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Genomic profiling of human cancers has identified recurrent somatic 
mutations of HER2 (encoded by ERBB2) and HER3 (ERBB3), typically 
occurring in the absence of gene amplification1–3. Mutations in HER2 
are clustered in the extracellular, transmembrane and kinase domains. 
Unlike other mutant oncogenes, such as BRAF or KRAS, no single 
mutant allele predominates and the precise distribution of mutations 
varies by tumour type4. By contrast, HER3 mutations cluster primarily 
in the extracellular domain and to a lesser extent in the kinase domain. 
Although HER2 and HER3 mutations are found in a wide variety of 
cancers, their overall prevalence does not exceed 10% in any individual 
tumour type, and the rate is more typically less than 5% for HER2 and 
less than 1% for HER3.

Biological modelling has yielded conflicting findings as to the func-
tional consequences of HER2 and HER3 mutations. Substantial data 
suggest that a subset of these mutations induce ligand-independent 
constitutive HER2 receptor signalling and promote oncogenesis5–7. 
The mechanism of these oncogenic effects seems to differ by variant, 
with some causing enhanced HER2 kinase activity and others causing 
receptor dimerization5,8. Mutations in HER3, which in its wild-type 
configuration has impaired kinase function, seem to rely on wild-type 
HER2 to exert its oncogenic effects7. Most preclinical data that explore 
the functional consequences of HER2 and HER3 mutations have been 
generated using engineered models that overexpress the mutation, and 
thus the results may be confounded by the known oncogenic effects 
of HER2 overexpression. Further enforcing the potential importance 
of this confounding variable, models of HER2 mutation generated by 
gene-editing techniques have failed to demonstrate a malignant pheno-
type in the absence of mutations in other oncogenes such as PIK3CA9.

Given the considerable diversity of HER2 and HER3 mutations, as 
well as the challenge of generating preclinical models that recreate their 
true biology in human cancers, we sought to define the therapeutic 
importance of HER2 and HER3 mutations by conducting SUMMIT—a 
global, multicentre, multi-histology basket trial in patients with 
tumours that contain these mutations (Extended Data Fig. 1). Patients 
were treated with neratinib, an irreversible pan-HER tyrosine kinase 
inhibitor, which potently inhibits the growth of HER2-mutant tumours 
in preclinical models5. Tumour tissue and plasma were collected to 
facilitate the detailed genomic characterization of patients. Here we 
present the results of this study, with a focus on the insights it provides 
into the biological and therapeutic importance of HER2 and HER3 
mutations in patients with cancer.

Patient and mutation characteristics
Baseline patient demographics are shown in Table 1 and Extended Data 
Table 1. In total, 141 patients (125 with HER2-mutant tumours, 16 with 
HER3-mutant tumours) received neratinib treatment. These patients 
were diagnosed with 1 out of 21 unique cancer types, the most com-
mon being breast, lung, bladder and colorectal cancer (61% of patients 
treated). As has been seen in other basket studies10,11, we identified and 
enrolled several orphan tumour types including cancers of the biliary 
tract, salivary gland, small bowel and vagina, as well as extramammary 
Paget’s disease (in aggregate, 13% of all patients). Patients tended to be 
heavily pretreated with approximately half having received at least three 
previous lines of systemic therapy.

Enrolled patients had 31 unique HER2 and 11 unique HER3 muta-
tions (Extended Data Fig. 2). The most frequent HER2 mutations 
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were S310, L755, Y772_A775dup and V777 alleles. The HER2 kinase 
domain was most commonly mutated (66%), followed by the extra-
cellular (26%) and transmembrane/juxtamembrane (8%) domains. 
The anticipated relationships between the mutated HER2 domain 
and tumour type were observed, with extracellular domain mutations 
predominant in bladder cancer, kinase domain missense mutations in 
breast and colon cancer, and kinase domain insertions in lung cancer4. 
Missense mutations were the most common class of genomic altera-
tion (74%), followed by in-frame insertions (22%), the latter exclusively 
affecting the kinase domain. Two tumours contained HER2 insertions/
deletions and one an in-frame kinase domain-retaining fusion (GRB7-
ERBB2)12,13. HER3 mutations were all missense variants and clustered 
in the extracellular furin-like and receptor domains. In total, 87% (109 
out of 125) of HER2 and 75% (12 out of 16) of HER3 mutations were 
at positions now known to be mutational hotspots4. This pattern of 
HER2 and HER3 mutations was comparable to the spectrum of non- 
truncating HER2 and HER3 mutations observed in previously pub-
lished genomic landscape studies, including The Cancer Genome Atlas 
(TCGA) and the International Cancer Genome Consortium (ICGC)4, 
although HER2 V777L and Y772_A755dup were more common in our 
study cohort (13.6% versus 5.3% and 12.0% versus 2.7%, respectively; 
Extended Data Fig. 3).

Treatment outcomes
When stratified by tumour type, we observed responses to neratinib in 
patients with HER2-mutant breast, non-small-cell lung, cervical,  biliary 
and salivary cancers, which led to expanded enrolment in  several 
of these tumour types (Fig. 1a, Extended Data Table 1). Neratinib 
 exhibited the greatest degree of activity in patients with breast cancer 
(n =  25 total, objective response rate at week 8 (ORR8) 32%, 95% con-
fidence interval 15–54%), with responses observed in patients with 
missense mutations involving the extracellular and kinase domains, as 
well as insertions in the kinase domain. All patients with breast cancer 

were classified as HER2-negative (non-amplified) at the time of enrol-
ment as per established guidelines14. Responses were observed in both 
oestrogen receptor-positive (30%, 6 out of 20) and -negative (40%, 2 out 
of 5) tumours. Overall, these breast cancer data are generally consistent 
with a previous report15. In patients with lung cancer (n =  26), in which 
insertions in exon 20 predominate, we observed only one objective 
response. Of note, HER2 exon 20 insertions are paralogous of EGFR 
exon 20 insertions, which are resistant to first- and second- generation 
EGFR tyrosine kinase inhibitors16. Notably, the only patient with 
lung cancer to achieve a response evaluation criteria in solid tumours 
(RECIST) response had a kinase domain missense mutation (L755S). 
Despite the low response rate, the median progression-free survival in 
recurrent lung cancer was 5.5 months, with 6 patients remaining on 
therapy for more than 1 year, which compares favourably to  second-line 
chemotherapy and immune checkpoint inhibitors17, suggesting that 
neratinib may have a positive effect on the natural history of this 
 disease. Responses were also observed in biliary and cervical cancers, 
and enrolment is ongoing in these cohorts to define this activity better. 
No responses were observed in bladder cancer (n =  16) or colorectal 
cancer (n =  12), suggesting lineage-dependent resistance to single-agent 
pan-HER kinase inhibition in these tumour types. In summary, among 
the HER2-mutant cohorts, breast cancer met the primary endpoint for 
efficacy, whereas lung, colorectal and bladder cancers did not. For the 
remaining tumour-specific cohorts, enrolment is continuing and they 
have therefore not undergone final efficacy analysis. Despite preclinical  
data to suggest that HER3 mutations can be oncogenic drivers, no 
responses to neratinib were observed in patients with HER3-mutant 
tumours.

When stratified by mutant allele, responses were observed in patients 
with tumours containing HER2 S310, L755, V777, G778_P780dup 
and Y772_A775dup mutations (Fig. 1b). Among patients with HER2 
kinase domain hotspot missense mutations (n =  42), responses were 
noted in four unique tumour types (breast, biliary, lung and salivary 
gland). By allele, we observed responses in several kinase domain 
mutants  including L755S (n =  4), V777L (n =  4) and L869R (n =  1). 
In patients with HER2 hotspot extracellular domain mutations (S310, 
n =  30), responses were observed in breast, cervical and biliary cancers 
(n =  1 for each), but not in bladder cancer, the cancer type in which 
these mutations predominate. Similarly, in patients with HER2 exon 
20 insertions (n =  28), responses were observed in two patients with 
breast cancer, but none were seen in patients with lung cancer, in which 
this class of alteration is most common. In exon 20 insertions, preser-
vation of glycine at the 770 position, which seems to facilitate binding 
of covalent HER kinase inhibitors such as neratinib, did not predict for 
response as previously suggested by preclinical modelling18 (Extended 
Data Fig. 4). Similarly, the number of amino acids involved in the 
insertion did not seem to predict outcome, with responses observed 
in patients with both 3 (G788_P780dup) and 4 (Y722_A755dup) amino 
acid insertions. Finally, among the 15 patients with HER2 mutations 
not known to be hotspots, only one responded to neratinib. Notably, 
this response occurred in a patient with breast cancer and a complex 
insertion/ substitution (L755_E757delinsS), which, to our knowledge, 
has not been observed previously. Although this case illustrates that the 
tumours of some patients may be addicted to truly private oncogenic 
drivers (those arising in only a single patient), it is also noteworthy that 
this insertion occurs in a domain that is the target of recurrent inser-
tions. The absence of clinical activity in the remaining 14 patients with 
cancers with non-hotspot mutations suggests that, although the recur-
rence of a mutation in HER2 is insufficient to define it as sensitizing to 
a HER2 kinase inhibitor, the absence of recurrence (that is, mutations 
that do not occur at hotspot positions) provides circumstantial evidence 
that the alteration is unlikely to be a driver.

Although the overall numbers of patients in each subgroup preclude 
formal statistical comparison, integrating efficacy, mutational and 
 lineage data, we observed that clinical benefit from neratinib therapy 
appeared to vary as a function of both mutational and disease context 

Table 1 | Patient demographics

Patient  
characteristic

HER2 mutant 
(n =  125)

HER3 mutant 
(n =  16)

Total  
(n =  141)

Age, years

Median (range) 61 (30–83) 66 (39–82) 61 (30–83)
< 65 years, n (%) 81 (64.8) 7 (43.8) 88 (62.4)
≥ 65 years, n (%) 44 (35.2) 9 (56.3) 53 (37.6)

Sex, n (%)

Female 80 (64.0) 12 (75.0) 92 (65.2)
Male 45 (36.0) 4 (25.0) 49 (34.8)

ECOG performance status, n (%)

0 37 (29.6) 1 (6.3) 38 (27.0)
1 83 (66.4) 12 (75.0) 95 (67.4)
2 5 (4.0) 3 (18.8) 8 (5.7)

Previous systemic treatment lines, n (%)

Any 121 (96.8) 16 (100) 137 (97.2)
1 33 (26.4) 1 (6.3) 34 (24.1)
2 30 (24.0) 11 (68.8) 41 (29.1)
≥ 3 58 (46.4) 4 (25.0) 62 (44.0)
Median time from  
metastasis to enrolment, 
years (range)

1.02 (0.0–15.0) 1.13 (0.3–4.5) 1.03 (0.0–15.0)

Tumour type, n (%)

Lung 26 (20.8) 0 (0) 26 (18.4)
Breast 25 (20.0) 0 (0) 25 (17.7)
Bladder 16 (12.8) 2 (12.5) 18 (12.8)
Colorectal 12 (9.6) 5 (31.3) 17 (12.1)
Biliary tract 9 (7.2) 2 (12.5) 11 (7.8)
Endometrial 7 (5.6) 1 (6.3) 8 (5.7)
Cervical 5 (4.0) 0 (0) 5 (3.5)
Gastroesophageal 5 (4.0) 2 (12.5) 7 (5.0)
Ovarian 4 (3.2) 1 (6.3) 5 (3.5)
Other 16 (12.8) 3 (18.8) 19 (13.5)
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(Fig. 2). In tumour types sensitive to neratinib therapy, such as breast, 
biliary and cervical cancers, responses were collectively observed across 
all types and classes of HER2 mutations. By contrast, in lung cancer, a 
tumour type that exhibits modest sensitivity to neratinib, response was 
limited to a patient with a HER2 kinase domain missense mutation—a 
class of mutation with greater in vitro sensitivity to neratinib5. Finally, 
in tumour types with intrinsic lineage-based resistance to neratinib, 
such as bladder and colorectal cancers, responses were not observed 
regardless of the HER2 mutation, type or class.

Safety
All patients received neratinib with mandatory anti-diarrhoeal 
prophylaxis. With this regimen, the rate of grade 3 diarrhoea was 22% 
(Extended Data Table 2), consistent with previous experience19. Among 
patients who developed grade 3 diarrhoea, the median time to onset 
was 10 days and the median duration of the diarrhoea episode was 
2 days. Patients were typically managed with dose interruption and 
reduction, with only 2.8% permanently discontinuing therapy owing 
to diarrhoea. The remainder of adverse events were predominantly  
low-grade.

Central confirmation of HER2 and HER3 mutations
There is active debate within the cancer research community as to 
whether central confirmation of mutational status before study entry 
is optimal for determining trial eligibility for precision  medicine 
 studies. To define the reproducibility of local mutational testing, DNA 
from archival formalin-fixed paraffin-embedded tumour and plasma 

samples were re-sequenced (see Methods). A total of 33 patients  
(26 HER2-mutant, 7 HER3-mutant) were excluded from this 
 concordance analysis because the local test used was the same as the 
central tumour assay being evaluated. Of the remaining 99 patients with 
HER2 mutations, adequate material for tumour genomic testing was 
unobtainable for 26 patients. Overall, concordance in the  remaining 
patients based on central tumour and/or plasma sequencing was 95% 
(69 out of 73), with 38 patients assessed by tissue and plasma, 14 by tis-
sue alone, and 21 by plasma alone. Central testing identified one locally 
reported mutation (V773M) as a germline polymorphism and this 
patient, with renal cell carcinoma, had progressive disease at first scan. 
Central testing in the four cases in which the HER2 mutation could not 
be confirmed passed all quality-control metrics, but in two patients the 
testing was performed on material collected at least three years after 
the tissue used for local testing, raising the possibility that tumour het-
erogeneity was involved in the discordance. None of the patients with 
discordant HER2 results responded to neratinib, and their median 
progression-free survival was only 43 days (range: 5–58 days). Among 
the 9 patients eligible for concordance testing with HER3 mutations, 
tumour tissue was available for central sequencing in 8 patients, and 
overall concordance was 75% (6 out of 8).

Genomic modifiers of response
Given the variability of treatment response, even among patients with 
the same tumour lineage and HER2-mutant allele, we sought to iden-
tify other genomic modifiers of response through broader genomic 
characterization of tumour-derived DNA (see Methods). First, we 
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explored the relationship between ERBB2 amplification and outcome, 
as this is a well-established predictor of response to HER2-targeted 
therapies in patients lacking HER2 mutations. In total, 17% of patients 
(15 out of 86) had concurrent HER2 mutations and gene amplification. 
Amplifications preferentially targeted the mutant allele locus (86%, 12 
out of 14 evaluable). Using a dichotomous definition of clinical benefit 
(stable disease or partial response lasting at least 24 weeks), ERBB2 
amplification did not correlate with outcome (P =  0.50; Fig. 3), sug-
gesting that in the presence of HER2 mutations, amplification may not  
confer additional sensitivity to irreversible HER kinase inhibitors. 
We also explored the relationship of ERBB2 mutation clonality on 
 outcomes. In the 74 patients with adequate material to allow definitive 
assessment of ERBB2 mutant clonality, the mutation was clonal in 95% 
(70 out of 74; Extended Data Fig. 5a). None of four patients with a 
subclonal ERBB2 mutation achieved clinical benefit.

Hypothesizing that tumours with an increased tumour mutational 
burden (TMB) might be more likely to acquire HER2 mutations with-
out developing oncogenic dependence (that is, passenger mutations), 
we evaluated whether overall TMB status affected outcome. Using a 
previously validated cut-off (≥ 13.8 non-synonymous mutations per 
megabase of DNA2), 20% of patients (17 out of 86) met criteria for 
a high TMB. In total, 24% of patients (16 out of 66) without clinical 
benefit versus 5% of patients (1 out of 20) with benefit met criteria for 
a high TMB, a trend that did not reach statistical significance (P =  0.10).

Next, we evaluated whether the pattern of co-mutations affected 
clinical benefit in the subset of patients where broader profiling was 
available (n =  86). In patients with HER2-mutant disease, coinci-
dent mutations in TP53 and HER3 were enriched in patients with no 
 clinical benefit (nominal P =  0.018 and P =  0.064, respectively; Fig. 3).  
Although not significant after correcting for multiple hypothesis 
 testing, potentially owing to the relatively small sample size, it is note-
worthy that no patients with clinical benefit possessed co-mutation of 
HER2 and HER3. Concurrent mutation of these genes was observed 

in multiple cancer types (breast n =  3, bladder n =  2, gastroesophageal 
n =  2, colorectal n =  1 and pancreatic n =  1) and involved a variety of 
unique HER2 and HER3 mutations (n =  8 and n =  9, respectively). 
Expanding our analysis to genomic activation at the pathway level, 
we identified somatic mutations of known oncogenic potential 
and grouped them by those involving the receptor tyrosine kinase  
(RTK)/RAS/RAF and PIK3CA/AKT/mTOR pathways, and cell cycle 
checkpoints (Extended Data Fig. 5b). In this analysis, concurrent aber-
rations in cell cycle checkpoints were associated with lack of clinical ben-
efit (P =  0.043), and activation of RTK/RAS/RAF also trended towards 
a worse outcome (P =  0.060). The association between the cell-cycle 
pathway and lack of clinical benefit seems to be primarily driven by 
TP53 mutations, losing significance upon removal of TP53 mutations 
(P =  0.769). Interestingly, activation of the PI3K/AKT/mTOR path-
way, an established negative predictor of response to HER2-targeted 
 therapy in HER2-amplified breast cancer20–22, did not adversely affect 
the likelihood of clinical benefit (P =  0.753). It is possible that the clinical 
impact of concurrent gene/pathway activation may vary by tumour type, 
and future disease-specific studies are needed to define these associa-
tions better. Although these were exploratory analyses that will require 
 confirmation, our results suggest that concurrent activation of specific 
genes as well as pathways may act as an additional modifier of response 
beyond cancer type and specific HER2 mutant allele.

Discussion
The ability to profile cancer comprehensively at the point of care has 
made possible the opportunity to personalize therapy for each patient 
based on the compendium of genomic alterations identified23. Despite 
the promise of this approach, implementing this paradigm in  clinical 
practice has been hampered by considerable gaps in knowledge about 
the biological and clinical importance of most genomic variants 
 identified24. This challenge is exemplified by the marked diversity and 
wide distribution of HER2 and HER3 mutations in human cancers, 
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as well as by the difficulty of generating preclinical models of these 
mutations that correctly recreate their biology in patients. To our 
knowledge, SUMMIT provides the first comprehensive dataset on the 
 clinical actionability of HER2 and HER3 mutations. We found that 
HER2 mutations are associated with HER2-dependence in a subset 
of patients with HER2-mutant tumours, but that response to HER 
kinase inhibition varies a function of the individual mutant variant, 
the tumour type as well as the pattern of co-mutations present.

Although we identified promising preliminary activity for neratinib  
in breast, biliary and cervical cancers, the response rate in these tumours 
was still lower than with approved therapies that target  oncogenic 
alterations in EGFR, ALK, ROS1 and BRAF. The low response rate in 
lung cancer, in which HER2 mutations exhibit mutually exclusivity 
with other known drivers25, is also notable and may in part reflect a 
lower potency of neratinib inhibition in Y772_A775dup compared to 
other insertions or missense mutants18. Successfully targeting HER2 
activation in other contexts has historically necessitated drug com-
binations. For example, single-agent trastuzumab has a response rate 
of only approximately 20% in ERBB2-amplified breast cancer26,27. By 
contrast, the overall survival in ERBB2-amplified breast and gastro-
esophageal cancers is markedly improved by adding trastuzumab to 
chemotherapy28,29. More recently, the intensification of HER2 inhibi-
tion through the combination of two HER2-targeted agents has been 
shown to result in synergistic efficacy in patients with ERBB2-amplified 
breast30–32 or colorectal33,34 cancers, as well as in HER2-mutant colorec-
tal cancer xenografts6. Cumulatively, these data suggest that combining 
neratinib with another HER2-targeted therapy is a rational next step, 
and SUMMIT has been amended to evaluate this approach in multiple 
HER2-mutant tumour types.

SUMMIT represents a continued evolution in the design of basket 
studies, which enrol patients on the basis of qualifying mutations rather 
than tumour type. The initial generation of these studies focused on 
evaluating individual somatic mutations that were already clinically 
validated in one cancer (such as BRAF V600 in melanoma) in other 
tumour types10,35. More recently, basket studies have been used to 
generate initial or even practice-changing clinical data of truly novel 
genomic biomarkers, especially when these genomic alterations occur 
at low frequency across a wide distribution of cancer types11,36,37. 
SUMMIT extends this concept one step further by demonstrating for 
the first time how a single study can be used to simultaneously evaluate 

a range of individual variants in HER2 and HER3, each with  varying 
degrees of prior biologic characterization. This permissive enrolment 
strategy allowed us to treat patients harbouring mutations that, at the 
time of enrolment, had not been characterized preclinically as gain-of-
function but were either recurrent or paralogous to known activating 
mutations in homologous genes. For example, patients with previously 
uncharacterized HER2 variants, such as V697L, D769N/H/Y and 
L869R, were included in this manner and responded to treatment, 
thus providing initial clinical proof-of-concept that these mutations 
confer a gain-of-function phenotype even before formal biologic 
 characterization. The approach of pairing a permissive enrolment 
 strategy with allele prioritization based on recurrence, paralogy and 
other readily computable features has potentially broad applicability 
to implementing genomic-driven oncology24. This strategy will take 
on even greater importance as clinical testing moves from targeted 
sequencing to whole exome or even whole genome sequencing, tech-
niques that will allow for evaluation of an even greater number of thera-
peutic hypothesis but will also exponentially expand the number of 
uncharacterized alleles we routinely identify.

SUMMIT provides additional insights into the conduct of mole-
cularly driven oncology studies. Our ability to understand the com-
plex interactions between tumour lineage, individual HER2 variant 
and response to neratinib was only possible because of the relatively 
large size of this study (n =  141). By comparison, many of the ‘master/
umbrella’ protocols that are currently underway are designed to enrol 
a maximum of 30–40 patients into each genomically defined  treatment 
arm. Our experience suggests that many studies of this size may be 
inadequately powered to identify the subgroups with true efficacy, 
assuming that most genomic alterations will not predict for tumour-
type agnostic efficacy. SUMMIT also demonstrates the feasibility 
of enrolling patients based on local testing, with patients treated on 
the basis of 30 unique sequencing assays performed in 25 different 
 laboratories. Despite this, concordance on retrospective central review 
was extremely high (96%).

An important impediment to progress in oncology has been the 
 limited availability of preclinical model systems that accurately recreate 
the complex biology of human cancer. Although important strides have 
been made, the wide-scale profiling of cancer in the clinic provides the 
potentially transformative opportunity to interrogate cancer biology at 
the bedside in a manner previously only possible at the bench. Here, 
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Figure 3 | Genomic modifiers of response and outcome by treatment 
duration. Comprehensive OncoPrint of the dichotomous clinical 
benefit groups for 86 patients with broad profiling data (left: no benefit 
(n =  66, biologically independent samples), right: clinical benefit (n =  20, 
biologically independent samples)). From top to bottom: TMB with the 
dotted line indicating the threshold for high TMB at 13.8 mutations (mut) 

per megabase; microsatellite (MSI) status; allele/domain; tumour type; 
HER2 (ERBB2) status showing amplification; clonality and the presence 
of a single or multiple mutations; and co-alterations in genes associated 
with key pathways. * P =  0.064, * * P =  0.018, Fisher’s exact test. Statistical 
significance is lost when corrected for multiple hypothesis testing.
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we demonstrate how this opportunity can be leveraged to probe the 
biology of a diverse set of HER2 and HER3 mutations across a variety 
of solid tumours through pharmacological HER kinase inhibition in 
patients. In doing so, we found that response to pharmacological inhibi-
tion was based on the characteristics of both tumour type and genomic 
variant to a degree that was not predicted by established preclinical 
models. In summary, SUMMIT demonstrates how the clinical trial 
can become an important tool in refining our understanding of the 
biological dependencies in human cancers.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Patients. Eligible patients had histologically confirmed advanced solid tumours 
harbouring HER2 or HER3 mutations, an Eastern Cooperative Oncology Group 
(ECOG) performance score of 0–2 and an unlimited number of previous  therapies. 
Patients with previous exposure to HER kinase inhibitors and unstable brain metas-
tases were excluded. HER2 and HER3 mutations were determined by local tumour 
testing as routinely performed or ordered by each participating site. In total, 85% 
(120 out of 141) of enrolled patients were identified by next-generation sequenc-
ing assays. In 81% of cases (97 out of 120), the next-generation sequencing assay 
included full exon coverage for ERBB2 or ERBB3, whereas in 19% (23 out of 120) of 
cases, only select exons or hotspots were included in the assay design. The remaining 
15% (21 out of 141) of patients were enrolled via RT–PCR, Sanger, pyrosequencing, 
or mass spectrometry-based sequencing methods. The study was approved by the 
institutional review board or independent ethics committee at each site and com-
plied with the International Ethical Guidelines for Biomedical Research Involving 
Human Subjects, Good Clinical Practice guidelines, the Declaration of Helsinki, and 
local laws. Written informed consent was obtained from all participants.
Study design, treatment and endpoints. This was a multi-cohort basket study 
of patients with solid tumours harbouring HER2 and HER3 mutations. Patients 
with HER2-mutant tumours were enrolled into one of several disease-specific 
cohorts or an ‘other’ cohort for tumour types not otherwise specified; all patients 
with HER3-mutant tumours were enrolled to one cohort. Patients known to 
 contain both HER2 and HER3 mutations at the time of enrolment were assigned 
to the HER2-mutant cohort. Patients were treated with neratinib 240 mg daily on 
a  continuous basis with mandatory loperamide prophylaxis during cycle 1. The 
primary endpoint was ORR8, as assessed by investigators according to RECIST 
(version 1.1). Secondary endpoints included best overall response, progression-free 
survival, overall survival and safety. Patients who were not evaluable by RECIST 
were permitted to enrol and were evaluated for response by 18F-fluorodeoxyglucose 
PET according to a modified version of the original PET Response Criteria in 
Solid Tumours (PERCIST; version 1.0)38, referred to here as PET Response Criteria 
(PRC, Extended Data Table 3).
Assessments. Disease assessments with computed tomography, magnetic 
 resonance imaging or combined positron emission tomography–computed 
 tomography (for those evaluated by PRC) were performed at baseline and then 
every 8 weeks until disease progression, death or withdrawal. Adverse events were 
graded by the investigator according to the Common Terminology Criteria for 
Adverse Events (version 4.0) until day 28 after discontinuation of study treatment.
Genomic biomarker studies. All samples were assigned anonymized identifiers by 
the study sponsor based on the order of study enrolment. Both tumour DNA and 
tumour-derived cell-free DNA in plasma were collected with the goals of confirming 
locally reported HER2/3 mutations as well as evaluating how ERBB2 and ERBB3 copy 
number and clonality as well as co-mutational pattern affected outcome. Collection of 
archival tumour and plasma samples was mandatory for all patients. Next-generation 
sequencing was performed using targeted sequencing of pretreatment DNA from 
formalin-fixed paraffin-embedded tumour and matched blood specimens (preferen-
tially) and cell-free DNA (if tumour was not available or was inadequate). A custom 
single-gene ERBB2 capture next-generation sequencing test was also performed on 
pretreatment cell-free DNA in a subset of patients with HER2-mutant disease.
Central sequencing confirmation. For patients with adequate material, DNA 
from formalin-fixed paraffin-embedded (n =  91) or tumour-derived cell-free DNA 
from plasma (n =  15) and matched germline DNA (n =  102) underwent targeted 
next-generation sequencing assay using Memorial Sloan Kettering-Integrated 
Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT)2, producing an 
average of 738-fold coverage per tumour (range: 253–1,383). In brief, this assay uses 
a hybridization-based exon capture designed to capture all protein-coding exons and 
select introns of oncogenes, tumour-suppressor genes and key members of pathways 
that may be actionable by targeted therapies. In this study, either 341 (n =  18) or 410 
(n =  88) key cancer-associated genes were analysed (Supplementary Information). 
Sequencing data were analysed as previously described to identify somatic single- 
nucleotide variants, small insertions and deletions, copy number alterations and 
structural arrangements39. In addition, hotspot alterations were identified using 
an adaptation of a previously described method4 applied to a cohort of 24,592 
sequenced human cancers40. For gene-level analysis, select genes within our tar-
geted 341/410 MSK-IMPACT panel involved in the RTK/RAS/RAF, PIK3CA/AKT/
mTOR, and cell cycle checkpoint pathways were selected using the KEGG pathway 
database41. For pathway level analysis, only potentially oncogenic alterations in the 
selected genes were included and determined to be oncogenic by OncoKB (version 
September 2017), a curated knowledge base of the oncogenic effects and treatment 
implications of mutations and cancer genes (http://www.oncokb.org42).
HER2 amplification and clonality analysis. For patients in the HER2-mutant arm 
with MSK-IMPACT sequencing data (with matched germline DNA, n =  74), the 
Fraction and Allele-Specific Copy Number Estimates from Tumour Sequencing 
(FACETS) algorithm (version 0.3.9) was used to estimate tumour purity and ploidy, 

and total and allele-specific copy number43. Tumour samples with purity less than 
20% were excluded from this analysis. Focal HER2 amplifications for tumours with 
MSK-IMPACT and FACETS data were inferred using the following criteria: fold 
change ≥  1.5 (MSK-IMPACT tumour:normal sequencing coverage ratio) and total 
HER2 copy number ≥  4 copies (FACETS-derived total copy number). To infer clonal-
ity of each HER2 mutation, cancer cell fractions were estimated with 95% confidence 
intervals by integrating FACETS-derived joint segmentation and MSK-IMPACT 
mutation data as input into the ABSOLUTE algorithm44 (version 1.0.6). Mutations 
were classified as either clonal or subclonal based on the following criteria: clonal 
if the estimated cancer cell fractions >  0.85, otherwise subclonal. For patients with 
HER2 amplification, the mutation copy number (mutation  multiplicity) was calcu-
lated as previously described45 to infer amplification of the mutant allele when the 
mutation multiplicity was greater than half of the total HER2 copy number.
TMB and MSI. TMB, defined as the number of non-synonymous mutations 
per megabase, was calculated for patients with MSK-IMPACT sequencing data 
(n =  106)6. MSI was assessed for patients with HER2-mutant tumours with 
matched germline DNA sequencing data (n =  89) using an orthogonal bioinfor-
matics tool, MSIsensor46. Furthermore, mutations were decomposed into the 30 
constituent mutational signatures as described previously47. In brief, MSIsensor 
scores < 10 were classified as microsatellite stable and > 10 were considered MSI-
high using a previously validated cut-off score48. Those with a MSIsensor score 
of < 10 but having evidence of a dominant mismatch repair mutational signature 
were also considered MSI43,47.
Statistical analysis. For each HER2-mutant tumour type and the HER3-mutant 
cohort, a Simon optimal two-stage design with a true ORR8 ≤  10% was  considered 
unacceptable (null hypothesis), whereas a true ORR8 ≥  30%  (alternative  hypothesis) 
merited further study. Efficacy in each cohort was analysed independently and the 
study was not designed to compare efficacy across cohorts formally. All patients 
who received at least one dose of neratinib were included in the safety and efficacy 
cohorts. All data reflect an interim data-cut taken on 10 March 2017 from patients 
enrolled up to 16 December 2016 (Extended Data Fig. 6). Most patients were off 
therapy at the time of data analysis (Extended Data Table 4). Progression-free 
survival was estimated using the Kaplan–Meier method. The study is registered at 
http://www.clinicaltrials.gov, under the identifier NCT01953926. Individual associ-
ations among genomic changes and response were assessed by either Fisher’s exact 
or chi-squared tests (where appropriate) and corrected for multiple  hypothesis 
testing using Benjamini–Hochberg correction.

Chi-squared or Fisher’s exact tests were performed to compare gene-level and 
pathway-level associations between the dichotomous clinical benefit groups. P values 
were corrected for multiple hypothesis testing using Benjamini–Hochberg correction. 
HER2 and HER3 lollipop distribution plots were generated using ProteinPaint49. All 
other figures were generated using R software (http://www.R-project.org/).

This clinical trial was not randomized and investigators were not blinded to 
treatment allocation and outcome assessment.
Data availability. All datasets generated during and/or analysed during the  current 
study, including patient-level clinical data as well as all sequencing data have been 
deposited and are publically available in the cBioPortal for Cancer Genomics under 
the accession code ‘SUMMIT, Nature, 2018’ (http://www.cbioportal.org/study?id= 
summit_2018).
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Extended Data Figure 1 | Design of SUMMIT study. Five tumour-
specific HER2 (ERBB2)-mutant cohorts were pre-specified (endometrial, 
gastroesophageal, ovarian, colorectal and bladder/urinary tract). In 
addition, a sixth ‘solid tumour (not otherwise specified, NOS)’ HER2-
mutant cohort allowed for the enrolment of patients with any other cancer 
types. A sufficient number of patients with breast, cervical, biliary and 

lung cancer were enrolled in the solid tumours (NOS) cohort to permit 
independent efficacy analysis using the same design as the pre-specified 
cohorts. Patients with HER3 (ERBB3)-mutant tumours were enrolled in a 
HER3-specific cohort regardless of tumour type. CBR, clinical benefit rate; 
cfDNA, cell-free (tumour) DNA; CI, confidence interval.
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Extended Data Figure 2 | Distribution of HER2 and HER3 mutations 
positioned by their amino acid coordinates across the respective 
protein domains. a, b, HER2 (a) and HER3 (b) mutations (125 and 16 
mutations, respectively). Each unique mutation is represented by a circle, 

with the circle size and number representing the frequency, and coloured 
to show the mutation class as indicated in the legend. The corresponding 
amino acid change and common hotspot mutations (shown in pink) are 
labelled next to the circles.
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Extended Data Figure 3 | Spectrum of HER2 and HER3 mutations 
observed in the neratinib study versus TCGA, ICGC and other public 
datasets. a, b, Distribution of HER2 (a) and HER3 (b) mutations observed 

across our cohort in comparison to the spectrum of HER2 and HER3 
mutations (reflected lollipop) from publically available datasets (TCGA, 
ICGC and other published studies).
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Extended Data Figure 4 | Distribution and outcome of 28 HER2 exon 
20 insertions. a, Percentage best change and PFS plots corresponding 
to each type of exon 20 insertion (colour coded by synonymous amino 
acid change). Three cases with no change are indicated in colour-coded 

circles above the x axis. b, Zoomed-in schematic of all exon 20 insertions 
positioned by their amino acid coordinates and frequencies. c, Five unique 
types of exon 20 insertions observed in the study with the resulting full 
amino acid sequences (insertion indicated in red).
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Extended Data Figure 5 | Genomic modifiers of response and outcome 
by treatment duration. a, Cancer cell fractions with 95% confidence 
intervals and clonality status of all HER2 mutations in 74 patients with 
sufficient sequencing data ordered by increasing clinical benefit (weeks on 

therapy). b, Comparison of the percentage activation of known oncogenic 
alterations in the three pathways between the patients of clinical benefit 
(n =  20, biologically independent samples) and no benefit (n =  66, 
biologically independent samples). Nominal Fisher’s P values are shown.
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Extended Data Figure 6 | SUMMIT CONSORT diagram. 
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Extended Data Table 1 | Patient demographics and efficacy by cohort
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Extended Data Table 2 | Treatment-emergent adverse events (occurring in ≥ 10% of patients)

*All events of grade 3.
†Serious adverse event as defined per study protocol.
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Extended Data Table 3 | PET response criteria

CT, computed tomography; FDG-PET, 18F-fluorodeoxyglucose positron-emission tomography; SUVmax, maximum standardized uptake value.
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Extended Data Table 4 | Patient disposition by cohort

NOS, not otherwise specified.
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