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Understanding how gene regulatory networks control the 
progressive restriction of cell fates is a long-standing challenge. 
Recent advances in measuring gene expression in single cells are 
providing new insights into lineage commitment. However, the 
regulatory events underlying these changes remain unclear. Here 
we investigate the dynamics of chromatin regulatory landscapes 
during embryogenesis at single-cell resolution. Using single-
cell combinatorial indexing assay for transposase accessible 
chromatin with sequencing (sci-ATAC-seq)1, we profiled chromatin 
accessibility in over 20,000 single nuclei from fixed Drosophila 
melanogaster embryos spanning three landmark embryonic stages: 
2–4 h after egg laying (predominantly stage 5 blastoderm nuclei), 
when each embryo comprises around 6,000 multipotent cells; 
6–8 h after egg laying (predominantly stage 10–11), to capture a 
midpoint in embryonic development when major lineages in the 
mesoderm and ectoderm are specified; and 10–12 h after egg laying 
(predominantly stage 13), when each of the embryo’s more than 
20,000 cells are undergoing terminal differentiation. Our results 
show that there is spatial heterogeneity in the accessibility of the 
regulatory genome before gastrulation, a feature that aligns with 
future cell fate, and that nuclei can be temporally ordered along 
developmental trajectories. During mid-embryogenesis, tissue 
granularity emerges such that individual cell types can be inferred 
by their chromatin accessibility while maintaining a signature of 
their germ layer of origin. Analysis of the data reveals overlapping 
usage of regulatory elements between cells of the endoderm and 
non-myogenic mesoderm, suggesting a common developmental 
program that is reminiscent of the mesendoderm lineage in other 
species2–4. We identify 30,075 distal regulatory elements that exhibit 
tissue-specific accessibility. We validated the germ-layer specificity 
of a subset of these predicted enhancers in transgenic embryos, 
achieving an accuracy of 90%. Overall, our results demonstrate the 
power of shotgun single-cell profiling of embryos to resolve dynamic 
changes in the chromatin landscape during development, and to 
uncover the cis-regulatory programs of metazoan germ layers and 
cell types.

We adapted our sci-ATAC-seq protocol1 to work with nuclei from 
formaldehyde-fixed Drosophila embryos and concurrently imple-
mented optimizations to increase the sensitivity by roughly an order of 
magnitude. The nuclei processed from each developmental time point 
were derived from hundreds of embryos of both sexes, and were there-
fore likely to include intermediate developmental states. Of 431 million 
sequenced read pairs, 70% mapped to the nuclear reference genome 
and were assigned a cell barcode (Extended Data Fig. 1a, b). Altogether, 
we obtained chromatin accessibility profiles for 23,085 cells across the 
three time points (12,904 ±  10,979 (mean ±  s.d.) reads per cell after 

de-duplication; minimum of 500 unique reads per cell (Extended Data 
Fig. 1c)). Sequenced fragments exhibited nucleosomal banding and 
were strongly enriched in DNase-hypersensitive sites (DHS) that have 
been defined in bulk Drosophila embryos5 (Extended Data Fig. 1d).

We partitioned the genome into 2-kb windows and scored each 
cell by whether any reads were observed in each window. For each 
time point, we performed latent semantic indexing1 (LSI) using the 
20,000 most frequently accessible windows and discarding the 10% 
of cells with the fewest reads. Of the 20,000 windows, 14,295 were 
 common across all three time points (Extended Data Fig. 1e). Although 
measurements of accessibility in individual cells are naturally sparse  
(as there are only 2–4 genome equivalents per nucleus), the data are 
sufficiently structured to reveal subsets of cells with similar chromatin 
accessibility (Fig. 1a–c). To map the underlying regulatory elements, 
we aggregated data from cells within each of the largest 4–5 clades 
per time point to call peaks and summits of accessibility for each  
‘in silico-sorted’ clade (Fig. 1d). Merging summits across all time points 
and clades identified 53,133 potential cis-regulatory elements, 40,967 
of which have clade-specific accessibility in at least one time point 
(Supplementary Table 1); including 12,605 at 2–4 h, 25,615 at 6–8 h 
and 28,253 at 10–12 h after egg laying (Extended Data Fig. 1f). These 
results reveal the highly dynamic and heterogeneous nature of chro-
matin accessibility during embryogenesis, with roughly twice as many 
differentially accessible sites identified at the later time points compared 
with the earlier one.

To determine the identity of each cell clade, we compared acces-
sible regions to 3,841 developmental enhancers6–8 and 9,356 gene 
 promoters9,10 with characterized tissue activity across  embryogenesis. 
The enrichments of clade-specific promoter-distal (putative  enhancers) 
and promoter-proximal (putative promoters) elements gave  consistent 
results (Supplementary Table 2). The four major clades at 6–8 h 
and 10–12 h correspond to the three major germ layers, with two 
 subdivisions: ectoderm, which is split into neurogenic (clade 1) and 
non-neurogenic (clade 2) lineages, and mesoderm, which is split into 
myogenic mesoderm (clade 3) and non-myogenic mesoderm (such 
as fat body and haemocytes) combined with endoderm (clade 4) 
(Extended Data Fig. 2, Supplementary Table 2). The latter indicates that 
non-myogenic mesoderm and endoderm exhibit similar chromatin 
accessibility, suggesting a shared developmental program. Although, 
to our knowledge, Drosophila mesoderm and endoderm have not 
been shown to share a common origin, this is highly reminiscent of 
the mesendoderm lineage in Caenorhabditis elegans2, sea urchins3 and 
vertebrates4. Of the 53,133 potential cis-regulatory elements, 35,963 
are distal (putative enhancers); 12% overlap characterized devel-
opmental enhancers and 48% overlap putative enhancers identified 
from bulk DHS data5 (based on 1-bp overlap). Conversely, of the 
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3,841 characterized developmental enhancers, 2,533 (66%) overlapped 
regions of accessible chromatin identified in this study.

To validate in silico sorting and clade assignments, we used 
 fluorescence-activated cell sorting (FACS) to isolate myogenic 
 mesoderm and neuronal nuclei from 6–8 h embryos11 to approximately 
98% purity. Sorted nuclei were subjected to DNase I-hypersensitive-site 
sequencing (DNase-seq) in bulk, and the resulting accessibility maps 
were compared to our in silico-sorted (that is, clade-defined) sci-ATAC-
seq data from 6–8-h embryos (Fig. 1e). The comparison shows notable 
similarity both globally (Spearman’s ρ >  0.85 for matched versus 0.53 
for non-matched comparisons) and at individual loci. For example, 
both methods show that previously characterized neuronal  enhancers 
near the ftz gene are accessible in neurogenic ectoderm but not in  
myogenic mesoderm (Fig. 1f, left) and, conversely, that muscle 
 enhancers of Mef2 are accessible in myogenic mesoderm but not in 
neurogenic ectoderm (Fig. 1f, right).

The clade assignments are further supported by motif enrichments 
for transcription factor binding sites and transcription factor occupancy 
at putative enhancers. For example, at mid and late embryogenesis,  
motifs for the lineage-specifying factors Krüppel (Kr), tramtrack 
(Ttk) and runt (Run) were among the most enriched in neurogenic 

ectoderm12 (clade 1), Mef2 and Cf2 motifs were enriched in myogenic 
mesoderm13 (clade 3) and GATA motifs were enriched in mesendo-
derm (clade 4) (Extended Data Fig. 3a–c, Supplementary Table 3). 
The presence of GATA motifs may reflect the conserved role of GATA  
factors in the specification of both non-myogenic mesoderm14 and 
endoderm15. Similarly, regions occupied by transcription factors with 
more constitutive roles, such as CTCF, exhibit similar accessibility 
across all clades (Extended Data Fig. 3d–g), whereas regions bound 
by myogenic transcription factors are more accessible in the myogenic 
mesodermal clade16 (Extended Data Fig. 3h–l).

Cells examined at 2–4 h after egg laying fall into five major clades 
(Fig. 1a) in which regulatory identities are clearly distinct from later 
stages in embryogenesis (Extended Data Fig. 4, Supplementary Table 2).  
The 2–4-h nuclei span embryos from the syncytial blastoderm,  
cellularization, gastrulation and early germ-band extension (stages 
5–8), with the majority of embryos being pre-gastrulation (stage 5). 
Developmental transitions during these stages are very rapid, with  
cellularization (stage 5) lasting 40 min and onset of gastrulation (stage 6)  
lasting only 10 min. To capture finer granularity across these dynamic 
transitions, we applied t-distributed stochastic neighbour embedding 
(t-SNE)17 to the binary sci-ATAC-seq matrix of cells versus summits of 
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Figure 1 | Single-cell profiling of chromatin accessibility across 
Drosophila embryogenesis. a–c, Heat maps of binarized, LSI-
transformed, clustered read counts for single cells (columns) in 2-kb 
windows across the genome (rows) at 2–4 h (a), 6–8 h (b) and 10–12 h 
(c) after egg laying. Major clades are assignable to germ layers at post-
gastrulation time points (b, c). d, Approach to annotation of clades by 
intersecting clade-specific peaks of chromatin accessibility with enhancer 
activity and gene expression. In situ image of enhancer activity (black 
stain) from ref. 7; RNA in situ (blue stain) from the Berkeley Drosophila 
Genome Project10,31,32. e, Comparing fluorescence-activated cell sorting 
combined with DNase I sequencing (FACS–DNase-seq) and in silico 

sorting with sci-ATAC-seq. Nuclei from myogenic mesoderm and neurons 
were isolated from 6–8-h embryos using antibodies against tissue-specific 
regulatory proteins Mef2 (myogenic mesoderm) and Elav (neurons), 
sorted by FACS and analysed by DNase-seq. In silico sorts from sci-ATAC-
seq were built by pooling reads from all cells within each LSI-defined 
clade. f, Library-size-normalized coverage tracks from FACS–DNase-seq 
(top graph for each clade) and sci-ATAC-seq in silico sorts (bottom graph 
for each clade) for whole embryo (black), mesodermal (red), and neuronal 
(blue) at 6–8 h. Shown are ftz (neuronal; left) and Mef2 (mesodermal; 
right) loci. Known enhancers for each tissue are indicated.
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accessibility. Because of confounding differences in sex chromosome 
copy number between male and female nuclei (Extended Data Fig. 5), 
we restricted the matrix to autosomal elements.

Density-peak clustering18 of cells after t-SNE enabled identification 
of 18 cell clusters at 2–4 h (Fig. 2a). Analysis of the relative enrich-
ment of these clusters for active enhancers and transcription-factor 
occupancy (Supplementary Tables 4, 5) revealed marked differences in 
their developmental stages (Fig. 2b), highlighting developmental time 
as a major axis of variation within this time point. Notably, two of the 
developmentally early clusters were sex-biased (cluster 10: 85% male; 
cluster 1: 69% female). Whereas the identity of the male-biased cluster 
remains unclear, the female-biased cluster is enriched for enhancers 
that are active in brain anlage.

To evaluate this temporal ordering more formally, we used a graph-
based method to arrange single cells into a developmental trajectory19. 
This ‘pseudotemporal’ ordering agreed well with the observed enrich-
ments in cell clusters for active enhancers (Extended Data Fig. 6a–c). 
Notably, the trajectory split cells into three major branches that were 
consistent with our annotations of the major germ layers (neuronal 
cells are rare at this time point, as expected) (Fig. 2c). Pseudotemporal 
ordering also enabled us to explore the dynamics of sites that open or 
close within the 2–4-h window. We identified 12,165 sites with signifi-
cant pseudotime-dependent temporal changes (1% false discovery rate 
(FDR)). Using a simple heuristic, we classified 5,219 (43%) of these sites 
as closing as pseudotime progressed; 5,133 (42%) as opening; and the 
remaining 1,813 (15%) as having more complex dynamics (Extended 
Data Fig. 6d–i, Supplementary Table 6). Many of the most pronounced 
changes match expectations, falling within gene loci that have dynamic 
roles during early embryogenesis. For example, the most significant 
closing site (P value =  5 ×  10−224) is within the slam locus, a gene that 
is essential for blastoderm cellularization during a very brief temporal 
window20 (Extended Data Fig. 6g).

To identify sites that open or close specifically within individual 
germ-layer trajectories, we tested for pseudotime-dependent changes 
along each of the three paths (Fig. 2c) independently (with the potential 

caveat that these branches may be contaminated to some degree by cells 
from older embryos, owing to female ‘holding’). This test identified 3,129 
sites that were significantly pseudotime- dependent in only one branch, 
with 992, 1,071, and 1,066 restricted to the ectoderm,  mesoderm and 
endoderm, respectively (Fig. 2d, Supplementary Tables 7–10). As with 
the global pseudotime ordering, sites  associated with  lineage-specific 
pseudotime exhibited dynamics consistent with  biological expectation 
(for example, sites in the  heartless (htl)21, GATAe22, and dachsous (ds)23 
loci are accessible specifically in  mesoderm, endoderm and ectoderm, 
respectively; Extended Data Fig. 6j–l).

Therefore, germ layers appear late in pseudotime at 2–4 h (Fig. 2c), 
yet developmentally early nuclei in this same window (as defined in 
Fig. 2b; clusters 6, 15, 4, 7, 8, 16) exhibit heterogeneous chromatin 
accessibility that reflects enhancer activity in refined spatial domains 
along the embryo’s antero-posterior (A–P) and dorso-ventral (D–V) 
axes (Supplementary Table 5). For example, chromatin accessibility 
surrounding two gap genes, knirps (kni) and giant (gt), varies among 
developmentally early clusters (Fig. 2e, f). The expression of knirps and 
giant is spatially patterned in two broad stripes along the A–P axis of 
the embryo, each controlled by two enhancers driving either the pos-
terior or the anterior expression7. The anterior enhancers of both genes 
have greater accessibility in cells of the presumptive anterior blasto-
derm clusters (clusters 6 and 15), while the posterior enhancers exhibit 
greater accessibility in the presumptive posterior blastoderm clusters 
(clusters 4, 7, and 16) (Fig. 2e, f). This example illustrates how despite 
being untargeted, sci-ATAC-seq can identify regulatory regions that 
are specifically accessible in spatially refined subsets of cells without 
the need for FACS sorting. Classic lineage-tracing and transplantation 
experiments showed that the broad fate and developmental potential of 
cells are largely determined at the cellular blastoderm stage, leading to 
the concept of a blastoderm fate map24. Our data support the view that 
these early pre-gastrulation cell specification events are underpinned 
by spatial heterogeneity in chromatin accessibility.

Applying t-SNE to the later time points, during lineage commitment 
(6–8 h) and differentiation (10–12 h), revealed a fine-grained map of 

EndodermMesodermEctoderm fe

4–
6

7–
8

9–
10

11
–1

2

13
–1

6

Enhancer activity (stage)

b
0 1

Relative enrichment
Cluster assignment

t-SNE dimension 1

t-
S

N
E

 d
im

en
si

on
 2

t-SNE analysis at 2–4 ha

Identify peaks enriched
in each cluster

d

c
1

2

3
4

5

6
7

8
9

10

11

12
13

1415

16

17
18

8.  Mesoderm anlage

9.  Mesoderm A

3.  Head Mesoderm

13.  Endoderm B

17.  Mesoderm B

12.  Endoderm A

2.  Neural

10.  Unknown

11.  Ectoderm B

16.  Blastoderm E (post.)

6.  Blastoderm A (ant.)
15.  Blastoderm B (ant.)
4.  Blastoderm C (post.)
7.  Blastoderm D (post.)

1.  Ectoderm A

5.  Ectoderm C

14.  Ectoderm D

Pseudotime
LateEarly

Pseudotime

B
ra

nc
h-

sp
ec

i�
c 

si
te

s 
(n

 =
 3

,1
29

)

Closed

Open

knirps

Enhancer activity
st.5 st.5

kni

17. Mesoderm B
2. Neural

6. Blastoderm A (ant.)
15. Blastoderm B (ant.)
4. Blastoderm C (post.)
7. Blastoderm D (post.)

giant

gt

Enhancer activity
st.5 st.5

0 10
RPM

0 10
RPM

Genes

16.  Blastoderm E (post.)

Dimension 1

D
im

en
si

on
 2

Blastoderm4,6,7,15,16Unknown10

Collision18

Neural2Ectoderm1,5,11,14

Mesoderm3,8,9,17 Endoderm12,13

Development

3

2

4

1

1

2

3
4

5

6
7

8

9
10

11

12
13

1415

16

17

18

Figure 2 | Temporal dynamics and spatial heterogeneity in chromatin 
accessibility in the early embryo. a, t-SNE analysis of cells at 2–4 h. 
Clusters were defined by a density peak clustering algorithm (see 
Methods) and annotated on the basis of overlaps between cluster-
enriched peaks and known tissue-specific enhancers or genes. b, Relative 
enrichment of enhancers that are active at different developmental stages 
in each cluster. Clusters below the white dashed line are likely to be derived 
from embryos outside the 2–4-h window, owing to female holding of older 
embryos. Ant., anterior; post., posterior. c, Pseudotime ordering of cells 
along a developmental trajectory. Cells were ordered in three dimensions 
(only two are shown) with DDRTree. Point colours correspond to cells’ 

progression along the trajectory. Pie charts indicate relative frequencies of 
germ-layer assignments for cells in each branch. Superscript numbers in 
the key indicate which clusters from a were included in each category.  
d, Heat map of smoothed accessibility curves fit to sites (rows) for 100 bins 
of cells progressing through pseudotime (columns). Sites were clustered 
into four groups on the basis of their temporal dynamics. Only sites 
classified as branch-specific are shown. e, f, Heat maps of library-size-
normalized read counts in the vicinity of the gap genes knirps (e) and  
giant (f). In each case, one characterized enhancer is known to drive anterior 
expression and the other drives posterior expression in blastoderm embryos 
(stage 5). In situ images of enhancer activity obtained from ref. 7.
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cell clusters that could be readily assigned to specific tissues or cell types 
(Fig. 3a, b; Supplementary Table 4). A few small clusters were identified 
as likely ‘collisions’ resulting from the combinatorial indexing, and were 
therefore discarded (purple clusters in Fig. 3a, b, Extended Data Fig. 7).  
For all remaining clusters, the cell-type assignments are broadly con-
sistent with the germ-layer clade assignments (Fig. 3c, Extended Data 
Fig. 8), but with much finer granularity, whether we use information 
from either enhancer or gene-activity databases (Extended Data Fig. 9).  
For example, mesendoderm (clade 4 in Figs 1, 3c) is resolved into 
three separate clusters at 6–8 h, comprising the fat body (cluster 14) 
and haemocytes (cluster 16) from the non-myogenic mesoderm, and 
midgut (cluster 8) from the endoderm (Fig. 3a). Although we are clearly 
undersampling the number of cells present at these stages, the data are 
not obviously biased towards any particular tissue or cell type. The 
clusters’ tissue identities also match transcription factor occupancy by 
tissue-specific factors (Supplementary Table 4). For example, cells in 
cluster 8 (muscle) at 10–12 h are enriched for reads that overlap chro-
matin immunoprecipitation (ChIP) peaks for the key myogenic factor 
Mef2 at 10–12 h (Fig. 3d).

A major advantage of profiling chromatin accessibility is its poten-
tial to identify distal regulatory elements that shape gene expression. 
To determine whether elements that exhibit tissue-specific chroma-
tin accessibility corresponded to bona fide tissue-specific enhancers, 
we tested 31 elements in transgenic embryos. We selected promoter- 
distal elements exhibiting clade-specific accessibility at 6–8 h and/or 
10–12 h that did not overlap with previously characterized  enhancers 
(Supplementary Table 11). No other criteria were used to bias the 
selection towards different classes of distal regulation (for example, 
enhancers versus insulators). Each putative regulatory element was 
cloned upstream of a minimal promoter driving a lacZ reporter and 
stably integrated into a common location in the Drosophila genome to 
minimize positional effects. Enhancer activity was then assessed across 
all stages of embryogenesis by in situ hybridization.

Notably, given the simple selection strategy, 94% (29 of 31) of 
tested regions functioned as developmental enhancers in vivo (Fig. 4,  
Extended Data Fig. 10, Supplementary Table 11). Furthermore, 
90% (26 of 29) of active enhancers showed activity in the predicted 
 tissue, with 23 being exclusive to that tissue (Extended Data Fig. 10, 
Supplementary Table 11). For example, elements specifically accessible 
in the neuronal, ectodermal or muscle clades show enhancer activity 
in the developing central nervous system (with some amnioserosa)  
(Fig. 4a), epidermis (Fig. 4b) and muscle (Fig. 4c), respectively. 
Elements that are specifi cally accessible in the mesendoderm clade 

often act as enhancers in either the gut endoderm or haemocytes 
 (mesoderm). Enhancer 4, for example, is accessible in cells of the 
developing midgut (endoderm) at both 6–8 h and 10–12 h, matching its 
activity in the anterior– posterior midgut during these stages (Fig. 4d).  
The only exceptions to our  predictions were three of the seven  elements 
that are specifically accessible in clade 4, which when tested were active 
in yolk nuclei (Extended Data Fig. 10). As the yolk is extra- embryonic, 
this was unexpected, and suggests a potential regulatory link between 
the yolk and mesendodermal tissues, which is supported by the role 
of the GATA transcription factor serpent in both yolk25 and non- 
myogenic mesoderm14.

In summary, our results demonstrate the power of sci-ATAC-seq to 
not only elucidate the developmental dynamics of chromatin accessi-
bility, but also for the large-scale prediction of in vivo enhancer activity.  
Altogether, we identified 30,075 putative distal regulatory elements 
exhibiting clade-specific accessibility (Supplementary Table 1). By com-
bining reads from cells within each t-SNE cluster, we generated cell-
type-specific tracks of chromatin accessibility, which reveal a wealth 
of differences between cell types, and a powerful resource for future 
investigations (http://shiny.furlonglab.embl.de/scATACseqBrowser/). 
We also provide site-by-cell matrices and vignettes to facilitate further 
exploration of the data (http://atlas.gs.washington.edu).

The sparsity of data from single-cell molecular profiling technologies, 
including sci-ATAC-seq, remains a challenge. Although insights can 
be derived by aggregating observations across subsets of cells, as done 
here, increasing the number of reads per cell will increase the granu-
larity at which chromatin accessibility can be explored. Combinatorial 
indexing is subject to collisions; with our current strategy, around 
12% of cell barcodes are expected to represent aggregates of two or 
more cells. Analogous to doublets in emulsion-based single-cell RNA 
sequencing, collisions primarily add noise to the aggregate profiles of 
clades, but can sometimes lead to artefactual clusters. We present a 
strategy for identifying such clusters here; however, collisions are likely 
to be more effectively overcome by additional rounds of combinatorial 
indexing26, which would also increase throughput.

Looking forward, an expanded dataset that includes many more cells 
per time point and covers the entirety of Drosophila development has 
the potential to identify rarer cell types and reveal a fully continuous 
view of the landscape of chromatin accessibility as it unfolds. Our ability 
to understand how changes in the regulatory landscape underlie lineage 
commitment would be greatly aided by the concurrent measurement 
of chromatin accessibility and transcription. In the long term, the inte-
gration of chromatin state, transcriptional output26, lineage history27,28 
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and spatial information29,30 at single-cell resolution has the potential to 
unlock how an organism’s genome encodes its development.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 4 | Prediction of tissue-specific enhancer activity using sci-
ATAC-seq. a–d, Examples of candidate LSI clade-specific enhancers tested 
with transgenic reporters. For each time point, upper panels show the 
t-SNE map with blue intensity representing the number of sci-ATAC-seq 
reads obtained from each tested element. Cell clusters bounded by dashed 
lines correspond to the predicted clade of activity. Lower panels show 
transgenic embryos with DAPI-stained nuclei (grey), in situ hybridization 
of the lacZ reporter gene driven by the enhancer (yellow), and a tissue 
marker (magenta). All embryo images are lateral views, with anterior left 
and dorsal up, and are representative of observations across hundreds 
of embryos. Scale bar, 50 μ m. The activity and an overview of all tested 
enhancers are shown in Extended Data Fig. 10.
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MethOdS
Fixation of embryos and nuclear isolation. Wild-type D. melanogaster embryos 
were collected and fixed as previously described33. In brief, embryos were collected 
on apple-agar plates in two-hour windows following three one-hour pre- collections 
to synchronize the collections. After ageing (at 25 °C) to the appropriate time  
window, embryos were washed from the plates, cleaned and dechorionated in 50% 
bleach for 2 min, followed by 15-min fixation with shaking at room temperature 
in cross-linking solution (50 mM Hepes, 1 mM EDTA, 0.5 mM EGTA, 100 mM 
NaCl, pH 8, 1.8% formaldehyde v/v) with a heptane layer. Fixation was stopped 
by washing with 125 mM glycine in PBS. The embryos were washed, dried and 
frozen at − 80 °C in ~ 1-g aliquots. Embryo dissociation and nuclear isolation were 
performed as described previously (steps 1–10)11 using a dounce homogenizer and 
a 22G needle. The resulting nuclei were pelleted at 2,000g at 4 °C, resuspended in 
nuclear freezing buffer (50 mM Tris at pH 8.0, 25% glycerol, 5 mM Mg(OAc)2, 
0.1 mM EDTA, 5 mM DTT, 1×  protease inhibitor cocktail (Roche), 1:2,500 super-
asin (Ambion)) and flash frozen in liquid nitrogen.
Collection of sci-ATAC-seq data. Our protocol for generating sci-ATAC-seq 
data was largely as previously described1, but with a few important improvements. 
Frozen nuclei were thawed quickly in a 37 °C water bath and then pelleted at 500g 
for 5 min at 4 °C, aspirated and resuspended in cold lysis buffer (supplemented 
with protease inhibitors). Nuclei were stained with 3 μ M DAPI and 2,500 DAPI+ 
nuclei were sorted into each well of a 96-well plate containing 9 μ l lysis buffer 
(10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2 and 0.1% IGEPAL CA-63034,  
supplemented with protease inhibitors (Sigma)) and 10 μ l TD buffer (Illumina, 
part of FC-121-1031) in each well. One microlitre of each of the 96 custom and 
uniquely indexed Tn5 Transposomes (Illumina, 2.5 μ M)35 was then added to each 
well and nuclei were incubated at 55 °C for 30 min. Following tagmentation, 20 μ l  
40 mM EDTA (supplemented with 1 mM spermidine) was added to stop the reac-
tion and the plate was incubated at 37 °C for 15 min. All wells of the plate were 
then pooled, nuclei were stained again with 3 μ M DAPI and 25 DAPI+ nuclei 
were sorted into each well of a second set of 96-well plates that contained 12 μ l  
reverse crosslinking buffer (11 μ l EB buffer (Qiagen) supplemented with 0.5 μ l  
20 mg/ml Proteinase K (Qiagen) and 0.5 μ l 1% SDS). For each time point, we 
 collected four plates of nuclei at this stage. We expect that sorting 25 nuclei into 
each well at this stage will result in approximately 12% of barcodes representing 
more than one nucleus  (collisions)1. Nuclei were then incubated overnight at 65 °C. 
Proceeding from reverse- crosslinking, we added primers (0.5 μ M final concen-
tration, Supplementary Table 12), 7.5 μ l NPM polymerase master mix (Illumina, 
FC-121-1012) and BSA (2×  final concentration; NEB) to each well. Tagmented 
DNA was then PCR amplified. To determine the number of cycles required, we 
first amplified several test wells of nuclei that had been sorted onto an additional 
plate and monitored the reactions with SYBR green on a qPCR machine to establish 
when the libraries reached saturation. The cycling conditions were as follows: 72 °C 
3 min, 98 °C 30 s; 98 °C 10 s, 63  C 30 s, 15–25 cycles; 72 °C 1 min, hold at 10 °C.

We have found that the optimal number of cycles can vary from one experi-
ment to the next, but is usually in the range of 15–25 cycles. After PCR amplifi-
cation, all wells were pooled and split across four DNA Clean & Concentrator-5 
columns (Zymo) and all four products were then pooled and cleaned again using 
Ampure beads (Agencourt). Finally, the concentration and quality of the libraries 
was determined using the BioAnalyzer 7500 DNA kit (Agilent). For sequencing, 
equimolar libraries from the three time points were pooled and loaded at 1.5 pM 
on a NextSeq High output 300 cycle kit and sequenced using custom primers and 
a custom sequencing recipe35. Fifty base pairs were sequenced from each end, in 
addition to the barcodes introduced during tagmentation and PCR amplification. 
This improved protocol resulted in roughly an order of magnitude more reads per 
cell than previously reported.
Read alignment, cell assignment and duplicate removal. To process the data, 
BCL files were converted to fastq files using bcl2fastq v.2.16 (Illumina). Each 
read was assigned a barcode which was actually made up of four individual 
 components: a tagmentation barcode and a PCR barcode added to the P5 end of 
the  molecule, and a distinct tagmentation and PCR barcode added to the P7 end 
of the  molecule. To correct for sequencing and/or PCR amplification errors, we 
broke the barcode into its constituent parts and matched each piece against all 
possible barcodes. If the component was within three edits of an expected barcode 
and the next best  matching barcode was at least two edits further away, we fixed 
the barcode to its presumptive match. Otherwise, we classified the barcode as 
ambiguous or unknown. We next mapped each read to the dm3 reference genome 
using bowtie236 with ‘-X 2000 -3 1’ as options and filtered out read pairs that 
did not map uniquely to autosomes or sex chromosomes with a mapping quality 
of at least 10, as well as reads that were associated with ambiguous or unknown 
barcodes. Of 430,658,635 sequenced read pairs, 301,314,040 (70%) mapped to the 
nuclear reference genome with an assigned cell barcode. By contrast, only 366,468 
read pairs (0.09%) mapped to the mitochondrial genome, with an assigned cell 

 barcode. We subsequently removed PCR duplicates for all reads that mapped to the 
nuclear genome using a custom Python script that only considered reads assigned 
to the same barcode. Finally, to determine which barcodes represented genuine 
cells (as opposed to background reads assigned to improper barcodes), we counted 
the number of reads assigned to each barcode and log-transformed those counts 
and then used the mclust package in R37,38, which fits the data using a mixture 
model and determines the maximum likelihood parameters for a given number of  
distributions, to define two distributions of barcodes—setting the read depth cut-
off for a cell at the point at which we were 95% confident that the barcode belonged 
to the higher read-depth distribution. Considering the distribution of barcodes for 
all three experiments at the same time, we determined this read-depth cut-off to 
be 500 reads (that is, we required a barcode to be associated with at least 500 reads 
to be considered a true cell; Extended Data Fig. 1). See http://atlas.gs.washington.
edu for more details on data processing.
Latent semantic indexing. To further process the raw data, we first broke the 
genome into 2-kb windows and then scored each cell according to whether it 
had any insertions in each window, creating a large binary matrix of windows by 
cells for each time point. Based on this binary matrix, we retained only the top 
20,000 most commonly used sites (this number could extend a little above 20,000 
because we retained all sites that were tied at the threshold for cell counts) and 
then filtered out the 10% of cells with the smallest number of accessible sites. We 
then  normalized and re-scaled these large binary matrices by using the term fre-
quency–inverse document frequency (TF–IDF) transformation. We first weighted 
each site that was accessible in an individual cell by the total number of sites acces-
sible in that cell. We then multiplied these weighted values by log(1 +  the inverse 
frequency of each site across all cells). Subsequently, we performed singular value 
decomposition on the TF–IDF matrix and then generated a lower-dimensional 
representation of the data by only considering the second to sixth dimensions 
(because we have found that the first dimension is always highly correlated with 
read depth). These LSI scores were then used to cluster cells and windows on the 
basis of cosine distances using the ward algorithm in R. Scores of accessibility were 
standardized by row and capped at ± 1.5 for visualization. Visual examination of 
the resulting bi-clustered heat map identified 4–5 major clades for each time point.
Peak calling. To identify specific regulatory elements within each of the major 
clades at each time point, we aggregated the data across cells from each clade 
using a process we call ‘in silico cell sorting’. To do so we collected all the unique 
mapped reads associated with cells that were assigned to a given clade and saved 
them as a distinct bam file. Then for each bam file representing a clade, we used 
MACS239 to identify peaks of increased insertion frequency, as well as summits of 
accessibility within each of those peaks. For MACS, we used the macs2 callpeak 
command with the following parameters: “--nomodel --keep-dup all --extsize 200 
--shift -100 --format BAM --gsize mm --call-summits”. For downstream analyses  
we generated a master list of potential regulatory elements by taking 150-bp  
windows centred on all summits called in each clade in each time point and merged 
them with the BEDTools program40. For Extended Data Fig. 1d, we also compared 
our sci-ATAC-seq data to previously collected DNase-seq bulk data5 on whole 
embryos at similar time points. To be consistent in our comparisons (and provide 
a comprehensive list of peaks), we downloaded the raw DNase-seq reads (36 bp, 
single-end), remapped them with our pipeline and called peaks with MACS2 as 
described above. Specifically, we downloaded two replicates for each of three time 
points: stage 5, stage 11 and stage 14. Peaks called on each replicate independently 
were intersected to create a master list of peaks for each time point, which were 
then intersected with our sci-ATAC-seq data.
Identification of differentially accessible sites. To identify regulatory  elements 
that were more specifically accessible in individual clades, we generated a new 
binary matrix of insertion scores for individual cells using the master list of 
 summits of accessibility described above. We then used a logistic regression frame-
work to test whether cells of a given clade were more likely to have insertions at 
a given site relative to all other cells. To identify sites that were specifically more 
accessible in a single clade, we first found summits that were significantly more 
open in a given clade at a 1% FDR, including log10(total unique reads) for each 
individual cell as a covariate. To ensure that these sites were specific to any one 
clade, we also filtered out sites that were significantly accessible in any other clade 
at a relaxed 20% FDR. All testing of differential accessibility was implemented with 
the Monocle 2 package19,41 using the binomialff test. For this analysis, only sites 
observed in at least 50 cells in a given time point were tested.
k-mer discovery. We used SeqGL42 to identify motifs that were enriched in 
clade-specific elements. To do so, we started with all clade-specific sites, based 
on our logistic regression testing described above. Because our master list of sites 
included sites of variable length (after merging all sites from all clusters), we only 
considered 150-bp windows centred on summit midpoints. We also removed sites 
within 500 bp of a transcription start site (TSS), to focus on tissue-specific distal 
elements. As a background set of regions we randomly selected an equal number of 
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sites from the master summit list that matched the GC and repeat element content 
of the test set (this was controlled using a script provided in the gkm-SVM software 
package)43. Finally, instead of default parameters, we used 200 groups and 30,000 
features, similar to the parameters used to analyse DNase-seq data in the original 
SeqGL publication42.
Enrichments for tissue or cell-type activity and transcription factor binding 
data. To perform categorical enrichments, we annotated regions, windows and 
peaks of the non-coding genome using two types of experimental information:  
(1) tissue-specific expression of the nearest gene comprising in situ hybridiza-
tion data from the Berkeley Drosophila Genome Project (http://insitu.fruitfly.org/
cgi-bin/ex/insitu.pl) and a download of the FlyBase gene-expression annotations 
(May 2016); (2) a custom enhancer database of ~ 8,000 transgenic reporter assays 
covering 15% of the non-coding genome, containing spatio-temporal informa-
tion of ~ 4,000 active developmental enhancers (CAD4; Supplementary Table 13). 
We compiled the enhancer database (CAD4) from three primary resources: our  
previous CRM Activity Database (CAD)6, entries from the RedFly enhancer 
 database (Release 5)8, and data from the Vienna Tiling Project7. We compiled this 
dataset in two steps. First, all expression terms (and timing terms, where available) 
were mapped to a common standard (FlyBase anatomy terms v.1.47) and, when 
timing information was available, a common set of stage windows (stages 1–3, 
stages 4–6, stages 7–8, stages 9–10, stages 11–12, stages 13–16). In most cases, the 
mapping was automatic and unambiguous. In some cases, manual term matching 
was required (generally unambiguous). In the second step, we merged overlapping 
entries from CAD3 and the RedFly database and manually removed redundant 
information. Given the different methodologies used in the compilation of the 
data sources, no attempt was made to merge entries from CAD3/RedFly with the 
Vienna Tiles.

Almost all expression terms for both the gene and enhancer annotations 
could be mapped to a common set of hierarchically organized anatomical terms 
(FlyBase anatomy OBO file v.1.47). In the few cases where an exact match could 
not be found, a choice was made manually or using the map provided by FlyBase 
(FBrf0219073). The stage or timing information from both datasets was shifted as 
needed to match a common set of grouped stages (stages 1–3, stages 4–6, stages 
7–8, stages 9–10, stages 11–12, stages 13–16). The compiled data are shown in 
Supplementary Table 13. In addition to BDGP/FlyBase gene expression data, we 
made use of Drosophila-specific gene-level functional information (biological  
process, molecular function and cellular compartment) downloaded from the Gene 
Ontology Consortium (v.1.2) and additional, higher-level functional annotations 
downloaded from the PANTHER classification system (v.8) corresponding roughly 
to the higher-level categories of the GO-SLIM ontology.

To further explore the functions of specific regions of noncoding DNA, we also 
made use of a custom compilation of high-quality transcription factor binding 
data from ChIP studies during embryogenesis (taken from ref. 16) that allowed 
us to assign transcription factor binding events to each sciATAC window or peak. 
Transcription factor binding motifs were taken from this same dataset. To infer 
likely transcription factor binding events, we scanned under published ChIP peaks 
for instances of the motif using FIMO44. Enrichments for these data are listed under 
the category name ‘custom’ in the enrichment data tables.
Categorical enrichments. To identify enriched categories within the LSI clades, 
we first assigned categorical labels by looking for overlaps between our summit 
regions and our enhancer activity database, with summits inheriting the timing and 
expression labels of all overlapping enhancers. Gene-based annotations (expres-
sion, GO and PANTHER terms) were assigned by association to the nearest gene.

To identify differentially accessible summit regions, we used a logistic- regression 
framework (see above) as applied to all summit regions containing reads in at least 
50 cells. Enriched summit regions constituted the foreground set for any clade, 
with the remaining tested summit regions constituting the background set. For 
each of our category sets (for example, enhancer expression, gene expression or 
GO), we used a Fisher’s exact test to look for over-representation of each  category 
among our foreground set relative to the background set. Because many of our 
categories are strongly overlapping, we have applied no formal correction for  
multiple comparison, choosing instead to focus on large, consistent enrichments 
with highly significant P values. Overlaps among significant categories were visu-
alized by plotting distances between categories using the pyEnrichment package 
(https://github.com/ofedrigo/pyEnrichment) to avoid overcalling a category.

Categorical enrichment within our t-SNE clusters was assessed similarly. 
Foreground sets per cluster (within each time point) were assessed using the results 
of our binomial enrichment test (q value ≤  0.01 and a beta >  0). The background 
set consisted of all other tested summits at that time point (see above).
t-SNE and cluster identification. To identify clusters of cells with finer resolu-
tion than the LSI-based clades, we used t-SNE17 for dimensionality reduction. 
We started with the same binary matrix of insertions in summits that we used to 
identify clade-specific differentially accessible sites. We again filtered out the lowest 

10% of cells (in terms of site coverage) and in this case we retained only sites that 
were observed in at least 5% of cells. We then transformed this matrix with the 
TF–IDF algorithm described above. Finally, we generated a lower-dimensional 
representation of the data by including the first 50 dimensions of the singular value 
decomposition of this TF–IDF-transformed matrix. This representation was then 
used as input for the Rtsne package in R17,45,46. To identify clusters of cells in this 
2D representation of the data, we used the density peak clustering algorithm18 as 
implemented in Monocle 219,41. Rho and delta parameters were chosen to be very 
inclusive of outlier peak centres (based on the decision plot), while making sure 
that the clusters were sensible based on visual inspection of the cluster assignments 
on the t-SNE plot.
t-SNE differential accessibility. To identify summits that were significantly more 
accessible in t-SNE-defined cell clusters, we used a similar framework to the one 
described for LSI-based clades above. There were, however, a few differences. In 
this case, we consider sites that were seen in at least 10 cells in any time point 
(instead of 50). In addition, we did not use a second cut-off to determine specificity 
within a time point.
Sexing individual nuclei. Another biological axis of the data that came to light 
through the use of t-SNE plots was that we were able to clearly distinguish nuclei 
from male and female embryos. In an initial analysis, we included data from the 
sex chromosomes while clustering cells (as was done for the germ-layer analysis). 
This resulted in many individual cell clusters appearing ‘bi-lobed’ (Extended Data 
Fig. 5a), which prompted us to explore whether there was sex bias in the lobes of 
individual cell clusters. We found that the distribution of reads mapping to the  
X chromosome in individual cells was distinctly bimodal (Extended Data Fig. 5b),  
allowing us to assign a sex to each cell. When we coloured the t-SNE plots 
 according to these sex assignments we found that the lobes of individual cell 
 clusters almost perfectly segregated the sexes (Extended Data Fig. 5c). Although 
this may be very useful for future studies, we alleviated this bi-lobed problem here 
by excluding sex chromosome reads from our analysis and re-clustered cells with 
t-SNE. This resolved the bi-lobed structures and removed the sex bias from almost 
every individual cluster (Extended Data Fig. 5d).
Arranging single cells from 2–4-h embryos along developmental trajectories. 
Because we noted that cells from 2–4-h embryos were distributed across the t-SNE 
map in a manner consistent with their developmental stage, we sought to more 
formally evaluate the arrangement of individual cells along a temporal  trajectory. 
We used Monocle 219,41 v.2.5.3, which uses a reverse graph embedding algorithm to 
learn trajectories in single-cell data and was recently extended to single-cell ATAC-
seq data47. To define sites to use for ordering cells, we combined the t-SNE  clusters 
into major groups on the basis of our annotations—blastoderm,  mesoderm, 
 endoderm, ectoderm, neural ectoderm, unknown and collisions—and identified 
sites that were differentially accessible (1% FDR) between each cluster and all other 
cells within that time point (with the exception of the collision and unknown 
 clusters). We then took the union of sites that were among the 100 most differen-
tially accessible for each cluster and used this set of sites to order cells in Monocle. 
In order to reduce the sparsity of the data, we aggregated all sites that were within 
1 kb of each other and summed their reads to obtain a regional score accessibility. 
Using these aggregated sites as features, cells were ordered by the DDRTree algo-
rithm in three dimensions (‘max_components =  3’), with the ncenter parameter set 
to 200 and the maxIter parameter set to 1,000 during the  dimensionality-reduction 
step. Only the first two dimensions are visualized and the coordinates of the 
first dimension were multiplied by − 1 so that pseudotime would run from left 
to right (Fig. 2c). This resulted in a tree with four differentiated branches rep-
resenting the major germ layers (one is a possibly spurious, short branch along 
the ectodermal lineage). On the basis of this ordering, we aimed to identify 
sites that were significantly associated with progression in pseudotime using 
the likelihood-ratio testing framework in Monocle 2 (Supplementary Table 6).  
As with ordering the cells, we adopted a strategy to reduce the sparsity of our data. 
Specifically, we binned the pseudotime into 100 bins and counted how many cells 
had accessible chromatin in each pseudotime bin for each site. All sites that were 
accessible in more than ten cells were tested. To identify sites that were associ-
ated with pseudotime in a lineage-specific fashion we used a similar framework. 
First, we separated out cells along each unbranched path through the trajectory 
to test separately for pseudotime dependence. We took the cells at the tip of each 
lineage state and traversed the graph to the root state (that is, beginning of the 
pseudotime), collecting the cells that were arranged along this path. As mentioned 
above, there was a small branch off of the ectodermal lineage that was ignored for 
this analysis. Then we binned the cells along this single pseudotime branch and  
performed likelihood ratio testing for each lineage as we did for the global pseu-
dotime measure (Supplementary Tables 7–9). After testing all three lineages, we 
defined a site as specific to a lineage if it was significantly associated with pseudo-
time in that lineage (1% FDR) but was not significantly associated with pseudotime 
in the other two lineages at a relaxed threshold (20% FDR).
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Identifying clusters of cells that are likely artefacts of barcode collisions. Several 
small clusters (for example, cluster 6 at 6–8 h) appear to be mixtures of cells from 
different germ layers and/or tissues, based on our enrichment analysis. To deter-
mine whether these were technical (due to barcode collisions, where one cell 
barcode represents the nuclear contents of two cells) or biological, we used two 
metrics to identify collisions (instances wherein two or more cells coincidentally 
pass through the same combination of wells during sci-ATAC-seq). First, we looked 
at the estimated complexity of individual cells that make up these small clusters, 
as collisions are expected to be twice as complex on average as barcodes that truly 
represent an individual cell. To calculate the estimated library complexity (that is, 
the estimated total number of unique reads per cell in the library), we used the 
same algorithm as implemented in Picard (http://broadinstitute.github.io/picard) 
on a cell-by-cell basis. Second, we considered whether the proportion of reads 
mapping to the X chromosome for cells in these clusters was distinctly bimodal, 
as collisions would be just as likely to combine data from cells of the opposite sex 
as from two cells of the same sex (Extended Data Fig. 7). While the vast majority  
of clusters exhibited distributions of complexity and X chromosome coverage 
consistent with single nuclei, a small subset of clusters in each time point showed 
either higher complexity than expected, more unimodality of reads mapping to the 
X chromosome, or both—consistent with our suspicion that these are cell collision 
clusters (Extended Data Fig. 7). At 2–4 h, we identified one (2.3% of cells), at 6–8 h 
we identified three (5.8% of cells) and at 10–12 h we identified six (7.3% of cells) 
potential collision clusters (Figs 2a, 4a, b, purple clusters).
Transgenic enhancer assays. Candidate clade-specific enhancers were selected 
from sci-ATAC-seq summits using the following criteria only: (1) summit shows 
enriched accessibility specifically in the target cell clade at 6–8 h and/or 10–12 h 
(q value <  0.01 and beta >  0 in target clade, q value >  0.2 in all other clades);  
(2) summit does not fall within 500 bp of an annotated transcription start site;  
(3) summit does not overlap a region already in our database of characterized 
developmental enhancers. Summits showing a range of effect sizes (beta) were 
selected (minimum beta approximately 1.9; see Supplementary Table 11). The 
selected regions, plus 100–200 bp of flanking sequence, were PCR amplified from 
genomic DNA  (primers are listed in Supplementary Table 11) and cloned upstream 
of a minimal hsp70 promoter driving a LacZ reporter gene in an attB- containing 
plasmid. All constructs were injected into embryos according to standard 
 methods48 and inserted into the attP landing site line M{3× P3-RFP.attP′ }ZH-51C 
via PhiC31 integrase insertion49, yielding integration at chromosomal position 
51C1. Transgenic lines were generated by BestGene. Ten elements from each of 
the four germ-layer clades were initially selected—some failed at the cloning or 
transgenesis phase. We obtained 31 transgenic lines, representing six candidate 
regions with specific accessibility in neurogenic ectoderm, ten in non-neurogenic 
ectoderm, eight in myogenic mesoderm and seven in non-myogenic mesoderm 
plus endoderm.

Overnight collections of homozygous embryos spanning all stages of embry-
ogenesis were formaldehyde-fixed, stained by double fluorescent in situ hybridi-
zation50, and mounted in ProLong Gold with DAPI (Invitrogen; cat. #P36931). 
Antisense in situ probes against LacZ and a tissue marker gene were used: Mef2-
marking myogenic mesoderm was used for predicted myogenic mesoderm 
and non-neurogenic ectoderm enhancers; GATAe was used for predicted non- 
myogenic mesoderm and endoderm enhancers. For the predicted neurogenic 
ectoderm enhancers, neurons were marked by immunostaining with antibodies 
against the Elav protein (Elav-9F8A9; Developmental Studies Hybridoma Bank). 
The annotation of enhancer activity is based on observations across hundreds of 
embryos. Representative images were acquired with a Zeiss LSM780 laser-scanning 
confocal microscope using a PlanApo 20× /NA 0.8 objective at an effective pixel 
size of 461 nm in the x–y plane. Images were processed using Fiji51. Annotated 
t-SNE plots for each candidate enhancer were produced by plotting the sum of 
sci-ATAC-seq reads per cell that overlapped each tested genomic region.
FACS isolation of tissue-specific nuclei and DNase-seq. Target populations of cell 
nuclei from staged fixed embryos were obtained by FACS as previously described11 
with the following modifications. Prior to incubation with primary antibodies, 
nuclei from 6–8-h embryos were incubated in PBS supplemented with 5% BSA, 
0.1% TritonX-100 and 0.2% Igepal-630 on a rotator at 4 °C for 30 min. Primary 
antibody staining was performed overnight at 4 °C in 3 ml PBS supplemented 
with 5% BSA and 0.1% TritonX-100 per 1g frozen embryos. Primary antibodies 
used were monoclonal anti-Elav (Developmental Studies Hybridoma Bank 9F8A9 
at 1:100 dilution) to mark postmitotic neurons and anti-Mef2 (produced and  
pre-cleared in the Furlong laboratory and used at 1:200 dilution) to mark  myogenic 
mesoderm. Secondary antibody staining was performed for 1 h at 4 °C in the same 
buffer. Following each antibody staining, nuclei were washed twice by pelleting 
and resuspending in 10 ml PBS supplemented with 5% BSA. An aliquot of stained, 
unsorted nuclei was put aside to represent the whole embryo. For DNase diges-
tion, nuclei were resuspended in R buffer (7.5mM Tris pH8, 45mM NaCl, 30mM 

KCl, 6mM MgCl2, 1mM CaCl2) and 10–20 million nuclei were digested using 
5–20 U DNaseI at 37 °C for 3 min, and the reaction was stopped by adding 500 μ l  
stop buffer (50mM Tris pH8, 100 mM NaCl, 0.1% SDS, 100 mM EDTA pH8). 
A small control digest without DNaseI was performed to assess DNA integrity. 
Following addition of RNaseA, samples were incubated at 55 °C for 10 min, then 
25 μ l proteinase K (25 mg/ml) was added and the samples were incubated over-
night at 65 °C to reverse cross-links. A small aliquot was run on a 1% agarose gel 
to assess digestion levels, and optimal digests were size-fractionated using 10–40% 
sucrose gradients. DNA fragments ~ 100–500 bp in length were isolated from 
fractions using a Qiagen PCR clean up kit and checked for enrichment in known 
hypersensitive sites by qPCR. The digests with the highest qPCR enrichment were 
selected for library preparation using the NextFlex qRNA-seq Kit v.2 (Biooscientific 
#NOVA-5130-12). In brief, ~ 10–30 ng DNA consisting of ~ 100–500 bp  fragments 
that result from DNase digestion was end-repaired and terminal adenosine  
residues were added. Adapters containing in-line molecular barcodes were ligated, 
after which the material was size selected using AMPure beads (negative selection 
with 0.6×  beads, then positive selection with 0.98×  beads). PCR amplification 
was performed using barcoded primers to introduce sample barcodes for 12–16 
cycles, depending on input amount. The PCR-amplified library was purified using 
AMPure beads, quantified using a Qubit High-sensitivity DNA kit (Invitrogen), 
and sized on a Bioanalyzer High-Sensitivity DNA chip (Agilent). Libraries were 
pooled and sequenced in paired-end mode on a HiSeq2000 (Ilumina). Reads were 
mapped to the Dm3 reference genome using BWA aln52, keeping only reads with a 
mapping quality score greater than 20. Duplicate reads originating from PCR were 
removed using the Je suite53 making use of the molecular indices.
Ethics statement. Anti-Mef2 antibodies were generated from rabbits at EMBL 
in accordance with European Law and EMBL ethical guidelines. Drosophila 
 melanogaster were reared and collected at EMBL in accordance with standard 
practice and the ethical standards of the European research community.
Code availability. Most of the code used in processing and analysis of the data in 
this article is available at http://atlas.gs.washington.edu. Any code not provided 
there will be made available upon request.
Data availability. All raw ATAC-seq and DNase-seq data are available through 
GEO (accession GSE101581) and ArrayExpress (E-MTAB-5999). BigWig files for 
coverage within each clade, regions of accessibility (peak calls) and a master list of 
all potential regulatory elements (Supplementary Table 1) will be made available 
on the Furlong laboratory web page (http://furlonglab.embl.de/data). To make the 
data easily accessible we have generated a searchable html page where users can 
select a t-SNE cluster or genomic locus of interest and visualize the data throughout 
the genome (http://shiny.furlonglab.embl.de/scATACseqBrowser/) and site-by-cell 
matrices and vignettes to facilitate further exploration of the data (http://atlas.
gs.washington.edu).
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Extended Data Figure 1 | Summary of read distributions across the 
three sampled time points. a, log10 counts of sci-ATAC-seq reads per 
barcode at each time point are bimodally distributed. A threshold of 500 
reads was used to identify barcodes corresponding to valid cells versus 
background. b, Fragment size distribution at each time point is consistent 
with expected nucleosomal banding pattern of standard (bulk) ATAC-seq 
experiments. c, Violin plot for distribution of unique, mappable reads 
per cell at each time point (2–4 h, n =  8,024; 6–8 h, n =  7,880; 10–12 h, 
n =  7,181) plotted on a logarithmic scale. White point indicates median 
value, thick black line extends to 25th and 75th percentile, and thin black 
lines extend to most extreme values within 1.5 times the interquartile 
range of the median. The filled colour width represents a density estimate 

of the distribution of cells along the y axis. d, Fraction of previously 
characterized DHS covered in at least 10 cells upon sampling a given 
number of cells (solid lines) as compared to random genomic windows 
(dashed lines). e, An UpSet plot shows the degree to which the top 20,000 
windows overlap between the three time points. Each bar shows the 
number of sites included in a specific intersection and the ‘peg board’ 
below shows which particular comparison is included in that bar. f, Bar 
plot of the number of sites identified as significantly open in each clade 
(1% FDR; grey bar, first cutoff) and the number of sites specific to that 
clade (orange bar, second cutoff). Overlaid on the barplot (purple points) 
is the fraction of sites passing the first cut-off that also pass the second  
cut-off (count of orange bar/count of grey bar).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LetterreSeArCH

Extended Data Figure 2 | Enhancer enrichments for LSI clades at 
6–8 h and 10–12 h. Enrichment for tissue-of-expression information for 
characterized distal enhancers overlapping clade-specific peaks at 6–8 h 
(a) and 10–12 h (b). Each column represents a different clade and each 
row represents an annotation term assigned to tested enhancer elements. 

Shading indicates the odds ratio for the intersection of enhancers sharing 
a given annotation with clade-specific accessible sites. Shown are all 
categories in the top ten enrichments of any clade (enrichment scores 
capped at 15 for display) containing at least 35 known enhancer overlaps.
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Extended Data Figure 3 | Relationship between transcription-factor 
binding motifs and occupancy, and LSI clade-specific accessibility. 
a–c, SeqGL was run on LSI clade-specific distal peaks at each time point 
to identify enriched sequence motifs. The top five most-enriched unique 
motifs for each clade are displayed. Coloured circles indicate the clade 
represented by each line. For the later time points (6–8 h and 10–12 h), 
blue is neurogenic ectoderm, yellow is non-neurogenic ectoderm, red is 
myogenic mesoderm and green is mesendoderm. The results show an 
enrichment of motifs for factors associated with early development at 
2–4 h with more tissue-specific factor motifs (for example, mesodermal 
factor Mef2 or neural regulator Tramtrack) within germ-layer annotated 

clades at later stages of development. d–l, Using ChIP occupancy data 
(peaks) and transcription factor binding motifs compiled previously16, 
we scanned for all transcription factor motif instances under ChIP peaks 
from datasets spanning 6–8 h of development using FIMO. Aggregate 
read counts in 4-kb windows centred on each identified motif instance 
are shown for each of the four LSI clades at 6–8 h. Green, endoderm; red, 
myogenic mesoderm; yellow, non-neurogenic ectoderm; blue, neurogenic 
ectoderm. Light shading in the same colours indicates 95% confidence 
intervals. d–g, Aggregate plots for four ubiquitous transcription 
factors (BEAF32, CTCF, Pho, and Trl) at 6–8 h. h–l, Aggregate plots for 
mesodermal transcription factors (Bap, Lmd, Mef2, Tin, Twi) at 6–8 h.
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Extended Data Figure 4 | Similarities and differences in accessibility 
across all three time points. In addition to processing data from each 
time point independently, data from all cells can be analysed together 
(with the caveat that time point and batch are confounded). Here, we show 
binarized, LSI-transformed and clustered count data for 2-kb windows 

across the genome for cells from all three time points (blue, 2–4 h; red,  
6–8 h; orange, 10–12 h) processed together. The predominant pattern is 
one in which 2–4-h cells cluster separately from 6–8-h and 10–12-h cells. 
Cells from 6–8 h and 10–12 h are intermingled, clustering first (roughly) 
by germ layer of origin.
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Extended Data Figure 5 | Sex of individual cells identified by ratio of 
X-chromosome to autosomal reads. Embryos at all stages consist of a 
mixture of male and female embryos (males, XY; females, XX). a, t-SNE 
plots of three time points from analysis in which sex chromosome sites 
were not excluded. Many clusters exhibited a bi-lobed structure, where 
each individual cluster was made up of two mirrored lobes (red circles 
identify one example of a bi-lobed cluster from each time point). This 
was most apparent at the 10–12-h time point. b, Histogram of the ratio 
of X-chromosome to autosomal reads in individual cells. To explore 
whether this bi-lobed structure was a function of sex biases in clustering, 
we attempted to sex individual cells. The ratio of X-chromosome to 

autosomal reads shows a bimodal distribution, as expected in a system 
with heterogametic (XY) males and no evidence of imprinting. The purple 
line marks the local minimum between the two peaks of the histograms.  
c, Initial t-SNE clusters coloured according to sex assignment. Red 
indicates female cells and blue indicates male cells. Colouring individual 
cells by their sex reveals that the bi-lobed architecture is largely driven by 
sex biases in clustering. d, After removing X-chromosomal reads, data 
were re-clustered and individual cells were recoloured according to the 
ratio of X-chromosome to autosomal reads (red, female; blue, male).  
The resulting clusters showed an approximately equal number of male  
and female cells except for clusters 1 and 10 at the 2–4-h time point.
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Extended Data Figure 6 | Temporal ordering of cells at 2–4 h using 
Monocle. a–c, t-SNE maps of cells at 2–4 h with colour representing either 
the Monocle-inferred pseudotime of each cell (a) or the ratio of reads 
per cell at enhancers active at different stages of development (b, c). Read 
counts within temporally characterized enhancers provide insight into the 
specific stage of development from which a cell is derived. Plotted here are 
ratios of counts in earlier versus later active enhancers showing a rough 
temporal progression from left to right that is also inferred by Monocle. 
d–f, Heat maps of sites that are significantly associated with pseudotime 
(based on a likelihood ratio test). For each site, a spline was fitted to the 
data across pseudotime. Sites (rows) were ordered for the heat maps based 
on the pseudotime at which they first reached half the maximum predicted 
accessibility from the fit curve. The colours indicate the spline-predicted 

accessibility across pseudotime, scaled as the fraction of the maximum 
accessibility for that site. g–i, Single-locus plots of the most significant 
closing, opening and transient sites. Histogram of percentage of cells in 
which the specified site is accessible in 10 bins across pseudotime, within 
the 2–4-h time point. The curve is from spline fit for accessibility in cells 
through pseudotime. j–l, As in g–i, examples of sites with lineage-specific 
association with pseudotime. One example of a branch-specific opening 
site for each germ layer: ectoderm (j), endoderm (k) and mesoderm (l). In 
g–i, P values were calculated for likelihood ratio tests evaluating the effect 
of progress through pseudotime on accessibility (n =  100 bins of cells; see 
Methods for details). Note that the branch point in pseudotime occurs at 
approximately 5.6 on the x axis.
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Extended Data Figure 7 | Library complexity and fraction of X 
chromosome reads highlights clusters of collisions between cells from 
different tissues. Density plots of the estimated library complexity (using 
the same equation implemented in Picard; left) and the representation 
of X-chromosome reads (right) in individual clusters. While most of 
the clusters defined by t-SNE are readily biologically interpretable, 
a small number of clusters (containing relatively few cells) were not 
easily characterized and are marked by an increase in both estimated 
library complexity and an unusual distribution of X chromosome to 
autosomal reads. These clusters are likely to be clusters of collisions; that 
is, cases in which two or more distinct cells share the same barcode as a 
consequence of the combinatorial indexing protocol. The black line is the 
global distribution for all cells in that time point. The grey lines show the 

results of randomly sampling an equal number of cells to the cluster in 
question. The coloured line marks the distribution for the cluster being 
interrogated. a, c, e, Most clusters show relatively similar distributions of 
library complexity (left) and a characteristic, bimodal distribution among 
cells in the ratio of X-chromosome to autosomal reads (reflecting our use 
of a pool of male (XY) and female (XX) embryos, right). b, d, Putative 
collision clusters show a clear increase in the average library complexity 
(left) and a unimodal rather than bimodal distribution of X-chromosome 
to autosomal reads (right). f, These features are not universally diagnostic 
(for example, cluster 10 at 2–4 h seems to show a strong, bona fide sex 
bias), but the combination of features is strongly predictive of clusters 
containing few cells and conflicting biological annotations based on gene 
or enhancer overlaps.
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Extended Data Figure 8 | LSI-defined clades and t-SNE clusters 
show strong correspondence. t-SNE maps of cells from each of the 
three time points coloured according to the LSI clade to which they 
were previously assigned (Fig. 1a–c). For the post-gastrulation time 
points, green is endoderm, red is myogenic mesoderm, yellow is non-

neurogenic ectoderm and blue is neurogenic ectoderm. There is strong 
correspondence between the germ-layer-level clade annotations from the 
LSI analysis and tissue-specific t-SNE clusters, particularly at the post-
gastrulation time points (6–8 h and 10–12 h).
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Extended Data Figure 9 | Cell cluster assignment is similar using either 
enhancer or gene tissue activity. For each time point, cell clusters were 
annotated by first dividing peaks into TSS-distal (putative enhancers) 
and TSS-proximal (gene promoters) peaks. Each cell cluster was then 
annotated separately by overlaps between cluster-enriched peaks and:  
(1) enhancers, comparing the TSS-distal elements to the tissue or cell-type 

activity of characterized enhancers; (2) genes, comparing TSS-proximal 
elements to the tissue expression of genes; and (3) Gene Ontology (GO) 
information (see Methods). Shown are the cluster assignments based 
on enhancer, gene expression, or Gene Ontology annotation alone. The 
final assignment, used in the main figures, combines all enrichment 
information to produce more robust assignments.
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Extended Data Figure 10 | sci-ATAC-seq can predict tissue-specific 
enhancer usage during development. All candidate clade-specific 
enhancers tested in transgenic reporters. For each time point, upper panels 
show single cells visualized by t-SNE with the blue intensity representing 
the number of sci-ATAC-seq reads obtained from each tested element in 
each individual cell. Cell clusters bounded by dashed lines correspond 

to the predicted clade of activity. Lower panels show representative 
embryos for each time point with nuclei stained with DAPI (grey), in situ 
hybridization of the reporter gene driven by the enhancer (yellow) and a 
tissue marker (magenta). Annotation of each element’s activity involved 
observations across hundreds of embryos. Scale bar, 50 μ m.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Using our sci-ATAC-seq protocol for collecting chromatin accessibility data on 
individual cells at high throughput, we collected data on 384 wells of cells for each 
of three time points. This resulted in data from ~7,000 cells for each time point. As 
this was the first time this protocol was applied to Drosophila, it was not possible 
to a priori estimate the sufficient sample size beforehand. However, we note that 
this sample size met the criteria of both being experimentally manageable and yet 
still generating one of the larger single cell data sets to date.

2.   Data exclusions

Describe any data exclusions. There were two reasons for excluding data. (1) We excluded information from cell 
barcodes that had very few reads associated with them. Looking at the distribution 
of reads assigned to individual barcodes (Extended Data Figure 1), we noted a 
bimodal distribution that likely arose from the combination of a normally 
distributed population of barcodes that represent true cells and a second 
population near zero that represents background noise barcodes that likely do not 
represent individual cells. (2) We additionally excluded from analyses the bottom 
10% of cells (in terms of feature coverage) to exclude any noisy, low-coverage cells.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

Because we collected data on many thousands of cells we have replicate 
measurements for cells from each major cell group. We do not present the results 
of replicate experiments.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Samples from each time point were processed separately and sequenced as a 
single pool. However, within a time point all cells were processed in parallel in a 
highly randomized fashion.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Researchers were not blind to the identity of the time points. However (as noted 
above), all cells within a time point were processed in parallel.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

bcl2fastq v2.16, trimmomatic v0.32, bowtie2 v2.2.3, samtools v1.1, MACS v2.1.0, 
BEDTools v2.21.0, deepTools v2.6.0.  R and python were used for additional data 
processing and plotting.  The scripts necessary for the primary processing of the 
raw data will be made available on GitHub, upon request.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No restrictions.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

Mef2 positive cells were stained with a rabbit polyclonal antibody generated at 
EMBL which was initially described and validated in PMID:16740481 . Elav positive 
cells were stained with a monoclonal mouse antibody against Drosophila Elav 
(Elav-9F8A9 from the Developmental Studies Hybridoma Bank) which was initially 
described in PMID:1716300.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eurkaryotic cell lines were used

b.  Describe the method of cell line authentication used. No eurkaryotic cell lines were used

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eurkaryotic cell lines were used

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eurkaryotic cell lines were used
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Mef2 antibodies were generated from rabbits at EMBL in accordance with 
European Law and EMBL ethical guidelines. Wild-type (CantonS strain) Drosophila 
melanogaster were reared and collected at EMBL in accordance with standard 
practice and the ethical standards of the European Research community. Embryo 
collections (mixed male and female) were performed at 2-4, 6-8, and 10-12 hours 
after egg laying.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

This study did not involve human participants.
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