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Single-nucleus Hi-C reveals unique chromatin 
reorganization at oocyte-to-zygote transition
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Chromatin is reprogrammed after fertilization to produce a 
totipotent zygote with the potential to generate a new organism1. 
The maternal genome inherited from the oocyte and the paternal 
genome provided by sperm coexist as separate haploid nuclei in the 
zygote. How these two epigenetically distinct genomes are spatially 
organized is poorly understood. Existing chromosome conformation 
capture-based methods2–5 are not applicable to oocytes and zygotes 
owing to a paucity of material. To study three-dimensional chromatin 
organization in rare cell types, we developed a single-nucleus Hi-C 
(high-resolution chromosome conformation capture) protocol 
that provides greater than tenfold more contacts per cell than the 
previous method2. Here we show that chromatin architecture is 
uniquely reorganized during the oocyte-to-zygote transition in 
mice and is distinct in paternal and maternal nuclei within single-cell 
zygotes. Features of genomic organization including compartments, 
topologically associating domains (TADs) and loops are present in 
individual oocytes when averaged over the genome, but the presence 
of each feature at a locus varies between cells. At the sub-megabase 
level, we observed stochastic clusters of contacts that can occur 
across TAD boundaries but average into TADs. Notably, we found 
that TADs and loops, but not compartments, are present in zygotic 
maternal chromatin, suggesting that these are generated by different 
mechanisms. Our results demonstrate that the global chromatin 
organization of zygote nuclei is fundamentally different from that 
of other interphase cells. An understanding of this zygotic chromatin 
‘ground state’ could potentially provide insights into reprogramming 
cells to a state of totipotency.

To investigate 3D genome organization in nuclei of single cells, we 
developed a genome-wide high-resolution in situ Hi-C approach. 
Conventional Hi-C methods include biotin incorporation and 
enrichment for ligated fragments6, which might limit fragment 
retrieval. We simplified the protocol by omitting these steps, similarly 
to genome conformation capture7 (Fig. 1a, Extended Data Fig. 1,  
see Supplementary Methods). To verify the protocol, we compared 
data from population and single-cell data from K562 (human chronic 
myelogenous leukaemia) cells and obtained a contact probability Pc(s), 
dependent on genomic distance, s, that matched conventional in situ 
Hi-C on bulk K562 cells8 (Fig. 1b). When applied to oocytes (Fig. 1c), 
our method was efficient at capturing chromosomal interactions: 
single-nucleus Hi-C (snHi-C) revealed up to 1.9 ×​ 106 contacts per cell 
after filtering, yielding 1–2 orders of magnitude more contacts than 
published single-cell Hi-C data2 and exceeding contact frequencies in 
a recent single-cell Hi-C preprint and report9,10. Half of the cells had 
>3.39 ×​ 105 contacts per cell and 7.1% had >​1 ×​ 106 contacts per cell 
(Supplementary Table 1). These high-density snHi-C data enabled us 
to examine chromatin features directly in single-cell maps.

To investigate higher-level chromatin organization in oocytes, we 
examined how contact probability Pc(s)6,11 depends on genomic distance 
in individual cells and pooled data. In oocytes, the shapes of Pc(s) 
curves were consistent between individual cells (Fig. 1d) but markedly 
different from the characteristic shape in other mammalian interphase 
cells (Fig. 1e). For genomic separation s >​ 1 Mb, we observed steeper  
(~​s−1.5) decay in oocyte Pc(s), closer to the random walks of yeast chro-
mosomes12–14. Our simulations (see below) showed that steeper Pc(s) 
can be attributed to the larger volume of oocyte nuclei (~​25 μ​m versus  
≤10 μ​m diameter in somatic cells, Extended Data Fig. 2a).

Another major feature of mammalian chromosomes is segregation 
into active and inactive (A-B) compartments6. Although assignment of 
compartments from snHi-C data was impossible owing to its sparsity, 
an enrichment of interactions between the same compartment type 
and depletion between different types became evident in individual 
cells when compartments were assigned using GC content (Fig. 2a) or 
population Hi-C from other cell types (Extended Data Figs 3, 9). We 
also examined whether loops8 and TADs15,16, prominent functional 
features of chromatin organization17–19, are present in individual cells. 
Averaging over all genomic positions of loops and TADs identified in 
population Hi-C8 (for CH12-LX cells, see Supplementary Methods) 
revealed that both are present in individual oocytes as average enrich-
ments (Fig. 2a, Extended Data Fig. 3b) but vary between cells (Extended 
Data Fig. 3c), reflecting both inter-cell variability and variations in 
experimental conditions. We conclude that a single nucleus shows 
enrichments of interactions between regions of the same compartment 
type, within TADs and at loops.

Using snHi-C data, we asked whether TADs constitute physically 
isolated domains in individual cells or reflect a mere tendency of chro-
mosomes in a cell population to interact more within and less outside 
of a domain. We envisioned three scenarios (Fig. 2b): (i) all population- 
identified TADs are present in every individual cell; (ii) only population 
TAD boundaries are present, but individual TADs can be missing or 
fused in single cells; (iii) contacts may be clustered in individual cells, 
but clusters do not always match population TADs, revealing them 
only as an average feature. To distinguish between these scenarios, we 
examined a region in the snHi-C maps with most contacts (Fig. 2c, d)  
and segmented chromosomes into domains of enriched contact  
frequency (contact clusters) using an exact segmentation algorithm 
that maximizes modularity (see Supplementary Methods; comparable 
results for modularity segmentation of population TADs were obtained 
using an algorithm from ref. 20, see Extended Data Fig. 4a). We found 
that single-cell contact clusters do not always match population TADs, 
as contact clusters are highly variable and frequently occur across  
TAD borders. Nevertheless, variable contact clusters averaged into 
TADs when pooled together (Fig. 2d). The high cell-to-cell variations 
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in contact patterns cannot be solely explained by experimental DNA 
loss because we often observe a presence of border-violating clusters 
rather than absence, and second, such patterns are also observed in 
regions of high read coverage (Extended Data Fig. 4b, c).

We validated frequent violations of TAD boundaries using 3D DNA 
fluorescence in situ hybridization (FISH) for equidistant pairs of probes 
located within a TAD and across a TAD border. Scenarios (i) and (ii), 
with TADs present in single cells as isolated domains, are expected 
to yield intra-TAD distances that are mostly shorter than inter-TAD 
distances. However, imaging of embryonic stem (ES) cells showed 
that inter-TAD distances are shorter than intra-TAD in 42% of cases, 
although the average inter-TAD distance is larger than the average 
intra-TAD (Wilcoxon test, P =​ 0.007). This indicates that although 
TAD borders affect the average distance and lead to preferential intra-
TAD contacts, they cannot prevent contacts between TADs in single 
cells (Fig. 2e). Surprisingly, even the long inter-TAD pair was closer 
than the intra-TAD pair in 18% of cells, despite having twice the linear 
genome separation, having 50% larger average distance, and fourfold 
lower contact probability. Together, both imaging data and snHi-C 

support scenario (iii), in which TADs reflect a tendency for contact 
enrichment arising from a diverse conformational ensemble, rather 
than being isolated blocks of DNA present in individual cells.

The recently proposed mechanism of TAD formation by loop extru-
sion and boundary insulation21,22 provides a rationale for frequent 
boundary violations and, generally, TAD stochasticity. In this model, 
insulation prevents extruded loops from crossing boundaries, but it 
does not directly prevent contacts between TADs. Polymer simula-
tions show that contact clusters naturally emerge from the 3D spatial 
proximity of DNA in a confined volume22 and frequently cross TAD 
boundaries (Extended Data Figs 5, 6 and ref. 11). As contact clusters 
are also detected in K562 snHi-C (Extended Data Fig. 4d), stochastic 
cluster formation is probably a universal property of chromatin 
organization in single cells.

Next, we investigated the spatial reorganization of chromatin during 
the transition from transcriptionally active immature oocytes (non-
surrounded nucleolus, NSN) into transcriptionally inactive mature 
(surrounded-nucleolus, SN) oocytes23,24 (Fig. 3a). We observed 
a significant decrease in loop, TAD, and compartment strengths  
(Fig. 3b–d, Extended Data Fig. 7; all Mann–Whitney P <​ 0.005) 
during maturation, which may be related to transcriptional silencing 
and visual detachment of chromatin from the nuclear envelope23,24  
(Fig. 3a). Whereas combined Pc(s) scalings are similar, mature oocytes 
display more long-range (>​400 kb) contacts (Mood’s equal median 
test P =​ 0.02) and significantly less cell-to-cell variation in Pc(s) curves 
(Levene’s test, P =​ 0.007) (Fig. 3e–g). These findings are consistent with 
progressive chromatin reorganization during oocyte maturation.

We next addressed the key question, namely whether and how 
chromatin is reorganized during the oocyte-to-zygote transition, and 
whether it is different between the maternal and paternal genomes 
that have different biological histories and epigenetic modifications1. 
Oocyte chromosomes decondense after two meiotic divisions into 
the maternal nucleus. However, paternal nuclei are formed from 
compacted sperm by replacing protamines with histones25,26. To 
determine whether chromatin architecture is inherited or established  
de novo after fertilization, we extracted maternal and paternal nuclei 
from zygotes predominantly in the G1 phase and performed snHi-C 
(Figs 1a, 4a; similar results were obtained without extracting nuclei, 
see Extended Data Fig. 8a, b and Supplementary Information). We 
detected up to 6 ×​ 105 contacts in zygotic nuclei, which is twofold 
higher than in somatic cells and threefold lower than in the highest 
coverage oocytes. Results from averaging over TADs and loops 
identified previously8 showed that these features are present at 
similar strengths in maternal and paternal nuclei (Fig. 4b, Extended 
Data Figs 3, 9). Strikingly, although A–B compartmentalization is 
observed in paternal nuclei, it is notably absent from maternal nuclei  
(Fig. 4b, c, Extended Data Fig. 9a, b). To our knowledge, this is the first 
example of mammalian interphase nuclei presenting essentially no A–B  
compartmentalization. These results further suggest that the mecha-
nisms forming compartments are distinct from those forming TADs 
and loops, in agreement with a recent preprint27.

To corroborate this novel finding, we simultaneously imaged 25 loci 
across chromosome 11 using 3D FISH and for each probe measured 
distances to the nearest probes of the same and of the different 
compartment type (Fig. 4d, Extended Data Fig. 10a, b). In agreement 
with Hi-C findings (Fig. 4c), we found that compartmentalization in 
ES cells is most pronounced (P <​ 10−16, one-sided Mann–Whitney 
U-test, Extended Data Fig. 10c); compartmentalization in paternal 
nuclei is weak but significant (P <​ 0.01); and compartmentalization in 
maternal nuclei is undetectable as compared to a randomized control 
with shuffled probe identities (P =​ 0.08, Fig. 4d, see Supplementary 
Methods). The lack of compartmentalization in the maternal genome 
may be due to a transcriptionally inactive extended G1 phase after  
fertilization1, suggesting that compartments are established de novo in 
the maternal genome1, whilst paternal genome compartmentalization  
is either inherited from sperm chromatin or established faster.  
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Figure 1 | Genome-wide high-resolution single-nucleus Hi-C approach. 
a, snHi-C workflow for cell culture and oocytes/zygotes. b, Dependence 
of contact probability on genomic separation, Pc(s), for single K562 cells 
(n =​ 9) with >​30,000 total contacts (yellow), combined single-cell K562 
data from all cells (orange) and published population K562 data8 (black). 
P(s) here and below were normalized to be 1 at 10 kb. c, Example contact 
map from a single oocyte (cell 1). Below: chromosomes 1 and 2 at 1 Mb 
resolution. Above: fragment of chromosome 2 at 200 kb resolution.  
d, Pc(s) in single oocytes with >​30,000 total contacts (n =​ 84, from more 
than four biological replicates using 2–4 females each) and in combined 
data. Black lines show slopes for Pc(s) =​ s−1.5 and Pc(s) =​ s−1.2. e, Pc(s) of 
oocytes (green, combined data) compared to published conventional Hi-C 
datasets (grey) with highlighted curve for ES cells30 (black).
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The compartmentalization in the paternal nuclei aligns with detec-
tion of hyperacetylated histone H4, a hallmark of active chromatin, in  
early G1 phase and earlier transcriptional activation28.These results 
suggest a role for transcription in genome compartmentalization. We 
propose that the chromatin organization of zygotic nuclei denotes a 
‘ground state’ produced by transcriptional silencing, chromosome 

condensation and an exchange in cohesin complex composition at 
fertilization29.

Finally, we used polymer modelling to understand global chromo-
some organization in the three analysed cell types and somatic cells. A 
prominent feature of Pc(s) curves is a steeper overall slope in oocytes 
and zygotes compared to somatic cells. Polymer modelling demon-
strates that this steeper slope can be explained by the larger nuclear  
volumes of oocytes and zygotes (Extended Data Fig. 2). For maternal 
and paternal zygotic nuclei, experimental Pc(s) curves show similar 
shallow slopes for genomic distances s <​ 3 Mb (Fig. 4e), probably 
reflecting local compaction by loop extrusion that is also observed in 
simulations and that underlies formation of TADs and loops21,22. This 
scaling regime in zygotes is then followed by a plateau between 3–12 Mb 
for the maternal genome, whereas Pc(s) continues to decrease for the 
paternal genome. Simulations suggested that this difference may reflect 
previous states of differently compacted chromosomes in maternal 
and paternal zygotes. Simulations of decondensation subject to loop 
extrusion that start from a metaphase chromosome11 (Fig. 4g, Extended 
Data Fig. 6) result in Pc(s) that resemble those of maternal nuclei  
(Fig. 4h, Extended Data Fig. 2c). Analogous simulation starting from 
the compact fractal globule6, as a model of protamine-compacted state 
(Fig. 4g, Extended Data Figs 2b, 5), can reproduce paternal Pc(s) curve.

Taken together, these results suggest that the factors influencing Pc(s) 
are nuclear density, memory of the previous chromosome state, and 
cell cycle phase. Zygotic maternal nuclei and somatic cells are both 
predominantly in G1 phase and recently experienced chromosome 
decondensation from metaphase, which makes their global genome 
organization most similar. Paternal nuclei have a different biological 
history due to chromatin compaction by protamines in sperm and are 
thus different from somatic cells and maternal nuclei. Oocytes experi-
enced the last mitosis weeks or months ago and are arrested in prophase 
I; they therefore differ the most from somatic cells.

In summary, our work provides insights into general principles of 
chromosome organization and specific biological aspects of oocyte 
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Figure 2 | snHi-C identifies compartments, TADs and chromatin loops 
in individual cells. a, Contact enrichment of A–B compartments averaged 
over genomic positions using GC content and averaging over loop and 
TAD positions annotated in CH12-LX cells8 in combined and single-
oocyte data. b, Possible scenarios that lead to TADs in combined data. 
c, Variable contact clusters of top 4 single oocytes; first row, mouse ES cells 
data30; second row, combined data from all oocytes (n =​ 120, from more 
than four biological replicates, using 2–4 females each). Resolution of all 
maps is 40 kb. Lines show boundaries of clusters identified in individual 
cells. d, Superimposing contact clusters identified in individual  cells 

(n =​ 20) compared to population Hi-C TAD annotations. e, 3D FISH in 
mouse ES cells quantifies TAD boundary violations in single cells (n =​ 211, 
from two biological replicates). Top: F123 ES cell30 Hi-C map of tested 
region with FISH probe locations. Middle: Distribution of measured 
distances, average distances (left to right) 0.428, 0.484, and 0.646 μ​m, 
relative contact probabilities from F123 cells at 20 kb resolution are 0.0095, 
0.0037, 0.0024. Wilcoxon test P values: *​*​P =​ 0.007, *​*​*​P =​ 2.5 ×​ 10−16. 
Bottom: Heat map of FISH measurements with colour-coded distances. 
Right: representative FISH images with adjusted gamma values. Scale bar, 
1 μ​m. Probes (yellow, magenta, green) and DAPI (blue).
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Figure 3 | Chromatin reorganization during oocyte maturation.  
a, Immature (non-surrounded nucleolus, NSN) and mature (surrounded 
nucleolus, SN) oocytes stained with Hoechst (magenta). Scale bar, 25 μ​m.  
Images were adjusted in brightness/contrast settings in the individual 
channels using ImageJ. b–d, Comparison of average TAD strength (b), 
loop strength (c) and compartment strength (d) in NSN and SN oocytes 
with Hoechst staining (n (NSN) =​ 15, n (SN) =​ 30, from more than two 
biological replicates using 2–4 females each). Scores used described 
in Supplemental Methods. Error bars in d show s.d., obtained by 
bootstrapping. e, Pc(s) in data from combined NSN and SN oocytes,  
scored by Hoechst staining. f, g, Pc(s) in single Hoechst-stained NSN  
(f, n =​ 9) and SN oocytes (g, n =​ 27) with >​30,000 total contacts.
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and zygote genomes. We find that all known levels of chromosomal 
organization appear as mere tendencies that become visible when 
averaged over a population of cells or over loci; in single cells and at 
a single locus they may become overshadowed by the stochasticity of 
chromosome conformations. The unanticipated finding that zygotic 
maternal chromatin contains TADs and loops but not compartments 
suggests that it represents a transition towards building the embryonic 
chromatin organization of a totipotent cell. The difference in higher- 
order chromatin organization between maternal and paternal chro-
matin also raises the question of how paternal chromatin maintains or 
establishes compartments faster after fertilization. Our results, together 
with cohesin loader depletion experiments27, suggest that loops and 
compartments are formed by distinct mechanisms. Lastly, snHi-C 
could enable the study of chromatin organization during development 
and in rare cell types, such as stem cells and distinct cells within highly 
heterogeneous tumours. By combining snHi-C with other single-cell 
approaches, including single-cell transcriptome and methylome analy-
ses, it will be possible to build a comprehensive picture of the interplay 
between genome folding and transcription in generating identities of 
individual cells.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.

Data Availability All sequencing data in support of the findings of this study have 
been deposited in the Gene Expression Omnibus (GEO) under accession number 
GSE80006. Source Data for figures (Fig. 1b, d, e, 2c–e, 3b–g, 4c–f, Extended Data 
Figs 1, 2, 3a, c, 4a–d, 7b, 8a–c, 10a–c) are provided with the paper.
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Figure 4 | Distinct chromatin architecture in haploid nuclei of 
totipotent zygotes. a, Extraction of nuclei from zygotes. b, Same as  
Fig. 2a but for combined data from zygote nuclei. Top, maternal (n =​ 31); 
bottom, paternal (n =​ 24). Data from more than three biological replicates 
using 3–6 females each. c, Comparison of compartment signal strength 
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cell30 and sperm25 data. Error bars and units as in Fig. 3d. d, 3D FISH  
compartment quantification in zygote nuclei. Top: Deconvolved zygote 
FISH image, adjusted in brightness/contrast settings, background 
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compared to experimental Pc(s).
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Extended Data Figure 1 | Comparison of conventional and strong 
fixation conditions for Hi-C. Pc(s) of contact probability over genomic 
separation has similar shape under conventional (1% of formaldehyde for 
10 min) and strong (2% of formaldehyde for 15 min) fixation conditions 
(one replicate). Pc(s) plot for the CH12-LX cell line is constructed using 
previously published in situ Hi-C data8 and is normalized to integrate to 1.
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Extended Data Figure 2 | Simulations of Pc(s) of oocytes, maternal and 
paternal nuclei. a–c, Pc(s) for various polymer models. All simulated 
Pc(s) curves were calculated using contact radius of 10 monomer 
diameters (100 nm). Decondensed fractal globule (a), loop extrusion 
model starting with fractal globule (b), loop extrusion model starting 
with mitotic chromosome (c). d, Simulations in a–c and in Fig. 4h were 
run for 2,000 loop extrusion steps, which represents around 5 h of real 
time (see Supplementary Methods). In reality, zygotes spent 7–10 h 

after fertilization. To ensure that Pc(s) does not change greatly over 
this timescale, we simulated one run for three times longer (6,000 loop 
extrusion steps). Note that as this figure was obtained from only two 
simulations, and not an average of many, and therefore the Pc(s) does 
not exactly match Fig. 4h. Even after 6,000 loop extrusion steps, the Pc(s) 
curves starting with the fractal globule and with mitotic chromosome 
model are very distinct, and different by almost two orders of magnitude 
at 10 Mb.
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Extended Data Figure 3 | Quantification of average features in 
Hi-C maps. a, We quantified compartment strengths in oocytes 
using compartment annotation from different published data sets 
and quantification of compartment strength indicates that oocyte 
compartments are most similar to sperm, mouse ES cells and fibroblasts 
chromatin. Error bars as in Fig. 3d. b, Average TADs calculated over TADs 
computed from various cell types. Note that high-resolution TAD calling 
is only available in CH12-LX cells8. For this figure, all TADs were all 
computed using the ‘lavaburst’ algorithm described in the Supplementary 

Methods. The value plotted here is the natural log of observed-over-
expected of the TAD enrichment. Unlike plots in the main figures, these 
are true observed-over-expected probabilities, not ‘effective contact 
probability’. The colour map is jet, ranging from –0.5 to 0.5. c, TAD, loop 
and compartment strength as well as scaling steepness (definitions are 
in Supplementary Methods) in different classes of cells. Boxplots were 
generated using ‘matplotlib’ (version 1.5.1) library for Python with default 
parameters.
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Extended Data Figure 4 | Stochasticity of contact clusters and validation 
of contact cluster annotation algorithm. a, For this figure, boundaries 
were called on population data from CH12-LX cells8 at 20 kb resolution 
using two different methods: lavaburst with modularity score, with an 
average domain size of 25 bins (500 kb), and a method from ref. 20, 
downloaded from https://github.com/dekkerlab/crane-nature-2015 (most 
recent commit, August 28, 2016). The latter method was used with default 
parameters, on whole-chromosome heat maps. The plot shows fraction 
of lavaburst boundaries that are located within a certain distance of the 
boundaries defined in ref. 20; step is 40 kb. Modularity score boundaries 
align very well with boundaries called using an algorithm from ref. 20. 
For example, 77% of boundaries called using modularity score were 
within an 80 kb of algorithm boundaries from ref. 20 (32% expected if 
boundaries were randomized by offsetting them by 1 Mb). b, Same as a, 

but for top two single cells in each set. c, Contact cluster calling is robust to 
downsampling. From each of the top five single-cell oocytes, we obtained 
two maps down-sampled by 50% (1A and 1B from cell 1, etc.). We then 
compared contact clusters called in the two same-cell downsampled maps 
to each other (1A versus 1B), two maps from different cells (1A versus 
2B), and each map to its randomly-shuffled control (1A versus control). 
Two maps from the same cell overlap by 65–70% of domain boundaries 
with 80 kb error margin. Overlap between different cells is about 1.5 times 
less (30–40%), and overlap with the reshuffled control is about 20–30%. 
Displayed are the average over all chromosomes and 95% confidence 
intervals of the fraction of overlap. d, The Hi-C contact cluster annotation 
of the top four single cell K562 cells is compared with the published 
population Hi-C map8.
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Extended Data Figure 5 | Contact clusters can form in polymer 
models with no average structure. This figure shows contact maps 
of a 10,000 monomer region in fractal globules at density 0.05 (see 
Supplementary Methods for the fractal globule creation descriptions). 
Each contact map was calculated with a contact radius of 10, at bin size of 
16 monomers (approximately 10 kb, if we assume 600-bp monomers as in 
the other models or in refs 11, 22). First map (top left) shows a population 
average contact map calculated from 2,000 independent realizations. 
Fractal globule is a model in which monomers are all treated equally and 
have no specific organization; therefore, a population average contact 
map of the fractal globule would be completely uniform (for example, 
contact probability only depends on the distance between the two regions). 
Each of the remaining 11 maps shows a ‘single-cell’ contact map from 

11 single conformations. Note the high degree of variability between 
single-conformation contact map, despite the complete homogeneity of 
the average contact map. See supplementary figure 17 in ref. 11 for similar 
maps from our model of mitotic chromosomes. Note that, unlike in Hi-C, 
where each fragment end can form only one contact, in our simulations 
we record all contacts happening within the contact radius 10, and each 
monomer can form many contacts. Thus, this map shows more contacts 
than a single-cell Hi-C map would, even if Hi-C had the same capture 
radius. The map thus shows all potential contacts that could be extracted 
from a single conformation if sn-HiC was ‘performed’ on the same 
conformation many times, each time choosing one neighbour within the 
contact radius of 10.
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Extended Data Figure 6 | TADs are not visible in single polymers 
undergoing loop extrusion. Similar to Extended Data Fig. 5, but for our 
model of loop extrusion starting with mitotic-like conformation (maternal 
nuclei). In this model, a 77-Mb chromosome (600-bp monomers; 128,000 
monomers) is divided into 64 blocks of 3 TADs each. TAD sizes are 300, 
600, and 1,100 monomers (180 kb, 360 kb and 660 kb). See ref. 22 and 
Supplementary Methods for the description of the model. Thin grey lines 
denote TAD boundaries on all heat maps. Each panel shows a block of  

6 consecutive TADs, 4,000 monomers, or 2.4 Mb. Contact map is 
calculated at contact radius 10, and for bin size of 6 kb (10 monomers).  
For a population average map, 15,000 conformations were used. From  
each of 50 independent runs, we sampled 10 conformation at block 
numbers 1,100, 1,200,..., 2,000. From each conformation, we sampled 
30 non-overlapping blocks of 6 TADs (4,000 monomers) starting at 
monomers 4,000, 8,000, 12,000, …, 120,000) totalling 15,000 blocks. 
Single-cell map was calculated from a single randomly chosen block.
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Extended Data Figure 7 | sn-HiC results for NSN and SN oocytes sorted 
by DIC scoring. Note that Hoechst staining (see Fig. 3) is necessary for 
proper sorting of NSN and SN oocyte populations. a, Compartment signal, 
average TAD, average loop in oocytes staged by DIC with no DNA staining 

(n (NSN) =​ 29, n (SN) =​ 40, from more than three biological replicates 
using 2–4 females). b, Pc(s) (for cells with >​30,000 contacts, n (NSN) =​ 25, 
n (SN) =​ 30, from more than three biological replicates using 2–4 females) 
for oocytes staged by DIC with no DNA staining.
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Extended Data Figure 8 | Pc(s) and compartment strength in zygote 
nuclei in comparison to other cell types. a, Pc(s) for maternal (mat) and 
paternal (pat) zygotic nuclei with >​30,000 total contacts analysed without 
nuclear extraction (n (maternal) =​ 4, n (paternal) =​ 7, from more than two 
biological replicates using 4–6 females). b, Comparison of compartment 

signal strength in combined maternal and paternal zygote nuclei with or 
without using nuclear extraction, with NSN and SN oocytes (staged with 
Hoechst staining), and published ES cell30 and sperm25 data. c, Pc(s) for 
K562 cells, paternal and maternal nuclei, NSN and SN oocytes (this work), 
interphase cells6,8,11,15,30–40 and mitotic chromosomes11.
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Extended Data Figure 9 | Comparison of all mm9 data sets. a, Same 
as Fig. 4b, but for oocytes and zygotic nuclei together. b, Compartment 
strength quantified in different data sets (columns, both published and 
from this study) on the basis of compartment annotation from published 
data sets (rows). The highest values in each column represent cell types 

that are most similar to the data of interest. Note that the first nine 
columns have the highest value on the main diagonal, which correspond 
to compartment strength evaluated using eigenvector (compartment 
profile) from the same data set. Also note that cortex cells have similar 
compartment strength to oocytes and paternal zygotic nuclei.
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Extended Data Figure 10 | Design and validation of FISH probes for 
quantification of compartments. a, FISH probe design for quantifying 
compartment segregation; left: probe locations are shown superimposed 
on the Hi-C data (200 kb resolution from F123 ES cells30, right: exact 
locations of designed probes. b, Probe locations shown relative to the 
profile of compartment strength (200 kb resolution) as measured by the 
first eigenvector of the Hi-C map eigenvector decomposition. c, d, Top: 
nearest neighbour FISH distances—the same as curves in Fig. 4d—but 

shown for ES cells (n (replicate 1) =​ 87, n (replicate 2) =​ 78) (c) and 
maternal (n =​ 33) and paternal (n =​ 37) zygotic nuclei. Data from one 
biological replicate using four females. d, Bottom: z-scores showing the 
number of standard deviations from the expected minimum distance 
distribution of the control data; the control distribution was obtained from 
randomly reshuffling probe colours as described in the Supplementary 
Methods.
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