate that, as expected, increasing the number of 
genes in the reference set leads to a monotonic increase in the number 
of cells mapped back with high confidence. However, somewhat sur-
prisingly, we observed that the increase in the number of confidently 
mapped cells increased only slightly when the reference set was 
increased from 60 to 72 expressed genes. One important considera-
tion when determining whether an ISH database provides a suitable 
reference is the information content of the genes contained therein,  
with genes expressed in a spatially restricted and nonoverlapping 
manner providing the most utility.

The precision of mapping is also affected by the resolution of the 
ISH atlas. Indeed, the majority of species listed in Table 1 lack a  
cellular resolution reference atlas. However, even without such an atlas, 
cells can be mapped back to small and restricted spatial domains using 
our method, thus facilitating important biological insights including 
the identification of new tissue-specific genes. Illustrating this, Satija 
et al.22 have developed an analogous computational approach, which 
they apply to assign individual cells to locations within the gastrulat-
ing zebrafish embryo using a low-resolution ISH atlas.

As with the ISH atlas, potential problems can also arise  
during the scRNA-seq data generation. At present, scRNA-seq 
is a relatively noisy technology, with only ~20–40% of molecules 
being captured per cell in a typical experiment. Consequently, 
for genes expressed at low to moderate levels, quantification of 
expression is challenging. Moreover, some technologies require 
that cells fall within a specific size window before processing and 
sequencing. This might result in under-representation of particular  
cell types, thus seriously affecting the utility of approaches such 
as that described herein. The use of microwell plates and droplet 
technology, as well as protocol improvements, promise to overcome 
these limitations.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Raw sequencing data are available from 
ArrayExpress, accession number E-MTAB-2865/.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Single cell dissociation and capture protocol. P. dumerilii larvae were incu-
bated in filtered natural seawater (FNSW), at 18 °C for 47 h to reach the desired 
stage. For single-cell dissociation, 80–100 47 hpf larvae were picked, washed 
in Ca- and Mg-free artificial sea water (CMF-SW) and incubated for 5 min 
in 0.5% Pronase (Roche cat # 10165921001), 1% sodium thioglycolate (Sigma 
T0632) in CMF-SW. After this treatment, the trunks and epispheres sepa-
rated. 50–80 epispheres were randomly picked, rinsed in 1:1 FNSW:1× PBS, 
followed by 1× PBS, and incubated for 1 min in 150 µg/ml Liberase (Roche, 
cat # 05401119001) in 1× PBS. Epispheres were rinsed in 1× PBS twice, trans-
ferred to a nonstick Eppendorf tube and triturated by pipetting. Dissociated 
cells were washed twice in 200 µl of 1× PBS and concentrated by centrifuging  
(1 min, 200g). Cells were resuspended in 20 µl of 1× PBS, of which 5–15 µl 
was loaded on the capture chip (Fluidigm cat # 100-5760).

Cell capture, lysis, reverse transcription and cDNA amplification were  
performed on the C1 IFC for mRNA-seq (10–17 µm ‘chip’, Fluidigm cat # 
100-5760) on Fluidigm C1 Single-Cell Auto Prep System.

Following the company’s recommendation, we used SMARTer Ultra Low 
Input RNA Kit for on-chip reverse transcription and the ADVANTAGE-2 PCR 
kit (Clontech cat # 634832) for on-chip PCR. We added 1 µl of 1:4,000 dilu-
tion of ERCC spike-in RNA (Ambion, cat # 4456740) to the C1 lysis mix; this 
concentration equals 1 µl of 1:800,000 dilution per cell. Sequencing libraries 
were prepared using the Nextera XT DNA Sample Preparation kit (Illumina 
cat # FC-131-1096) and 100 bp paired-end sequences were generated using 
the Illumina HiSeq2000 platform.

Mapping and quantitation of next-generation sequencing data. We used 
bowtie2 (ref. 24) to map the raw sequencing reads to the P. dumerilii refer-
ence transcriptome (http://4dx.embl.de/arendt/publicdata/Publicdata.html). 
Expression counts for each gene were obtained using HTSeq1 (refs. 25,26), and 
normalized by the total number of reads mapped to the transcriptome in order 
to account for sequencing depth (tpm). For the spatial mapping, we limited our 
gene expression data set to a curated set of 169 genes that had spatial expression 
information in the reference ISH database. Of these, we further excluded 71 
expression patterns that had previously been shown to be of moderate to poor 
quality17, leaving a final set of 98 reference genes in our ISH set. The raw count 
data for this gene set in all cells are provided in Supplementary Table 4.

Sequences of the reference genes in P. dumerilii WMISH atlas. Nucleotide 
sequences for the genes included in the P. dumerilii WMISH refer-
ence atlas used in this study are provided as Supplementary Sequences.  
Gene sequences were obtained from the following sources: previous pub-
lications: WntA (ref. 27), rOpsin, Six1/2, Pax6 (ref. 28); Rx12; DHE3.R30  
(P. dumerilii EST IB0AAA32CF06EM1), Dll, GLT, NK21, Tubby (P. dumerilii 
EST IB0AAA40DH05EM1)29; Hb80 (ref. 30); ChAT, Chx10, Dbx, Gsx, Islet, 
Lhx2, Sim, VAChT31; Otp, Phc2, Syt, Vax13; Ngn32; FVRI, FVRIamide33, Prox1, 
Sox2 (ref. 34); miR.277, miR.7 (ref. 35); Gli36; Ascl, BF1 (Foxg1), Brn124, COE, 
Dach, Emx, ER81.H85.H86, Ets3.H71, Svp, Tll (Tlx), TrpHyd, Wnt5, Wnt8 
(ref. 14); Trp2 (Steinmetz et al.37); DLamide; FLamide, FVMamide, FVamide, 
HIGA, LYamide, NPY (NPY4), RYamide, SPY, WLD, YFamide38; RGWamide39; 
VWamide (MIP)40, Pax258 (ref. 41); rOpsin3 (ref. 15); Proenkephalin42; 
FGFR, GBRL2.Y85, KLF.H38, Tektin.2.R68 (ref. 16); Bsx, Not43; NCBI nucle-
otide database: Dpn.H35 (HES3, GenBank KC999041), HIGA (GenBank 
KF515947), Otx (GenBank AJ278856), MLDneuropeptide (GenBank KF515945), 
NGEWneuropeptide (GenBank KF515948); Arendt lab P. dumerilii  
EST sequencing library: CALM.R29 (EST IB0AAA31DB02EM1), cpa (EST 
IB0AAA35BD12FM1), Dek.H2 (EST IB0AAA15CC12EM1), HEN1.Y61 (EST 
IB0AAA56YF10EM1), LDB3.R10 (EST IB0AAA19CC08EM1), MyoD.H29 
(EST IB0AAA28CH12EM1), p53.63.73.like.H45 (EST IB0AAA34AG01EM1), 
PRVA-Y49 (Parvalbumin-alpha, EST IB0AAA53YF24FM1), Tekitin.3.R7 (EST 
IB0AAA18BD02EM1), Tolloid.Y68 (EST IB0AAA57YH01EM1), ZFAT.like.
H97 (EST IB0AAA37DA10EM1); Lhx3 (provided by Kristin Tessmar-Raible), 
Pnr (provided by Maria Antonietta Tosches), Eya and Sepiapterin reductase 
(provided by Keren Guy).

Gene specificity. Given the set of 98 reference genes and the set of cells that 
were sequenced, we define an C × M read count matrix, D, where Dc,m describes 

the normalized number of reads mapped to cell c for gene m. Subsequently,  
for each cell-gene combination, we define its specificity ratio, rc,m as: 

r
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c m
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The specificity scores for each gene in the quality-filtered cells are provided 
in Supplementary Table 5.

Computing the correspondence score. To map back each sequenced single 
cell to its localization in the reference ISH data set, we developed a scor-
ing system where we calculate the correspondence between every cell-voxel 
combination.

This scoring system compares the binary vector of expression provided by 
the WMISH data with a binarized version of the expression pattern for each 
cell sequenced. To binarize the expression vectors, we used a threshold of ten 
reads above which a gene was considered expressed.

The score Se eC ref,  between the binary expression vector ec from single cell 
c and eref from voxel ref in the ISH data set is defined as: 
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This scoring scheme is designed to assess the correspondence between a single 
cell and each reference voxel with regard to the specificity ratio of each gene 
for the considered single cell. The specificity scores are transformed to fall in 
the interval [0,1] following an algebraic function, t, which avoids giving too 
much weight to exceptionally specific genes and quickly reduces the weight of 
nonspecific genes that may hinder the precision of the mapping.

The correspondence scores for each cell-voxel combination in the quality-
filtered cells are provided in Supplementary Table 6.

The method presented above penalizes only mismatches when the gene 
is expressed in the RNA-seq data and not in the reference atlas (one-way 
penalization). It is possible to penalize similarly mismatches that arise when 
a gene is not found to be expressed by the RNA-seq but expressed in the 
reference atlas (two-way penalization) as detailed in Supplementary Note 3 
and Supplementary Table 7. The one-way penalization is justified by noting 
that current scRNA-seq protocols display a substantial degree of technical 
noise, meaning that accurately calling a gene as unexpressed in a given cell 
is challenging.

Selecting the score threshold based on simulated data. For a single cell c, 
once the scores against every voxel in the reference data set are computed and 
sorted, we need to define a score threshold above which we consider the voxels 
as the potential area where the single cell came from.

To find this threshold, we conducted a simulation study by generating 
13,900 (100 per sequenced cell) random “simulated single cells.” Each simu-
lated single cell is created by randomly shuffling the specificity scores for all 
genes in each sequenced cell.

We then apply the mapping method to this set of randomly generated samples 
and summarize the results for different thresholds. Supplementary Figure 3  
shows the proportion of simulated cells with at least n voxels (x axis) above 
a certain threshold (different lines on the plot). From this null distribution, 
we chose three different thresholds corresponding to different levels of con-
fidence in the mapping. (i) High confidence mapping for cells that have at  
least 21 voxels scoring higher than 1.5. The probability of a simulated cell  
mapping back with the same criteria is less than 10%. (ii) Medium confidence 
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mapping for cells with at least 16 voxels scoring higher than 0.5. The probability  
of a simulated cell mapping back with these criteria is less than 30%.  
(iii) Low confidence mapping for cells that have at least 11 voxels scoring 
higher than 0. For these cells, the mapping can be considered as providing a 
strong hypothesis about the location of these cells, although the confidence in 
the mapping is relatively low (<50% of obtaining such a result by chance in the 
null set). For comparison, Supplementary Figure 4 shows the same propor-
tion plot for different thresholds but for the sequenced cells.

R scripts for the analysis. Curated R scripts and example analysis workflows 
for the computation of gene specificity ratios, correspondence scores and the 
thresholds for confidence values are provided as Supplementary Scripts. 
Alternatively, the scripts can be found at GitHub (https://github.com/jbogp/
nbt_spatial_backmapping).

In situ hybridization, imaging and image registration. In situ hybridization 
(ISH) and dual ISH on 48 hpf P. dumerilii larvae was performed as described 
previously44. All the colocalization patterns shown were replicated in at least 
four animals.

The P. dumerilii genes analyzed by ISH were: ER81 (ref. 14), Fezf16, Lhx3 
(produced by K. Tessmar-Raible), Proe42, Cux1/2 and Ten3. For the synthesis of 
mRNA probes against Proe, Cux1/2 and Ten3, wild-type P. dumerilii RNA was 
reverse transcribed using SuperScriptIII reverse transcriptase (Life Technologies, 
cat. # 18080044), and amplified by PCR using TaKaRa ExTaq DNA polymerase 
(Clontech, cat. # RR001A) and the following gene specific primers:

Proe (5′-CATTTGCAAGTTCCGAGGTT-3′ and 5′-GCTTGTCACTGG 
TTGGTTCC-3′),

Cux1/2 (5′-CTGCCCTTGAAGAGGAGTTG-3′and 5′-GACTCCAACGG 
TTCGATGAT-3′),

Ten3 (5′-ATCTGTAAGCCAGGCTGGAA-3′ and 5′-GGTCGCAAGT 
GACCGTTTAT-3′).

The resulting PCR fragments were cloned into pCRII-TOPO vector (Life 
Technologies, cat # K4610-20). For the synthesis of ISH probes, cDNA plasmids 
were linearized and antisense RNA probes were transcribed using SP6 or T7 
RNA polymerase (Roche, cat. #11487671001 and 10881775001, respectively) 
and DIG RNA-labeling mix (Roche, cat. #11277073910)Top of FormBottom of 
Form or Fluorescein RNA labeling mix (Roche, cat. # 11685619910).

For imaging of ISH samples, samples were mounted in 97% 2,2′- 
thiodiethanol (Sigma, cat. # 166782) and imaged on Leica TCS SP8 confocal 
microscope, using a combination of fluorescence and reflection45 microscopy. 
The colocalization analyses and image post-processing was performed using 
Fiji46 software. The figure panels were compiled using Adobe Illustrator and 
Adobe Photoshop software. Image registration and gene expression averaging 
was performed as previously described47.
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